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Uric acid increased accumulation and/or reduced excretion in human bodies is closely related to patho-
genesis of gout and hyperuricemia. It is highly affected by the high intake of food rich in purine. Uric acid
is present in both higher plants and microorganisms with species dependent concentration. Urate-
degrading enzymes are found both in plants and microorganisms but the mechanisms by which plant
degrade uric acid was found to be different among them. Higher plants produce various metabolites
which could inhibit xanthine oxidase and xanthine oxidoreductase, so prohibit the oxidation of hypoxan-
thine to xanthine then to uric acid in the purine metabolism. However, microorganisms produce group of
degrading enzymes uricase, allantoinase, allantoicase and urease, which catalyze the degradation of uric
acid to the ammonia. In humans, researchers found that several mutations caused a pseudogenization
(silencing) of the uricase gene in ancestral apes which exist as an insoluble crystalloid in peroxisomes.
This is in contrast to microorganisms in which uricases are soluble and exist either in cytoplasm or per-
oxisomes. Moreover, many recombinant uricases with higher activity than the wild type uricases could
be induced successfully in many microorganisms. The present review deals with the occurrence of uric
acid in plants and other organisms specially microorganisms in addition to the mechanisms by which
plant extracts, metabolites and enzymes could reduce uric acid in blood. The genetic and genes encoding
for uric acid in plants and microorganisms are also presented.
� 2017 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article
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Introduction

Uric acid is one of the most important nitrogen compounds in
animal and plant bodies. It consists of 2,6,8 trihydroxypurine exist-
ing as a keto-enol tautomerism that under physiological conditions
can easily be converted to the corresponding urate [1]. It derived
from purine, two of which, adenine and guanine, are present in
DNA and RNA. In Human, both uric acid and urate are accumulated
in the form of calculi in the joints and/or connective tissues causing
arthritis and rheumatic pain. They may also deposit in kidneys
and/or ureters causing kidney disease or failure [2].

Uric acid is either produced when the body breaks purine
occurred naturally [3] (Fig. 1) or supplied from certain foods. Con-
sequently, some animal and plant foods with high purine contents
should be avoided from diet especially in persons suffer from gout,
as the overproduction of uric acid can induce hyperuricemia which
is linked to gout [4].

The normal level of uric acid in the blood is between 3–
7 mg/100 mL, which is required to human and animal bodies as
antioxidant and prevents damage of blood vessels lining so protect
them. Low purine diets including plants, often required to treat
gout. The average daily meal for adult in United States contains
about 600–1000 mg of purines. Recent research has shown that
plant purines (fruits and vegetables) have risk of uric acid accumu-
lation but lower than that of meat and fish [5].
Fig. 1. Production of uric acid from pur
Production of uric acid by fungi and bacteria

Early, Jarmai [6] and Hutyra and Marek [7] reported that gout in
birds had been caused by smut fungus Ustilago maydis, a common
causal agent of moldy corn. Oosporin, a mycotoxin secreted by U.
maydis induce gout in chickens and turkeys [8,9]. Furthermore,
Constantini [10] reported that gout and hyperuricemia have been
induced in animals by the fungal species U. maydis, Chaetomium tri-
alterale, Saccharomyces cerevisiae, and Candida utilis. It is also
induced by mycotoxins, aflatoxin, ochratoxin, Oosporin, and oxalic
acid. Other fungal metabolites such as cyclosporine, ergotamine,
and penicillin have been found to induce gout [10].

Gout is documented to be etiologically linked to beer, a Saccha-
romyces fermented beverage. Researchers found that beers contain
significant quantities of ochratoxin and large amount of uric acid
produced by the yeast Saccharomyces sp. [10] and accumulated in
its vacuoles [11]. They also indicated that drinkers of beer and wine
andpeoplewhooften consumeyeast foods such as bread and cheese
are more susceptible to develop gout [10] (Table 1). Ochratoxin, a
series of nephrotoxins produced by several species of the genera
Aspergillius and Penicillium was found in beer and causes gout as
early detected by many authors [10,12–14]. A synergistic interac-
tion may occur between the alcohol from beer or yeast-fermented
wine and ochratoxin. In fact, a study performed with 61 gouty
men revealed that nearly all of them were beer drinkers [10].
ines. Adapted from Xiang et al. [3].



Table 1
Uric acid content of various beers. Adapted from Constantini [10].

Brand of beer Uric acid (mg/dL)

Miller beer 7.34
Olympia beer 7.05
Budweiser beer 8.09
Taiwan beer 9.35
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Furthermore, long term feeding of rats with yeast autolysate
has associated with rise in uric acid and anti-DNA antibodies.
The elevated anti-DNA level was correlated with severe arthritis
[15].

When single-cell protein, as in yeast, is used as a source of edi-
ble protein it increases uric acid in body when the individual lacks
uricase [16]. Ergotamine, a fungal metabolite produced by Clavi-
ceps purpurea, and penicillin, an antibiotic produced by Penicillium
notatum, has been shown to induce acute gout in human [17]. Afla-
toxin, a commonmycotoxin produced by Aspergillus flavuswas also
found to induce gout. When female Macaque monkey is fed with
aflatoxin B1 contaminated food, numerous urate crystals sur-
rounded by inflammatory cells were detected [18] and the kidneys
lesions were similar to those found in human patients suffering
from hyperuricemia and gout [19].

Oxalic acid, a metabolite produced by many fungal species,
induced also, gout in human and chicken. It is one of the degrada-
tion products of uric acid. This explains why both oxalate and urate
crystals are usually present in kidney stone of gouty patients [20].

Cyclosporine, a fungal metabolite produced by Tolypociladium
inflatum and widely used as immunosuppressant, was found to
be an inducer of gout in human. Many Organ Transplant Centers
recorded that 24% of cyclosporine treated patients suffered from
gout compared to patients treated with the immunosuppressant
azathioprine where none of the patients suffered from gout
[21–23].

Mushrooms and truffles contain moderate amounts of purine
but are still included as a part of healthy diet because of additional
benefits they provide. Moreover, Nogaim et al. [24] noticed an
increase in uric acid level in blood serum of rats fed with mush-
room powder after 15 days of daily diet due to much protein and
phosphorus in mushroom. Continuous eating of this fungus can
cause decrease in kidney function, leading to more serious high
uric acid illness.
Enzymatic degradation of uric acid by microorganisms

The enzyme responsible for purine metabolism is uricase (urate
oxidase, oxidoreductase, EC 1.7.3.3). It activates the oxidation of
uric acid to soluble allantoin. Most vertebrates possess uricase,
except humans and higher apes, which became not functional by
point mutation during evolution resulting in the formation of a
redundant protein [25]. Uricase is localized inside microorganisms,
especially Bacillus pasteurii [26], Proteus mirabilis [27], and Escher-
ichia coli [28], while other microorganisms could produce them
extracellularly by changing certain components of the culture
media as in Streptomyces albosriseolus [29], Microbacterium [30],
Bacillus thermocatenulatus [31], Candida tropicalis [32], and Pseu-
domonas aeruginosa [33].
Microorganisms induced gout and hyperuricemia

Catabolism of purine to uric acid is conserved among microor-
ganisms; however, the end product of uric acid breakdown varies
among species, depending on the kind of active catabolic enzymes.
The formed uric acid can either be excreted or degraded in the
peroxisomes by active catabolic enzymes [34], Fig. 2. Plants are
capable to perform complete purine degradation. The end prod-
ucts, glycoxylate and ammonia, are recycled to synthesized organic
molecules, which can be used in growth. Catabolic intermediates,
urides, allentoin and allantoate, are likely to be involved in protect-
ing plants against abiotic stress [35]. The first common intermedi-
ate of all purine bases is xanthine. It is oxidized to urate in the
cytosol by xanthine dehydrogenase, whereas urate is imported into
the perixosome and oxidized by uricase to 5-hydroxyisourate,
which in turn converted via 2-oxy-4-hydroxy-4-carboxy-5-ureidoi
midaoline to S-allantoin by the functional allantoin synthase [35–
40]. In microorganisms, different end products of uric acid degra-
dation are due to evolution of urate oxidase (uricase, allantoinase,
and allantoicase). Moreover, most microorganisms possess all the
required nitrogen catabolic enzymes to completely break down
uric acid to ammonia [41–43]. In certain fungi and bacteria, allan-
toate is hydrolyzed by an allantolate amidinohydrolase (allanto-
icase) generating urea and s-ureidoglycolate [44–46], while in
plants, it generate s-ureidoglycolate, ammonia and carbon dioxide
from allantoate as final products [44,47,48]. In contrast to plant
and microbes, animals degrade purine to intermediate purine com-
pounds such as urates and allentoin, which are then excreted [34],
Fig. 2.

El-Nagger and Emara [49] isolated from soil a number of uri-
colytic fungi belongs to Fusarium, Spondilocladium, Stemphylium,
Geotrichum, Mucor, Alternaria, Helminthosporium, Chaetomium,
Penicillium, Curvularia and Aspergillus.

Bacteria (Pseudomonas, Enterobacter, Citrobacter and Lactococ-
cus) isolated from gut of apple snail Pomacea canaliculata possess
high uricolytic activity. It symbiotically recycles the combined
nitrogen and phosphorus in the snail [50]. Uric acid subjected to
either non-enzymatic uricolysis to form antioxidant or enzymatic
uricolysis to form allantoin and ammonia in the snail could afford
amino acid, protein and purine [50–54], Fig. 3.

Streptomyces exofolitus isolated from soil by Magda et al. [55]
were found to be high producer of uricase. They reported that this
pure uricase can be used to diagnose and evaluate uric acid in urine
and blood. Also, Streptomyces albosriseolus isolated by Ammar et al.
[29] potentially produces uricase in media containing uric acid as
carbon and nitrogen source.

The ‘‘Microbial Index of Gout” was declared as a novel, sensi-
tive and non-invasive way for diagnosing gout via fecal micro-
biota. They proposed that the intestinal microbiota in gout
patients is highly distinguished from that of healthy ones as Bac-
triiodes caccae and B. xylanisolvens were enriched while Faecal-
ibacterium parusnitzit and Bifidobacterium pseadocatenulate were
depressed [56].

Ogawa [57] designed a new prophylaxis for treating hyperure-
cemia using probiotic effect of microorganisms as bacteria. The
term probiotic refers to the living microorganisms that survive
through the gastrointestinal tract and have beneficial effect on
the host’s health. He used pretreated rats with uricase inhibitor
‘‘Potassium oxonate” as a model for hyperuricemia. The serum uric
acid level of the group treated with probiotics showed significant
repression in rat serum specifically in the presence of Lactobacillus
fermentum ONRIC b0185 and b0195 and L. pentosus ONRIC b0223.
These bacterial strains could convert nucleosides to purine base
because they have nucleosidases activities. Nucleosidases in turn
convert guanine and adenosine to hypoxathine then xanthine.
Production of uric acid by plants

Hyperuricemia is highly affected by the high dietary intake of
food rich in purine, such as meats, bean seeds, mushrooms and
some types of sea foods [58]. Additionally, there is growing interest
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in fruits, vegetables and herbs high in phytochemical compounds
that have been implicated as alternative or additive drugs to gout.

Purines are naturally occurred in all plant foods. It was found
that purine at 10–15 mg/100 g food is present in all plant foods.
However, some plant foods can contain 100–500 mg uric
acid/100 g food [59]. However, some others contain above this
range. Plants which have high amounts of purines include spinach,
peas, lenticels, cauliflowers and beans. Any food containing yeast
extract should be avoided [60]. Several plants contain moderate
concentrations of purine ranging from 50–100 mg/100 g of food,
as avocado, bananas and asparagus [61], (Table 2), in which one
should not consume them on weekly basis in portions larger than
one small cup (in fresh state) or half cup (if in cooked state). Some
foods, on the other hand, are helped in decreasing uric acid level
such as pineapple, lemons, fibrous foods, olive oil, parsley, red cab-
bage, corn and rice [60].

Vegetables containing higher levels of magnesium and lower
level of calcium reduce the amounts of uric acid in the blood and
decrease the chance of developing gout. These vegetables include
corn, potatoes and avocados. Celery seeds are popular alternative
to drugs in reducing uric acid in blood. Furthermore, fruits and veg-
etables contain vitamin C may help in the reduction of uric acid
level in blood. Cherries especially black cherry juices being used
in great quantities to help relief the symptoms of gout and reduce
uric acid level [62].
Inhibition of uric acid synthesis by some plant metabolites

Xanthine oxidoreductase (XOR) has two forms; xanthine oxi-
dase (XO) and xanthine dehydrogenase (XDH), both of them cat-
alyze the oxidation of hypoxanthine to xanthines, then to uric
acid in the purine metabolism [4]. Overactivity of both enzymes
cause the accumulation of uric acid in the body and form a
pathogenethesis condition called gout [63]. Additionally, xanthine
oxidase (XO) serves as a valuable biological source of oxygen free
radicals that participate in various damages of living tissues lead-
ing to many pathological states [58,64].

Some herbal plant extracts possess antioxidant activity to abol-
ish the oxidative and inflammatory response produced by xanthine
oxidase. Xanthine oxidase [XO EC.1.2.3.2] is a key enzyme that
plays a role in hyperuricemia catalyzing the oxidation of hypoxan-
thine to xanthine then to uric acid. The enzyme is situated at the
end of the catabolic sequence of purine metabolism [65]. There-
fore, several researches are focused on exploring potent XO inhibi-
tors from wide variety of traditional herbal plants [66,67].

Allopurinol is the efficient clinically used XO inhibitor in the
treatment of gout [68]. However, this drug causes numerous side
effects such as nephropathy and allergic responses [69]. Thus the
search for natural XO inhibitors from plants with higher therapeu-
tic activity and fewer side effects are needed to treat gout and
other diseases associated with XO activity. Some medicinal plants
represent a potential source of XO inhibitors [67,70]. Plant flavo-
noids, anthocyanins and phenolics are known to have antioxidant
and anti-inflammatory properties that reduce uric acid in blood
[71–73].

The presence of uricases in plant was established in gly-
oxysomes of different seed tissues (endosperm, perisperm, scutella
and cotyledons) from various plants [74] as well as in peroxisomes
from maize root tips [75], soybean nodules [76], in roots but not in
leaves of corn and tobacco [74], in pea and soybean leaf extracts
[77] and from leaves of chickpea, broad bean and wheat [78].

Many herbal plant species were explored to be antigout and
reduce uric acid in blood such as Lagerstroemia speciosa [4], Apium
graveolens, Ficus carica, Curcuma domestica, Cinnamomum zeylan-
icum and Rosmarinus officinalis [79], Erythrina strica [80], Rhuscori-
aria [81], Juniperus phoenicea [82], Momordica charantia, Apium
gravelens, Petroselium crispum, Linum usitatissmun, Cucurbita pepo,



Table 2
Occurrence of uric acid in plant foods. Adapted from Halevi [61].

Plant foods Total uric acid mg/100 g
food (average)

Plant foods Total uric acid mg/100 g
food (average)

Highest in uric acid (400 mg/100 g and higher)
Mushroom, flat, edible Boletus, dried 488 Yeast, Baker’s 680

Moderately High in uric acid (100–400 mg/100 g)
Bean, seed, white, dry 128 Bean, Soya, seed, dry 190
Black gram (mungo bean), seed, dry 222 Grape, dried, raisin, sultana 107
Lentil, seed, dry 127 Linseed 105
Peas, dry, chick (garbanzo), seed 109 Poppy seed, seed, dry 170
Sunflower seed, dry 143

Lower in uric acid (100 mg/100 g and lower)
Almond, sweet 37 Apple 14
Apricot 73 Artichoke 78
Asparagus 23 Aubergine 21
Avocado 19 Bamboo shoots 29
Banana 57 Barley without husk, whole grain 96
Bean sprouts, Soya 80 Bread, wheat (flour) or White bread 14
Broccoli 81 Brussel sprouts 69
Cabbage, red 32 Cabbage, savoy 37
Cabbage, white 22 Carrot 17
Cauliflower 51 Celeriac 30
Cherry, Morello 17 Cherry, sweet 7.1
Chicory 12 Chinese leaves 21
Chives 67 Cocoa powder, oil partially removed 71
Corn, sweet 52 Cress 28
Cucumber 7.3 Currant, red 17
Date, dried 35 Elderberry, black 33
Endive 17 Fennel leaves 14
Fig. (dried) 64 Gooseberry 16
Grape 27 Grass, Viper’s (black salsify) 71
Kale 48 Kiwi fruit (Chinise gooseberry, strawberry peach) 19
Kohlrabi 25 Leek 74
Lettuce 13 Melon, Cantelope 33
Millet, shucked corn 62 Morel 30
Nuts, Brail 23 Nuts, hazelnut (cobnut) 37
Nuts, peanut 79 Oats, without husk, whole grain 94

Lower in uric acid (100 mg/100 g and lower)
Olive, green, marinated 29 Onion 13
Orange 19 Parsley, leaf 57
Pea, pod and seed, green 84 Pea, seed, dry 95
Peach 21 Peppers, green 12
Pineapple 55 Plum 19
Plum, dried 24 Potato 64
Pumpkin 18 Quince 44
Radish 30 Raspberry 18
Rhubarb 12 Rye, Whole grain 51
Sesame (gingelly) seed, oriental, dry 62 Spinach 57
Squash, summer 24 Strawberry 21
Tomato 11 Wheat, whole grain 51
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Zingiber officinale, Curcurma longa, Cinnamomum sp., Rosmarinus sp.
[56,83], Origanum majorana [84], Prunus cerasus [85], Phyllanthus
niruri [86], Glycine max and Arabidopsis thaliana [87], Vinca sp.
[10,88] and Colchicum sp. [10,89–91]. The mechanisms by
which these plants reduce uric acid in blood were summarized in
Table 3.
Genetics and uricase encoding genes

Schult et al. [92] discovered 14 functional genes encoding
enzymes or proteins of the purine catabolic pathway. Five genes
(pucA, pucB, pucC, pucD, and pucE) must be expressed for the func-
tion of xanthine dehydrogenase, while only 2 genes (pucL and
pucM) were encoded for uricase, and pucJ and pucK genes encoded
the uric acid transport system. The pucH and pucI genes encoded
allantoinase and allantoin permease, respectively. On the other
hand, allantoate amidohydrolase is encoded by pucF gene. The
pucR-mutant Bacillus subtilis expressed low activity of all tested
genes, indicating that PucR is the main regulator of puc genes
expression. All 14 genes except pucI are located at 284–285� in
the gene cluster on the chromosome and are implicated in six tran-
scription units. Allantoic acid, allantoin, and uric acid were effector
compounds that regulate PucR for the expression of puc genes.

Uric acid utilization activates the production of the virulence
factors (capsule and urease) in the pathogen Cryptococcus neofor-
mans (the cause of fatal meningitis in the immune-compromised
patients), that potentially regulate the immune response in the
host during infection. The identified catabolic genes of uric acid
in C. neoformans were URO1 (urate oxidase), URO2 (HIU hydrolase),
URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3
(allantoicase-ureidoglycolate hydrolase fusion protein), and URE1
(urease) [34].

In Humans, multiple independent evolutionary events cause the
pseudogenization (silencing) of the uricase gene in ancestral apes
[93]. Uricase exists as insoluble crystalloid that involves the core



Table 3
The mechanisms by which some plant active metabolites reduce uric acid in blood.

Plant species Family Used part Active metabolite Mechanism of action References

Lagerstroemia speciosa (L.) Pers. Lythraceae Leaves Valoneic acid dilactone (VAD)
Ellagic acid (EA)

[4]

Apium graveolens (Celery) Umbelliferae Fresh leaves and
seeds

Oleic and Linoleic acid in Celery
All rich in phenolics
Unsaturated fatty acids, long chain fatty
acids, phytosterols and Malondialdehyde

Antigout, antimicrobial, Anti-
inflammatory and antioxidant
effects

[79]

Ficus carica (Fig) Moraceae Dry Fig. fruits
Curcuma domestica L. (Turmeric) Zingiberaceae Rhizomes
Cinnamomum zeylanicum

(Cinnamon)
Lauraceae Bark

Rosmarinus officinalis (Rosemary) Labiatae Leaves
Erythrina strica roxb Papilionaceae Hydromethanolic

extract of leaves
Flavonoids, saponins, tannins, phenolics and
triterpenoids

Inhibit xanthine oxidase (XO)
and xanthine dehydrogenase
(XDH) activities

[80]

Rhuscoriaria (sumac or sumak) Anacardiaceae Hydroalcoholic
extract of fruits

Phenolic (as gallic acid), methyl gallate and
protocatechuic acid

– Inhibit xanthine oxidase
(XO) activity
– Decrease Hyperuricemia

[81]

Juniperus phoenicea Cupressaceae Decoction of fresh
leaves in water

Phenols Reduce uric acid level and
have antioxidant activity

[82]

Momordica charantia (Bitter) Cucurbitaceae Methanol-water
extract of pulp

Phenols and Flavonoids Inhibit xanthine oxidase [58,83]

Apium gravelens (Celery) Umbelliferae Dried powdered
leaves

Petroselium crispum Umbelliferae Parsly leaves
Linum usitatissmum (Flax) Linaceae Seed
Cucurbita pepo (Pumpkin) Cucurbitaceae Seed
Zingiber officinale (Ginger) Zingiberaceae Rhizome
Curcurma longa (Turmeric) Zingiberaceae Whole plant
Cinnamomum sp. (Cinnamon) Lauraceae Leaves
Rosmarinus sp. (Rosemary) Labiatae Leaves
Origanum majorana Linn. Labiatae Ethanolic and

aqueous extracts
of root and stem

Phenols, flavonoids, tannins triterpenoids,
saponins, polyphenols, coumarins, ellagic
acid, valoneic acid dilactone

– Inhibit xanthine oxidase
– Anti-gout activity

[84]

Prunus cerasus L. (tart cherry) Rosaceae Cherry juice Anthocyanins – Antioxidant
– Anti-inflammatory

[85]

Phyllanthus niruri Linn. Euphorbiaceae Methanolic extract
of plant

Lignans – Uricosoric action
– Xanthine oxidase inhibition

[86]

Glycine max Leguminosae Plant extract Allantionase
Allantoate amidohydrolase
Ureidoglycine aminohydrolase
Ureidoglycolate amidohydrolase

– Release nitrogen from
purine nucleotides into amino
acids

[87]
Arabidopsis thaliana Brassicaceae

Vinca sp. Apocynaceae Plant extract Vinblastine alkaloid – Antifungal
– High potential antigout
– antimicrotubule

[10,88]

Colchicum sp. Colchicaceae Plant extract Colchicine alkaloid – Antipredator and antifungal
(plant protector)
– Antitubulin activity
– Efficient antigout:
combination of colchicine and
antiurate drug

[10,89–91]
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of peroxisomes in terrestrial vertebrates [94]. Uricases of most
microbial and aquatic vertebrate species are soluble and remain
in either the cytoplasm (bacteria) or peroxisome (yeast) [93].

Nonsense mutations caused a pseudogenization of the uricase
gene in humans. Despite being non-functional, cDNA sequencing
ensured that uricase mRNA is present in human liver cells and that
these transcripts have two premature stop codons [95–97].

When functional uricase gene was deleted from mice, the ani-
mals died shortly after birth, while the xanthine oxidase inhibitor
allopurinol prevented the deaths. The inability of mice to undergo
the sudden buildup of uric acid has indicated that ancient apes
underwent successive mutations to slowly decrease uricase before
pseudogenization [98]. However, other hypothesis to prevent
the sudden formation of uric acid in ancient primates may be the
gradual attenuation of the uricase activity before pseudogenization
events [99].

In most plants, break down of purine bases gives rise to CO2 and
ammonia [100]. However, in root nodules of legumes, nodule bac-
teria incorporated the newly fixed nitrogen into purine nucleo-
tides, then converted to allantoin and allantoic acid, which play a
crucial role in the storage and translocation of nitrogen to other tis-
sues [101,102].
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Bacteria and fungi have the capacity to utilize numerous com-
pounds, including purines, as nitrogen and carbon sources. In Pseu-
domonas aeruginosa, the encoding genes for the initial deamination
step of adenine and guanine, used as nitrogen sources, are located
on different loci on the chromosome, while the genes encoding the
enzymes degrading hypoxanthine to ureidoglycolic acid are linked
to each other [103]. Recently, it was reported that E. coli bears gene
that encode for guanine deaminase [104] and many encoding
genes involved in the purine catabolic pathway [105]. It was found
that the expression of these genes was not sufficient to support
growth using purines as the sole nitrogen source; however, when
aspartate was added as the nitrogen source, purines could stimu-
late growth [105]. E. coli can utilize allantoin but not hypoxanthine
as a nitrogen source under anaerobic conditions. The genes encod-
ing enzymes for both allantoin and glyoxylic acid metabolisms are
linked and their expressions are controlled by the allR gene pro-
duct, when allantoin and glyoxylic acid are used as the effector
molecules [106].

Fluri and Kinghorn [107] suggested that a single gene (all2) is
involved in uricase induction and activity in Schizosaccharomyces
pombe. Five mutants were isolated at the a112 gene on the basis
of their inefficacy to utilize hypoxanthine as a sole source of nitro-
gen. The mutants were found to be unable to utilize the purines
adenine, hypoxanthine, xanthine, uric acid, allantoin and allantoic
acid, although they could utilize urea and ammonia. The mutants
appeared to be unable to produce the enzymes included in purine
catabolism.

Mutant uricase enzymes derived from the uricase gene of colo-
nies from Bacillus subtilis by staggered extension process (StEP)
mutagenesis yielding two identical active mutant genes. The
mutant uricase activity in Bacillus subtilis exhibits high uricase
activity [108]. Many efforts have been made to make uric acid
sensors using uricase (urate oxidase, EC 1.7.3.3) as a biocatalyst
[109–113].

Under nitrogen-limiting conditions, genes of the hypoxanthine
catabolic pathway in Aspergillus nidulans are induced by a globally
acting protein and a pathway-specific regulatory protein [114].
Uric acid degradation required the expression of nine unlinked
genes implicated in the metabolism of purine compounds
[115–117].

In bacteria, fungi, insects, animals, and plants, oxidized purines,
xanthine, hypoxanthine, uric acid, pyrimidine uracil, or ascorbate
were transported by nucleobase ascorbate transporters (NATs)
[118,119]. The only functionally characterized plant NAT-maize
leaf permease 1 [118] was the high compatibility transporter of
xanthine and uric acid that competitively binds but does not trans-
port ascorbate [119].

Arabidopsis possesses purine permease (PUP) and ureide perme-
ase (UPS) gene families that are conserved only among plant spe-
cies. The UPS family transport uracil, allantoin, while the purine
permease transports xanthine and hypoxanthine [120,121]. In
French bean, one UPS was found to transport allantoin [122].

Uridine monophosphate synthase and thymidine kinase are the
regulatory enzymes for purine uptake. Studies using radiolabelled
purins, pirimidines and [14C] fluoroorotic acid revealed that the
FOA recessive genes for ‘‘1-1/for 1-1” on chromosome 5 were
unable to uptake uracil or uracil-like bases in Arabidopsis thaliana
mutant [123].

To date, six loci along chromosome 5 of Arabidopsis genome
were identified to encode nucleobase transporters: At5g03555
(from PRT family); At5g25420, At5g49990, and At5g62890 (from
NAT family); At5g50300 (an AzgA-like transporter); and
At5g41160 (from PUP family) [123,124]. The recently characterized
AzgA adenine–guanine–hypoxanthine transporter of Aspergillus
nidulanswas found to have amino acid similarity to Arabidopsis loci
At5g50300 and At3g10960 encode proteins [125]. The amino acid
sequence of the FUR4 uracil transporter of Saccharomyces cerevisiae
(from PRT family) showed significant similarity to that of Arabidop-
sis locus At5g03555 encoded protein [123].

Hauck et al. [126] isolated a urate oxidase (UOX) mutant of
Arabidopsis thaliana that accumulate uric acids in the tissues
mainly in the embryo due to the suppression in a xanthine dehy-
drogenase (XDH). The UOX-mutant exhibits a severe inhibition of
cotyledon development and nutrient mobilization from the lipid
reserves in the cotyledons. The local defect of peroxisomes (gly-
oxysomes) in the cotyledon of the mature embryo causes the
deposit of fatty acids in the dry seeds. Peroxisomes possess part
of the purine nucleobase catabolic pathway and play a central
role in the breakdown of fatty acids (ᵦ-oxidation) [127]. Without
ᵦ-oxidation, seedling establishment cannot proceed and uric acid
will accumulated in the embryo due to its weak mobility in lipids
[126], Fig. 4.

Uric acid is transported into the peroxisomes and oxidized by
urate oxidase [UOX] to hydroxyisourate, which is converted to S-
allantoin by two further enzymatic reactions [128]. Humans pos-
sess a non-functional UOX; therefore, the final product of human
purine ring breakdown is uric acid, which is excreted in the urine.
In plants, S-allantoin breakdown results in the complete catabo-
lism of the purine ring system in the endoplasmic reticulum,
releasing CO2, glyoxylate and ammonia [129–131].

Hongoh et al. [132] cloned the gene encoding uricase of the
yeast-like symbiont of the brown plant-hopper, Nilaparvata lugens,
which shows 62% sequence identity with that of Aspergillus flavus.
The symbiont uricase possessed all the known consensus motifs,
except the C-terminal PTS-1, Ser-basic-Leu. The symbiont’s uricase
gene expressed in Escherichia coli was as active as those of plants
and animals, but less active than those from other fungi.

Yang and Han [133] isolated two functionally allantionase
genes, AtALN (Arabidopsis allantoinase) and RpALN (Robinia pseu-
doacacia allantoinase). The absence of nitrogen in the medium
increased the expression of these genes. The cloned AtALN and
RpALN encoding allantionase confirmed that allantoin catabolism
pathway exists in both Arabidopsis and Robinia spp. Multiple
sequence alignment showed that those allantoinase genes share
homology with those isolated from E. coli, bullfrog and yeasts.

Recombinant Hansenula polymorpha MU200 was obtained by
expressing uricase from Candida utilis. The highest production of
recombinant uricase reached 52.3 U/mL (about 2.1 g/L of protein)
extracellularly and 60.3 U/mL (about 2.4 g/L of protein) intracellu-
larly in fed-batch fermentation after 58 h of incubation, which are
much higher than those expressed in other expression systems
[134].

Rasburicase is a recombinant urate oxidase produced from Sac-
charomyces cerevisiae harboring Aspergillus flavus uricase gene. It
acts as an alternative to allopurinol for reducing uric acid levels,
so it has been used for the handling of anticancer-therapy-
induced hyperuricemia [135].

The cloned uricase gene (UOXu) of Candida utilis contains 909
base pairs and encodes a protein with 303 amino acid residues
and a mass of 34,1463 Da [136]. Cloned urate oxidase gene of C.
utilis was recombined in the plasmid of the probiotic Lactobacillus
bulgaria to produce urate oxidase that breaks down uric acid. The
recombinant plasmid PMG36e-U containing urate oxidase gene
of 34 KDa molecular weight has an activity up to 0.33 l/mL [137].

Saeed et al. [138] expressed an uricolytic activity from Escheri-
chia coli harboring uricase gene from Pseudomonas aeruginosa. The
sequence of the cloned gene shows 44% similarity to the uricase
gene of Cellulomonas flavigena and 35% to that of the yeast Beauve-
ria bassiana.

Meraj et al. [139] induced mutated Bacillus subtiliswith the abil-
ity for hyperproduction of urate oxidase using ethyl methane sul-
fonate at 180 min dose rate. The advantages to adopt



Fig. 4. Purine nucleotide catabolism based on reactions catalyzed by xanthine dehydrogenase (XDH) and urate oxidase (UOX). HIU, 5-hydroxyisourate; Pi, phosphate.
Adapted from Hauck et al. [126].
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mutagenesis technique for the productions of many microbial
enzymes, are their simplicity and low cost. However, the cloning
technique is very expensive and requires high technical facilities.
Conclusions and future perspectives

Uric acid is a catabolic insoluble product of purine metabolism.
Humans are unable to further degrade uric acid. In normal cases,
uric acid is excreted with urine, but in gouty cases, longstanding
elevation of monosodium urate crystal deposit in joints, kidneys
and tissues, as a consequence of hyperuricemia. Until now, the
future for gouty patients largely depends on whether the best ways
of management for gout are widely spread, since we already have
excellent standards for diagnosis and very effective chemical and
herbal treatments for most patients. Unfortunately, these treat-
ments were hampered by the less knowledge of our genetics, foods
nature as well as our bad lifestyle and eating habits which reflect
their repercussions on our general health.

This review article focuses on the different types of foods pre-
sent in our diet in relation to uric acid levels as some dietary plant
foods may be low, moderate or even high in uric acid contents. It
also point out on how the different life forms (human, animals,
plants and microbes) can genetically handle uric acid metabolism
and catabolism. Attentions were made on the various mechanisms
by which plant secondary metabolites and microbes (bacteria,
fungi and actinomycetes) enzymes’ degrade uric acid to soluble
ammonia.

Future perspectives must be made in the way of increasing the
awareness of populations to these open areas of research basing on
the statement ‘prevention is better than cure’. Major advances
should also focus on the manufacture of recombinant probiotic
microorganisms carrying uricase genes to use it in the treatment
of gout in addition to the present chemical and herbal treatments.
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