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Introduction: In multiple studies, involvement of oxidative stress in the pathogenesis of

methotrexate (MTX)-mediated liver damage has been confirmed. Use of many drugs has been

examined experimentally in order to prevent or diminish oxidative stress. However, no study has

yet examined the effects of ferulic acid (FA) onMTX-induced liver damage. This study aimed at

evaluating the effects of FA on protection against liver damage induced by MTX in mice.

Materials and Methods: In this the mice were divided into five groups in a random

manner: I) control; II) MTX (20 mg/kg); III and IV) FA (50 and 100 mg/kg) + MTX; and V)

FA (100 mg/kg), and we measured serum factors, oxidative stress and inflammatory factors.

Results: In the MTX group, accumulation of inflammatory cells, accumulation of red blood

cell (RBC), and nuclear pyknosis (NP) were detected in the liver. In line with the histological

data, the levels of nitric oxide (NO), malondialdehyde (MDA), interleukin-6 (IL-6), and

tumor necrosis factor-α increased (TNF-α), whereas the reduced glutathione (GSH), catalase

(CAT), total antioxidant capacity (TAC), superoxide dismutase (SOD), and glutathione

peroxidase (GPx) content reduced in the MTX group. However, FA ameliorated these

hazardous effects in the antioxidant and anti-inflammatory systems in MTX-treated groups.

Conclusion: Based on our findings, oxidative stress impairment and MTX-induced liver

damage were ameliorated following FA pretreatment at both histological and biochemical

levels. Therefore, FA can be effectively used in abrogation of MTX-induced toxicity.
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Introduction
Drug-induced damage to the liver can be considered a challenging problem,

complicating the course of drug therapy and limiting its effectiveness.1

Methotrexate (MTX), which is a folic acid antagonist, is recognized as a common

anticancer drug. Nevertheless, the cytotoxic effects of MTX not only affect tumor

cells, but also influence vital organs. Hepatotoxicity is a major type of toxicity

associated with MTX chemotherapy.2,3 The prevalence of MTX-induced liver

cirrhosis and fibrosis may reach up to 26% and 50% in patients, respectively.4

According to several studies, oxidative stress contributes to the pathogenesis of

MTX-induced damage in multiple organs, particularly the liver.5–7

It is known that reactive oxygen species (ROS) contribute to cell apoptosis.8

Generally, glutathione (GSH), as a major cytosolic antioxidant, uses nicotinamide

adenine dinucleotide phosphate (NADPH).9 It has been reported that MTX inhibits

nicotinamide adenine dinucleotide phosphate (NADP)-malic enzymes and
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cytosolic NADP-dependent dehydrogenases. MTX, by

inhibition of pentose cycle enzymes, reduces NADPH

availability in cells. Therefore, any failure in the antiox-

idant defense system can increase cell sensitivity to ROS-

mediated damage.10 It has been also reported that MTX

can cause damage to the liver by increasing the level of

proinflammatory cytokines.11 Therefore, finding an adju-

vant hepatoprotective compound is essential for the safe

application of this immunosuppressant anticancer drug.

Substantial evidence confirms the strong antioxidant char-

acteristics of flavonoid components in vitro.

Ferulic acid (FA), as a phenolic compound, is formed

during tyrosine and phenylalanine metabolism and is

mostly found in wheat, rice, barely, banana, tomato, citrus

fruits, and vegetables.12 FA, which is recognized as

a strong membrane antioxidant, seems to be effective

against skin cancer, influenza, muscle wasting, and

fatigue.13 Furthermore, FA exerts many pharmacological

effects, including anti-nociceptive, anti-inflammatory, anti-

tumor, anti-diabetic, anti-hyperlipidemic, neuroprotective

and anti-hypertensive activities.14–19

FA, given its extended side chain and phenolic nucleus,

can form resonance-stabilized phenoxy radicals, which are

responsible for the free radical-scavenging properties.20

FA scavenges both reactive nitrogen species (RNS) and

ROS through its free radical scavenging activities.21,22 The

antioxidant activity of FA, as well as its protective effects

against Alzheimer’s disease, ultraviolet (UV) radiation,

and cardiovascular disease, has been established.23

Recently, major attention has been paid to phenolic

acids for the prevention of various diseases, due to their

antioxidant properties. In this study, we aimed at examin-

ing the antioxidant and hepatoprotective effects of FA on

hepatotoxicity caused by MTX in mice. According to our

literature search, this is the first study on the hepatopro-

tective role of FA in MTX-mediated liver damage.

Materials and Methods
Chemicals
Sigma (USA) provided FA and MTX, while Merck Co.

(Germany) supplied all other chemicals and reagents of an

analytical grade.

Animals
The animal house of Ahvaz Jundishapur University of Medical

Sciences (AJUMS) provided seven- to eight-week-old male

Swiss albino mice (22–25 g) for this study. The animals were

given oneweek for acclimatization in a 12:12 h light-dark cycle

under optimal environmental conditions (moderate humidity,

65±5%; temperature, 22±2°C). This study was approved by the

Ethics Committee of Ahvaz Jundishapur University of Medical

Sciences (IR.AJUMS.ABHC.REC.1397.004) and was con-

ducted in conformity with international laws and policies

(EEC Council directives 86/609, OJL 358, 1, December, 12,

1987; NIH Guide for the Care and Use of Laboratory Animals,

NIH Publications No. 85-23, 1985).

Study Design
The mice were divided into five groups in a random man-

ner (seven mice per group):

Control group: receiving oral saline (10 mL/kg of FA

vehicle) for seven days, as well as a single injection of

0.9% saline (MTX vehicle, i.p.) on day six;

MTX group: receiving a single MTX injection (20 mg/

kg, i.p.) on day six;

FA+MTX groups: receiving two oral doses of FA (50,

100 mg/kg, p.o.) once every day for one week, as well as

MTX (20 mg/kg, i.p.) on day six; and FA group: receiving

only 100 mg/kg of oral FA (p.o.) for seven consecutive days.

The dosage regime of MTX2,11 and FA24,25 is based on

previous articles that were added to the methods.

After sacrificing the animals via cervical dislocation on the

eighth day, the blood samples were centrifuged for 10 minutes

at 3000 rpm. The collected serum was kept at −80°C until

further analysis. The liver was dissected into two sections. The

first section was formalin-fixed for the histopathological ana-

lysis, while the second part was used for the biochemical

assessment, for which the tissue sections were rinsed in cold

normal saline and homogenized in ice-cold potassium phos-

phate buffer (0.1 M). Two cycles of centrifugation were per-

formed at 600 and 10,000 g on the final homogenate. The

collected supernatant was stored at −70°C to determine the

oxidative biomarkers, antioxidant enzymes, and proinflamma-

tory cytokines.

Biochemical Analysis
The serum alkaline phosphatase (ALP), aspartate amino-

transferase (AST), and alanine aminotransferase (ALT)

were measured, based on the colorimetric kit protocols

(Human, Wiesbaden, Germany).

Protein Measurement
The method proposed by Lowry et al in 195126 was

applied to measure the protein concentration, with BSA

as the standard.
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Oxidative Stress Markers
The hepatic malondialdehyde (MDA) content was measured

based on the methods described by Uchiyama and Mihara in

order to evaluate lipid peroxidation.27 The nitric oxide (NO)

content was also determined based on a study by Green et al.28

Next, the tissue levels of catalase (CAT), total antioxidant

capacity (TAC), and reduced glutathione (GSH) were deter-

mined according to the methods by Beutler,29 Aebi30 and

Prieto et al,31 respectively. Also, superoxide dismutase

(SOD), and glutathione peroxidase (GPx) activities were mea-

sured using the method described in the commercial kits

(ZellBio Company, Germany).

Measurement of Proinflammatory

Cytokines
Using ELISA kits, the serum tumor necrosis factor-α
increased (TNF-α) and interleukin-6 (IL-6), levels were

measured (IBL, Germany; TNF-α catalog number:

27,194; IL-6 catalog number: 53061). The manufacturer’s

instructions were followed during the measurements, and

an ELISA reader was used at 450 nm to read absorbance.

Histopathological Analysis
The livers were immediately excised following blood col-

lection and fixed in 10% formalin. After dehydrating the

samples in graded alcohol concentrations, they were paraf-

fin-embedded. Then, sections (4–6 µm) were prepared, and

haemotoxylin and eosin (H&E) staining was performed. For

the analysis of histological changes, including nuclear

pyknosis and accumulation of inflammatory cells and

RBCs, six microscopic slides were examined per animal.

The histological properties were classified into four groups:

normal, weak, moderate, and intense (0–3); the average

value was measured. In addition, the percentage of nuclear

pyknosis was also measured. After determining the mean of

six fields, the slide was read in a “blind” fashion.

Data Analysis
For data analysis, one-way ANOVA, as well as Tukey’s

post hoc test, was used at a significance level of 0.05.

Values are presented as mean±SD.

Results
Biochemical Analysis
Effect of FA and MTX on AST, ALT, and ALP

The ALT, AST and ALP levels increased significantly in the

MTX group versus the control group (P< 0.001). In animals

receiving 50 mg/kg of FA, ALT and AST, but not ALP,

significantly reduced compared with the MTX group (P<

0.05). In mice receiving 100 mg/kg of FA, ALT, AST and

ALP levels decreased significantly versus the MTX group

(P< 0.001, P< 0.01, and P< 0.05, respectively). However,

the control group was not significantly different from the

group receiving a higher dose of FA (Figure 1A–C).

Effect of FA and MTX on Liver MDA and

NO Content
The hepatic levels of MDA andNO increased significantly in

the MTX group (P< 0.001) versus the control group.

Nevertheless, FA pretreatment at 50 and 100 mg/kg could

attenuateMDA in comparison with theMTX group (P< 0.05

and P< 0.01). The findings showed that 100 mg/kg of FA

Figure 1 Effect of ferulic acid (FA) on markers of liver dysfunction in methotrexate (MTX)-induced hepatotoxicity in mice. Values are means ± SD (n = 7). Data were

analyzed by one-way ANOVA followed by Tukey’s post hoc test for multiple comparisons. *Significant difference in comparison with the control group (***p< 0.001).
#Significant difference in comparison with the MTX group (#p< 0.05; ##p< 0.01 and ###p< 0.001).
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could significantly reduce the NO content, comparedwith the

MTX group (P< 0.05). Nevertheless, higher FA concentra-

tions did not significantly change the MDA or NO content

versus the control group (Figure 2A and B).

Effect of FA and MTX on Hepatic TAC

and GSH Content
In MTX-treated mice, GSH and TAC levels decreased sig-

nificantly, compared with the control group (P< 0.001).

However, pretreatment with 50 and 100 mg/kg of FA sig-

nificantly increased TAC and GSH content, compared with

the MTX group (P< 0.05, P< 0.01, and P< 0.001). No

significant difference was observed between the control

group and the group receiving a higher dose of FA

(Figure 3A and B).

Effects of FA and MTX on Hepatic CAT,

GPx, and SOD
The GPx, SOD, and CAT levels in the liver reduced in the

MTX group versus the control group (P< 0.001, P< 0.001,

and P< 0.01, respectively). Pretreatment with 50 and

100 mg/kg of FA significantly improved GPx activity in

comparison with the MTX group (P< 0.05 and P< 0.001).

Furthermore, 100 mg/kg of FA increased SOD signifi-

cantly versus the MTX group (P< 0.05). CAT activity

improved in the liver tissues of FA group to levels not

significantly different from the MTX group. Also, no

difference was found in theses enzymes between the con-

trol group and the group receiving only a higher dose of

FA (Figure 4A–C).

Effect of FA and MTX on Inflammatory

Markers
In comparison with the control group, the hepatic levels of

TNF-α and IL-6 significantly increased in the MTX group

(P< 0.001). This change was reversed by FA pretreatment at

50 and 100 mg/kg, which decreased these parameters, com-

pared with the MTX group (P< 0.05 and P< 0.001). The

control group showed no significant difference with the

group receiving a higher dose of FA (Figure 5A and B).

Effect of FA on MTX-Mediated Changes

in Hepatic Histology
The control group showed normal hepatocytes.

Accumulation of inflammatory cells, accumulation of red

blood cells (RBCs), and nuclear pyknosis were reported in

the MTX group. FA pretreatment at both doses could

reverse the changes, and more normal hepatocytes were

produced in the treatment groups. No change occurred in

the hepatic architecture at higher doses of FA, which was

similar to the control group (Figure 6 and Table 1).

Discussion
In this experimental study, FA treatment protected against

oxidative stress, inflammation, and morphological liver

damage due to MTX. Given their negative effects on some

organs, including the liver, testis, kidney, and heart, antic-

ancer drugs are not widely used.32–34 Several reports have

suggested MTX-induced liver toxicity, involving inflamma-

tion, apoptosis, and increased AST, ALT, and ALP levels in

the serum.35–39 In the present study, it was found that MTX-

treated mice experienced significant hepatic damages, as

Figure 2 Effect of ferulic acid (FA) on markers of oxidative stress in methotrexate (MTX)-induced hepatotoxicity in mice. Values are means ± SD (n = 7). Data were analyzed

by one-way ANOVA followed by Tukey’s post hoc test for multiple comparisons. *Significant difference in comparison with the control group (***p< 0.001). #Significant

difference in comparison with the MTX group (#p< 0.05; ##p< 0.01).
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confirmed by the significant rise in the serum ALP, AST, and

ALT. The histopathological analysis confirmed the biochem-

ical changes, indicating major hepatic damage in the MTX

group. The FA pretreatment significantly attenuated bio-

chemical and histopathological changes, suggesting the

counteraction of FAwith MTX-induced hepatotoxicity.

Several theories have been proposed regarding the mechan-

isms of MTX-induced toxicity, involving inflammation, oxida-

tive stress, nitrosative stress, and apoptosis.40,41 MTX triggers

oxidative stress by inhibiting the synthesis of NADP, which

maintains reducedGSH.Moreover, it leads to nitrative stress by

increasing the concentration of TNF-α, which in turn improves

inducible nitric oxide synthase (iNOS) expression, as well as

NO and Cyclic guanosine monophosphate (cGMP)

production.42 Reaction of these highly reactive species with

biological macromolecules is associated with the production

of lipid peroxides, cellular dysfunction, membrane degradation,

and formation of inactivating proteins and mutating deoxyribo-

nucleic acid (DNA).10,43

The present study showed significant changes in the oxi-

dant/antioxidant balance byMTX.Based on the findings,MDA

content in the MTX group was significantly higher than the

control group. MDA, a stable metabolite, is widely used as

a marker of oxidative stress.44 Lipid peroxidation, caused by

oxygen free radicals, may be a major cause of cell membrane

damage, as well as MTX-mediated tissue damage.45

Figure 4 Effect of ferulic acid (FA) on antioxidant enzymes in methotrexate (MTX)-induced hepatotoxicity in mice. Values are means ± SD (n = 7). Data were analyzed by

one-way ANOVA followed by Tukey’s post hoc test for multiple comparisons. *Significant difference in comparison with the control group (**p< 0.01 and ***p< 0.001).
#Significant difference in comparison with the MTX group (#p< 0.05 and ###p< 0.001).

Figure 3 Effect of ferulic acid (FA) on antioxidant factors in methotrexate (MTX)-induced hepatotoxicity in mice. Values are means ± SD (n = 7). Data were analyzed by one-

way ANOVA followed by Tukey’s post hoc test for multiple comparisons. *Significant difference in comparison with the control group (***p< 0.001). #Significant difference in

comparison with the MTX group (#p< 0.05; ##p< 0.01 and ###p< 0.001).
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Similarly, in our study, an increase was found in the

NO content of hepatic tissues in the MTX group. Previous

studies have confirmed the major involvement of NO in

the pathogenesis of MTX toxicity.46,47 The high NO con-

tent reacts with superoxide anions producing versatile

oxidant peroxynitrite and activating nuclear factor kappa

Figure 6 The effect of normal saline, methotrexate, methotrexate + ferulic acid and ferulic acid administration on liver (stained with hematoxylin & eosin, magnification

X 100). (Control), normal saline-treated mice showing normal morphological appearance; (MTX), methotrexate-treated mice showing massive accumulation of RBCs,

accumulation of inflammatory cells and nuclear pyknosis; (MTX and FA) methotrexate + ferulic acid at doses (50 and 100 mg/kg) treated mice, showing mild hepatic

accumulation of RBCs inflammatory cells, (FA) ferulic acid at dose 100 mg/kg treated mice showing normal morphological appearance similar to the control group. Arrows

indicates NP: Nuclear pyknosis and AR: Accumulation of red blood cells, Circles indicates I: Inflammatory cells.

Figure 5 Effect of ferulic acid (FA) inflammatory cytokines in methotrexate (MTX)-induced hepatotoxicity in mice. Values are means ± SD (n = 7). Data were analyzed by

one-way ANOVA followed by Tukey’s post hoc test for multiple comparisons. *Significant difference in comparison with the control group (***p< 0.001). #Significant

difference in comparison with the MTX group (#p< 0.05 and ##p< 0.01).
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B (NF-κB).47 In our study, MDA level and NO content

significantly decreased following FA pretreatment.

Overall, phenolic compounds scavenge free radicals and

quench lipid peroxides. According to previous reports, FA,

which is approved as a food additive in some countries, is

recognized as an effective free radical scavenger, prevent-

ing lipid peroxidation.48–50

Antioxidant factors, including CAT, SOD, GPx, GSH,

and TAC, comprise the first line of defense against oxidative

damage. SOD is a sensitive marker of liver damage, as it

scavenges superoxide anions to form hydrogen peroxide

(H2O2), resulting in the reduction of toxic effects. The most

important detoxifying systems for peroxides include GSH

and CAT in hepatic cells.51 GSH and GPx convert H2O2 and

lipid peroxides to nontoxic products through participation in

the GSH redox cycle. Therefore, reduction of these factors

may produce some negative effects, given the accumulation

of H2O2 and superoxide radicals.52,53 Also, TAC represents

the total effect of plasma antioxidants.54

In our study, MTX reduced the levels of SOD, CAT, GPx,

GSH, and TAC of tissues. The feed-back inhibition or oxi-

dative inactivation of enzyme proteins as a result of excess

ROS formation may explain the observed decline,55 these

results are consistent with previous studies.6,10 FA could

regulate all changes induced by MTX. Also, pretreatment

with FA could increase GSH, TAC, SOD, and GPx in an

MTX model. These results show that the antioxidant char-

acteristics may be associated with FA-mediated protection

against MTX-induced hepatic damage. According to pre-

vious studies, FA is a potent antioxidant against carbon

tetrachloride, alcohol, bleomycin, acetaminophen, and iron-

induced oxidative stress.24,50,56–58

Assessment of the effects of MTX on inflammatory

cytokines in intoxicated animals is necessary in order to

understand the anti-inflammatory effects of FA. Generally,

TNF-α and IL-6 are recognized as proinflammatory cyto-

kines, regulating inflammatory responses. In addition, the

release of other cytokines and NO production are

promoted, thereby improving oxidative damage.59 In the

current study, MTX increased the TNF-α and IL-6 levels

in liver tissues. According to previous studies, MTX

increases IL-6, TNF-α, and IL-1β levels.39,47,60,61 Also,

the inflammatory markers significantly reduced in the FA

+MTX groups in the current study. These findings are in

line with previous studies, indicating the FA potential to

thwart the CCl4-induced release of inflammatory factors.62

Based on the histopathological analysis, MTX induced an

acute inflammatory reaction, associated with inflammatory

cell accumulation, red blood cell (RBC) accumulation, and

nuclear pyknosis. Earlier studies explained this reaction by the

MTX potential to trigger oxidative and nitrative stress and

activate p38 and NF-κB pathways.2,3,63 Moreover, our histo-

pathological findings showed the positive effects of FA on

MTX-mediated hepatic damage. This finding is consistent

with a previous study, suggesting that FA can reduce acetami-

nophen-related histopathological changes.24

Conclusion
Based on our findings, FA could ameliorate MTX-

mediated hepatotoxicity. FA, especially at dose 100 mg/

kg could also decrease oxidative stress and inflammation

and improve the endogenous antioxidant system to prevent

MTX-mediated oxidative damage. Therefore, FA (at dose

100 mg/kg) could be a safe option for the prevention of

MTX-induced toxicity in humans.
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Table 1 Effect of Ferulic Acid (FA) on Damage Scores in Liver Tissues Following Methotrexate (MTX)- Induced Hepatotoxicity

Groups

Histological criteria Control MTX MTX+FA 50 MTX+FA 100 FA 100

Accumulation of RBCs 0.13 ± 0.00 2.23±0.24*** 1.12± 0.16### 0.42± 0.26### 0.11±0.00

Accumulation of inflammatory Cells 0.14 ± 0.00 1.93±0.12*** 0.83±0.21### 0.34±0.15### 0.12±0.00

Nuclear pyknosis (%) 0.00±0.00 1.49±0.13*** 0.1 ±0.02### 0.00±0.00### 0.00±0.00

Notes: Values are means ± SD (n = 7). Data were analyzed by one-way ANOVA followed by Tukey’s post-hoc test for multiple comparisons. ***Significant with control group,
###Significant with MTX Group.
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