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ABSTRACT Photobleaching and related photochemical processes are recognized experimental 
barriers to quantification of fluorescence by microscopy. We have measured the kinetics of 
photobleaching of fluorophores in living and fixed cells and in microemulsions, and have 
demonstrated the spatial variability of these processes within individual cells. An inverted 
fluorescence microscope and a high-sensitivity camera, together with high-speed data acqui- 
sition by a computer-controlled image processor, have been used to control precisely exposure 
time to excitation light and to record images. To improve the signal-to-noise ratio, 32 digital 
images were integrated. After correction for spatial variations in camera sensitivity and 
background fluorescence, the images of the relative fluorescence intensities for 0.065 ~m 2 
areas in the object plane were obtained. 

To evaluate photobleaching objectively, an algorithm was developed to fit a three-parameter 
exponential equation to 20 images recorded from the same microscope field as a function of 
illumination time. The results of this analysis demonstrated that the photobleaching process 
followed first-order reaction kinetics with rate constants that were spatially heterogeneous 
and varied, within the same cell, between 2- and 65-fold, depending on the fluorophore. The 
photobleaching rate constants increased proportionally with increasing excitation intensity 
and, for benzo(a)pyrene, were independent of probe concentration over three orders of 
magnitude (1.25 /~M to 1.25 mM). The propensity to photobleach was different with each 
fluorophore. Under the cellular conditions used in these studies, the average rates of photo- 
bleaching decreased in this order: N-(7-nitrobenz-2-oxa-1,3-diazole)-23,24-dinor-5-cholen-22- 
amine-3fl-ol > acridine orange > rhodamine-123 > benzo(a)pyrene > fluorescein > tetrameth- 
ylrhodamine > 1,1'dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine. The photobleaching 
appears to be an oxidation reaction, in that the addition of saturated solutions of Na2S2Os to 
mineral oil microemulsions eliminated photobleaching of N-(7-nitrobenz-2-oxa-1,3-diazole)- 
23,24-dinor-5-cholen-22-amine-3fl-ol or benzo(a)pyrene. We identified experimental condi- 
tions to observe, without detectable photobleaching, fluorophores in living cells, which can 
not be studied anaerobically. Useful images were obtained when excitation light was reduced 
to eliminate photobleaching, as determined from zero-time images calculated from the 
exponential fit routine. The results show that, with conventional illumination and photographic 
methods, the fluorescence of regions with high rate constants for photobleaching are signifi- 
cantly underrepresented, and can be as much as 20-fold. 

Fluorescence microscopy is an attractive method to study the 
dynamics of various cellular processes and to elucidate the 

internal architecture of individual cells that uses appropriately 
labeled fluorescent antibodies and proteins. Work by a large 
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n u m b e r  o f  laboratories has been directed, for example,  at 
detail ing the localization o f  actin, tubulin,  and in termediate  
f i lament  proteins and various molecules  that  associate with 
these fibers. The  selective uptake and localization o f  intracel- 
lular fluorescent c o m p o u n d s  have been used to identify spe- 
cific intraceUular structures. For  example,  lysosomes are vis- 
ualized by acridine orange (l) ,  mi tochondr ia  by rhodamine-  
123 (2), and D N A  by prop id ium iodide (3) or  benzamidine  
dyes such as Hoechs t  33258 (4, 5). By using low light level 
video cameras, dynamic  processes such as the internal izat ion 
o f  fluorescently labeled ligands by receptors (6) or  the redis- 
t r ibut ion o f  microinjected proteins (7) have been observed in 
living cells. In most  o f  these studies, the fluorescence intensity 
has been used as a subjective measure  o f  the spatial distribu- 
t ion o f  the fluorophores.  A general d ic tum has been that 
quant if icat ion was at best difficult or, at worst, impossible (8, 
9). A n u m b e r  o f  quant i ta t ive  studies have been under taken 
to measure various intraceUular metabol ic  states (10-13), 
oxygen (14, 15), pH  (16, 17), and various kinetic processes 
such as diffusion coefficients o f  fluorescent molecules  (18-  
21). In general, these measurements  have been restricted to 
and integrated over  a small  area o f  the microscope field, with 
little effort to retain spatial informat ion.  A number  o f  recent 
efforts that  use low light level cameras  and video digital image 
processing devices have been directed at obtaining quanti ta-  
t ive informat ion  on the spatial, spectral, and radiometr ic  
distribution of  f luorophores within single cells (14, 17, 22 -  
28). Benson et al. (14) have demonst ra ted  that  an image 
processor incorporated into a video-intensified microscopy 
system can provide a quant i ta t ive  measure o f  the spatial 
distr ibution o f  the fluorescence intensity and can be used to 
de termine  oxygen concentra t ion  by fluorescence quenching.  

One  major  compl ica t ion  in all o f  the quant i ta t ive work that  
has not  been evaluated systematically is photobleaching o f  
the fluorophores.  This  photochemica l  process produces a loss 
o f  fluorescence intensity during in termit tent  or  constant  illu- 
minat ion.  The  high numerica l  aperture objectives currently 
in use, which max imize  spatial resolution and improve  the 
l imits o f  detection,  s imultaneously accelerate photobleaching,  
inasmuch as the incident  i l luminat ion system projects the 
excitation light through the objective into a small area o f  the 
microscope field, increasing the light intensity by at least a 
factor o f  1,000- to 10,000-fold. This factor is calculated f rom 
the ratio o f  the area o f  the collector lens o f  the excitation 
lamp housing to that  o f  the i l luminated area in the object 
plane. 

In this article, we describe a digital imaging microscopy 
system to study dynamic  processes requiring radiometric,  
spatial, and spectral in format ion  about  several fluorophores.  
We have used this system to investigate the mechan i sm and 
consequences  o f  photochemica l  reactions and the intracellular 
variability o f  these processes. First, we demonstra te  the spatial 
heterogeneity o f  photobleaching rates o f  several c o m m o n l y  
used fluorophores.  Second, we describe analytic procedures 
to establish objectively the rate o f  photobleaching and to 
make  corrections for photobleaching.  Finally, we identify 
exper imental  condi t ions  to observe, wi thout  detectable pho- 
tobleaching, kinetic processes involving f luorophores in living 
cells. 

MATERIALS A N D  M E T H O D S  

Instrumentation: The microscope used in the system, shown sche- 
matically in Fig. 1, is a Leitz Diavert (E. Leitz, lnc.. Rockleigh, N J) equipped 
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FIGURE 1 Schematic of digital imaging system. IM, Inverted micro- 
scope; SIT, silicon-intensified video camera; CC, camera control; 
VTR, time-lapse video tape recorder; B/W, black and white monitor; 
IP, digital image processor; ]S, joystick; RBG, high-resolution color 
monitor; GR, graphics recorder with 35-ram camera; Izp, LSI 11/23 
computer; DT, digitizing tablet; HD, 20 Mbyte Winchester disk; 
MT, magnetic tape; LP, line printer; MC, microscope controller with 
interfaces to the shutters (S), neutral-density filters (F), stage posi- 
tioner (X, Y), and focus (Z). Details are found in Materials and 
Methods. 

with a Ploempak epi-iiluminator, a 100-W Hg arc, a long working-distance 
condenser, and a 100-W quartz-halogen source for transmitted light. Electronic 
shutters for both the incident and transmitted light sources, an X-Y scanning 
stage (5-urn steps), a stepping motor for focus control (0. l-urn steps), and a 
solenoid-activated neutral density filter bank (MTS, Inc., Houston, TX) for 
step attenuation in excitation flux, have been added and controlled by an LSI 
11/23 microcomputer (Data Translation, Inc., Marlboro, MA). The image 
from the microscope was projected on a silicon-intensified target video camera 
(Hamamatsu Corp., Middlesex, NJ, model C1000-12). Using a x 63, 1.4 
numerical aperture (NA) objective and a 40-mm extension tube, an area, 128 
× 111 ~m, of the sample field was projected onto the 12.7 × 11.0-mm area of 
the active surface of the intensification target. The analog output from the 
camera was fed simultaneously to both a time-date generator and to a high- 
speed analog/digital (A/D) converter in a Grinnell image processor (model 
274) (Grinnell Systems Corp., San Jose, CA). 

The image processor can store three images consisting of 512 x 480 arrays 
of picture elements or pixels. The A/D converter quantizes the analog intensity 
at each pixel to a value between 0 and 255, or 8 bits. The images can be 
displayed in either black and white or pseudo-color. The output from all three- 
image channels were either displayed as a full-color composite on a high- 
resolution red/green/blue monitor or used to compare three individual images 
in different colors. Images were photographed on 35-mm film by a Matrix 3000 
color graphic recorder (Matrix, Inc., Mesa, AZ). The image processor was also 
interfaced to the LSI 11/23 with 256,000 bytes random access memory, dual 1 
Mbyte floppy disks, and 20 Mbyte Winchester disk (Charles River Data 
Systems, Inc., Framingham, HA) for program and image storage, and a Cipher 
model F880 streaming magnetic tape drive (Cipher Data Products, San Diego, 
CA) for archiving images. 

Image Acquisition, Processing, and Analysis: A software pack- 
age written in Fortran operating under RT-I 1 (Digital Equipment Corp., 
Marlboro, MA) was developed to focus the microscope, to control the stage 
position, and to synchronize the opening of the excitation shutters with the 
sampling interval of the image processor. Although the image processor digitized 
and stored frames internally at 30 Hz, 5 s was required to transfer a full image, 
245, 760 bytes, to the disk storage device. An improvement in transfer rate 
could be obtained by reducing the sample size. A maximum sampling rate of 
15 Hz was achieved for a single pixel. Phase and fluorescence images were 
acquired and stored automatically at selected time intervals as indicated. 

A number of image processing routines have been developed, including 
subtraction to remove background and dark current contributions, division to 
correct for camera shading, and feature or area selection using an overlay mask. 
Other available enhancement routines include contrast stretching, histogram 
equalization, pseudo coloring, and spatial derivatives. These routines can be 
performed at video rates and are interactive with either the joystick or a 
digitizing tablet. The intensity distribution of the images or subsampled features 
within a field can be analyzed to determine the mean, standard deviation, 
range, and integrated intensities of the selected areas. A program was written 
to display data as a bivariate frequency histogram (29), as indicated in the 
figure legends. The displayed areas had pixel frequences ->5. For the isometric 
plots (30). the data set for each column was rotated 45* with respect to the x- 



axis and, for each row, was rotated 15" with respect to the y-axis, and the pixel 
value was projected along the z-axis with an algorithm for removing hidden 
lines. For the difference plots, to avoid wrap around of negative values on the 
display, all values were offset by 128. Where indicated, images were convolved 
with a low pass filter (3 by 3 unity matrix) (29). 

To determine rates of photobleaching objectively, images were analyzed 
using a nonlinear least squares fit of a three-parameter exponential (31) that 
was modified to calculate the parameters and associated errors for an entire 
image on a pixel-by-plxel basis. The equation is 

I t . ~  = A~x~ + Bt~exp(- /~g) ,  

where lu~v~ is fluorescence intensity at pixel t ~  at time t; At~ is fluorescence 
intensity at t = oo; Atomy) + Bt~> is the fluorescence intensity at t = 0; and 
is the rate constant for the intensity change at pixel (x,y). For a routine 
calculation, 20 images, one per time point, were used to determine the values 
for these parameters. 

Estimation of the errors in photographic recording of fluorescence that 
photobleaches involved comparison of the calculated initial intensity values at 
zero time with the residual intensity values obtained by summation of the 20 
images acquired during the photobleaching experiments. The reasoning is that 
photographic recording would integrate the decreasing intensifies for about the 
same time used to determine the photobleaching rates. The difference between 
the zero-time image and the summed image or "photograph" was obtained by 
two difference calculations, which gave the same result. The first calculation 
involves summation of 20 zero-time images, which would be produced if there 
were no photobleaching. Subtraction of the "photograph" from this summed 
zero-time image produced the difference image due to photobleaching. Alter- 
natively, the intensity values obtained by summation of the photobleaching 
images were divided by 20, the number of images acquired over the time course 
of the experiment, to obtained the ~photograph" which was subtracted from 
the zero-time image. 

Multiple fluorophores were excited with three standard filter cubes provided 
by Leitz. The spectral bands isolated by these cubes were (a) excitation wave- 
length centered at 365 nm with half band width of 45 nm and emission at 
wavelengths >418 nm for cube A; (b) excitation wavelength centered at 480 
nm with half band width of l0 nm and emission at wavelengths >515 nm for 
cube 12; and (c) excitation wavelength centered at 545 nm with half band width 
of 33 nm and emission at wavelengths >577 nm for the N cube. A series of 
solenoid switches were used to position three neutral-density filters in the 
excitation light path, as desired. Combinations of these filters provided repro- 
ducible attenuation of the excitation intensity from 40 to 0.4%. Fluorescence 
standards of either l #M anthracene or 3 vM rhodamine B embedded in 
polymethylmethacrylate (Starna Cells Inc., Atascadero, CA) served as photo- 
stable references to monitor day-to-day variation in the excitation source. A 
100-W Hg arc lamp was used for no >100 h total, after which the decreased 
stability and output made it unusable. 

Cell Cultures and Labeling Procedures: Human foreskin fibro- 
blasts (7-1 lth passage) were cultured on sterilized 50-mm 2 No. l coverslips 
with Dulbecco's modified eagle's medium supplemented with 10% fetal calf 
serum, streptomycin (50/~g.ml-~), penicillin (50 ug.ml-t), and l mM gluta- 
mine. 

Benzo(a)pyrene was obtained from Aldrich and purified by high performance 
chromatography on reverse-phase octadecyl-silica in 80% acetonitrile (32). Low 
density lipoproteins (LDL) t were prepared and labeled with benzo(a)pyrene as 
described by Plant et al. (32). The lipid content of fibroblasts was increased by 
incubation with LDL at 200 ug of lipoprotein protein.ml -t for 24 h. Cells were 
labeled with benzo(a)pyrene by incubation with LDL-benzo(a)pyrene at 50 ug 
oflipoprotein protein.ml -t for 1 h. 

N-(7- nitrobenz-2-oxa- 1,3-diazole)-23,24-dinor-5-cholen-22-amine-3B-ol 
(NBD-cholesterol) was prepared as previously described (33). NBD-cholesterol, 
30 tool%, was incorporated into 1-palmitoyl-2-oleoyl-phosphatidylcholine ves- 
icles and mixed in media containing lipoprotein-deficient serum at a final 
fluorophore concentration of l0 vM. This solution was added to plates of 
fibroblasts at a plating density of l06 cells per 100-ram dish and allowed to 
incubate for 24 h at 37°C. 

Benzo(a)pyrene was also incorporated into micromolecules of mineral oil 
for model studies. Benzo(a)pyrene concentrations ranging from 0.125 uM to 
1.25 mM in mineral oil were added to 4 vois of distilled H20 containing 4 mg. 
ml -~ of Na deoxycholate to stabilize the emulsion. All measurements of 
benzo(a)pyrene fluorescence were made with the cube A filter set. 

Primary cultures of rat hepatocytes plated on 50 x 50-mm No. 1 coverslips 
were a gift of Dr. Bette C. Sherrill, Department of Medicine. After 72 h in 

Abbreviations used in this paper: FITC, fluorescein isothiocyanate; 
LDL, low density lipoproteins; NBD-cholesterol, N-(7-nitrobenz-2- 
oxa- 1,3-diazole)-23,24-dinor-5-cholen-22-amine-3B-ol. 

culture, cells were labeled with 5 #g.ml -~ acridine orange in media for 10 min, 
and then washed three times with fresh media. Cells on coverslips were 
transferred to a teflon chamber (Bionique, Coming Lake Placid, NY) with a 
sealed cover to provide a controlled environment for viewing riving cells on the 
microscope. Ports in the chamber top permitted rapid change of media and 
substrates and the constant flow of a humidified mixture of 5% CO2 in air. The 
stage and chamber temperature was maintained at 37"C with two heated blowers 
and monitored with a microprobe (Bailey Instrument Co., Inc., Saddle Brook, 
NJ) in the chamber. Cells have remained viable for as long as 16 h before 
significant evaporation of the media. The chamber volume was 2 ml. 

RESULTS 

The silicon-intensified target video camera was tested monthly 
for linearity and spatial resolution using a Mini-Optoliner 
projector (Optical Instruments Corp., Buena Park, CA) with 
a calibrated radiometric and spatial response. This instrument 
has a 2,800 °K, 6-V tungsten source that was used to project 
3.5 x 1 0  - 7  lm.cm -2 directly onto the detector face#ate. By 
attenuating the light with the appropriate quartz neutral- 
density filters, the camera was found to be linear between 
0.033 and 1.2 nW. cm -2 (Fig. 2, top). With maximum gain of 
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FIGURE 2 Camera response and system noise characteristics. (Top) 
Camera linearity. The input light intensity was varied from 0.033 to 
1.2 nW cm -2 with the appropriate spectrophotometrically cali- 
brated quartz neutral-density filters (Corion). The output intensity 
was determined from the mean field intensity after subtraction of 
the camera dark current and normalization of the shading effects 
of the camera. (Center) Contrast transfer function. As described in 
the text, the contrast measured in the center of the field was 
corrected for the modulation transfer function of the projector. 
(Bottom) Signal-to-noise ratio as a function of the number of frames 
integrated. The noise was measured as the standard deviation, on 
a pixel-by-pixel basis for 61,440 pixels, calculated from eight repli- 
cate samples for the indicated number of frames integrated. The 
signal-to-noise ratio was calculated from the slope of the regression 
of the standard deviation versus the mean for each pixel at a given 
integration number. 
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the camera controller, an incident flux of 1.2 nW-cm -2, 
integrated between 380 and 700 nm, gave a mean intensity 
response equivalent to 200 of the 255 grayscales detected by 
the camera. 

Variation in pixel response was measured by projecting a 
flat, homogeneous field (<8% variation) onto the camera 
target. At this intensity, the camera gave a mean field grayscale 
of 200, and a range of pixel values between 160 and 233, 
~36% variation. This spatial variation in sensitivity of the 
detector was eliminated by applying a shading correction 
derived as follows (34). A "mask" image, M(x.y), was generated 
using a flat, uniformly fluorescent object. Routinely, the 
polymethacrylate Starna cells, which are sold as fluorescent 
standards for conventional fluorimetry, were used. Neutral- 
density filters were selected to bring the mean pixel intensity 
to a gray scale value of 200. The mask image was then digitized 
and stored. The experimental image was then acquired and 
divided, on a pixel-by-pixel basis, by the mask. Each pixel 
was then multiplied by 200 to generate the corrected output 
image. Formally, the operation is 

Imagei~E~ x 200. 
Imageou~,> = Maslqx,y) 

When this operation was performed using a second sample of 
the fluorescent standards as an input image, the output images 
were uniformly linear over the entire field with a coefficient 
of variation of ~2%. In that the shading was due to contri- 
butions from the camera electronics and the focus of the 
excitation light, a correction mask was stored for each of the 
filter combinations. 

The effective resolution of the camera, which determines 
the smallest sampling area (29), was measured using a test 
target in the Optoliner. This test target has vertical opaque 
lines ruled at varying spatial frequencies. The target was 
projected and digitized to determine the maximum and min- 
imum intensities at a given spatial frequency. The difference 
between these intensities is defined by the maximum contrast 
difference on the target to give a contrast-transfer function 
(29), described as 

c _  I . - / v  
/ o - / '  

where Ip and Iv are the peak and valley intensities for a given 
frequency (line pairs per picture width) versus the intensities 
of a maximum contrast, white (Io) and black (/3, area. Fig. 2 
(center) shows the contrast-transfer function for the Hama- 
matsu silicon-intensified target camera. A 40% contrast was 
observed at 200 line pairs/field. As expected, the contrast 
decreased radially from the optical axis, with a contrast of 
33% at the corners of the detector. 

To reduce the signal-to-noise ratio, sequential frames were 
integrated (35). Because the transfer time for each image from 
the image processor to the computer required 4-5 s, frame 
integration was performed in the image processor at video 
rates (30 Hz) by summing 2" frames in a 16-bit frame buffer 
(two-image channels), dividing by the appropriate power of 
2, and truncating to 8 bits. These images were then transferred 
and stored for subsequent analysis. An image of the defocused 
edge of the prism in the binocular element of the microscope 
was used for analysis of the signal-to-noise ratio. Stored images 
with varying numbers of integrated frames were averaged by 
the computer with 32-bit precision to determine the mean 
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intensity and standard deviation on a pixel-by-pixel basis. For 
the single and for the four-frame integration, 20 stored images 
were averaged. For the 8-, 16-, 32-, 64-, and 128 frame 
integration, eight stored images were averaged. A bivariate 
frequency histogram was used to analyze the correlation 
between the standard deviation and the mean intensity values 
for integrated frame images. The signal-to-noise was calcu- 
lated from the slope of the regression of these points. Fig. 2 
(bottom) illustrates the signal-to-noise as a function of the 
number of frames integrated. A 32-frame integration in the 
image processor required a 1.07-s exposure, total elapsed time. 
If 32 single frames had been acquired individually for subse- 
quent averaging in the computer, the exposure time would 
have been 6.4 s, with a total elapsed time of 160 s. The 32- 
frame integration was used as a compromise between in- 
creased photobleaching at longer exposure times and a rea- 
sonable signal-to-noise ratio, about 120 to 1. A 200-ms delay 
before the start of the sampling period was introduced to 
eliminate vibration from the shutter system. The total image 
acquisition time was 1.3 s, unless otherwise stated. 

Experiments with a Model 5ystem 
A model system with a geometry and size comparable with 

that of single cells has been devised to determine experimental 
variables that might affect the rate and extent of photochem- 
ical reactions. Benzo(a)pyrene at concentrations ranging from 
1.25 ~M to 1.25 mM in mineral oil was emulsified in 4 vol 
of distilled H20 containing 0.4% Na deoxycholate. Vigorous 
vortexing gave stable spherical droplets, ranging from 10 to 
100 zM in diameter. A photomicrograph of a typical droplet 
is shown in Fig. 3 (top left image). The fluorescence intensity 
values are projected isometrically (21) on a pixel by pixel 
basis in Fig. 3 (bottom left). The concentration of 
benzo(a)pyrene in the aqueous phase surrounding the emul- 
sion was calculated to be ~10 -12 to 10 -~3 M, based on the 
equilibrium distribution of l0 -s for benzo(a)pyrene between 
the aqueous phase and phospholipid (36). Therefore, the 
microscopic concentrations of benzo(a)pyrene were assumed 
to be those of the mineral oil solutions. 

A 10-t~l sample of the emulsion was placed on a 50 x 50- 
mm No. 1 microscope coverglass mounted in the Bionique 
chamber, covered with a 22 x 22-mm coverglass, and exam- 
ined with the x 63, 1.4 NA objective. Rate constant measure- 
ments were made on various size areas in the object plane, 
ranging from a single pixel at the center of a droplet to an 
entire field containing several droplets. Rate constants from 
single pixel data were calculated from 512 time points, sam- 
pled over at least three halftimes of fluorescence photobleach- 
ing. 

The time course of fluorescence decrease as a function of 
excitation intensity is shown in Fig. 3 (top right). The observed 
rate constants decreased proportionally with the attenuation 
of the excitation light. The halftime increased from 23 s at 
maximum illumination, to 120 s when the excitation light 
was decreased 95%. With low excitation intensities (<5% of 
the maximum intensity), the observed rate constants reached 
a limiting value with a halftime o f - 3  min. The lower limit 
for the observed rate constant appeared to be due to the 
diffusion ofbenzo(a)pyrene into the area of measurement. To 
test this hypothesis, we photobleached a small area with the 
unattenuated beam, then observed the reappearance of fluo- 
rescence using an attenuated beam. The fluorescence increase 
followed a simple exponential with a halftime of 3 min. The 



FIGURE 3 Effect of excitation light intensity and reducing conditions on photobleaching of benzo(a)pyrene in a mineral oil 
microemulsion. (Top left) Fluorescent image of  a typical microemulsion containing 1.25/~M benzo(a)pyrene. (Bar, 10/~m.) (Bottom 
left) Isometric projection of the fluorescence intensity values for a microemulsion containing 1.25 ~tM benzo(a)pyrene. The scale 
of the x- and y-axes is 10 #m, and for the z-axis, 64 gray levels, 25% of full scale. (Top right) Decay curves of benzo(a)pyrene 
fluorescence in a series of microemulsions, 17-29-um diameters, obtained under decreasing excitation light intensities. Each 
experimental curve is superimposed on the respective calculated exponential decay curve. For curve A, there was no attenuation 
of excitation light. For curves B-E, attenuation was 60, 80, 95, and 99%, respectively. Curve F was obtained with maximum 
excitation in the presence of 2 M Na2S2Os. Halftimes for curves A-E were 23.6, 33.8, 53.3, 125.8, and 160.4 s, respectively. 
(Bottom right) Isometric projection of the rate constants within an individual vesicle, photobleached with full i l lumination. The 
absence of diffusion barriers allows the spatial uniformity of photobleaching in this system. A bivariate frequency histogram of 
the rate constants as a function of initial intensity revealed a gaussian distribution, ranging from 0.018 to 0.030 s -~, with a mean 
of 0.025 s -1. The scale of the x- and y-axes is 10/~m. For the z-axis, the scale is 0.016 s -~ to 0.032 s -1. 

observed photobleaching rate constants in this model system 
did not vary over three orders of magnitude ofbenzo(a)pyrene 
concentrations, indicating there was no significant concentra- 
tion dependence. Similarly, no significant differences in rate 
constants, as a function of vesicle size, was observed if the 
entire vesicle was illuminated (Fig. 3, bottom right). 

To remove molecular 02 from the microemulsion disper- 
sion, a 2-ml volume of a 2 M Na2S205 was layered over the 
coverglass sandwich. After equilibration for 3-5 min, no loss 
of fluorescence intensity was observed with continuous max- 
imum excitation over a period of 10 min, as shown by the 
top trace in Fig. 3 (top right). However, photobleaching did 
occur after 20 min exposure, presumably due to consumption 
of the reducing agent and diffusion of atmospheric 02 into 
the sample. 

Effects o f  Compar tmenta l i za t ion  
of  Photob leach ing 

To investigate the spatial variation of photobleaching, an 
algorithm was developed that allowed determination of the 
rate constants, initial and final fluorescence intensities, and 

the corresponding standard deviations and correlation coef- 
ficients on a pixel-by-pixel basis for an image composed of 
256 columns by 240 rows, or 61,440 pixels. The input data 
consists of 20 fluorescence images acquired at variable time 
intervals from samples under continuous illumination. With 
the present system, the minimum time interval is 5 s. Fig. 4 
illustrates the data and the output from the program. Fig. 4 
shows digital images of a human fibroblast at various times 
during a photobleach experiment. This cell was labeled with 
benzo(a)pyrene solubilized in LDL, as described in the figure 
legend. The calculated zero-time image, given by A(x.n + B(x,n, 
is shown in Fig. 4 (top right); the final image at infinite time, 
given by A~x.y~, is shown in Fig. 4 (bottom right). 

Fig. 5 illustrates the effect of increasing the illumination 
intensity on the rate constant maps of the photobleaching 
processes. These isometric plots, Fig. 5 (left top, center, and 
bottom), give the rates for 1%, 40%, and 100%, respectively, 
of the maximum intensity level. Although different cells were 
used for each experiment, the difference in the magnitude of 
the rate constants is apparent. The mean values from only 
intracellular areas for each excitation level were 0.0416 + 
0.005 for 32,101 pixels (no attenuation), 0.018 _+ 0.004 for 
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FIGURE 4 Benzo(a)pyrene photobleaching in fibroblasts. Human fibroblasts were fixed with 3% formaldehyde and incubated 
for 24 h with LDL containing 2 mol% benzo(a)pyrene at 50 #g of protein, ml -~. (Left images) Images of benzo(a)pyrene excitated 
with 100% of the maximum intensity for 1, 5, and 20 s, respectively. (Right top image) The initial image, calculated for zero time, 
given as A(x~y) + Btx,y). (Right bottom image) The final image, calculated for infinite time, given as A(x,y). Bar, 10 #m. 

21,026 pixels (40% attenuation), and 0.0007 ± 0.0006 for 
16,878 pixels (99% attenuation). This comparison indicates 
that we are limited at these low illumination levels by the 
noise or dark current of the system. Attempts to use Na2S2Os 
to prevent photobleaching with live cells have been unsuc- 
cessful, in the sense that the cells are not viable, although the 
photobleach rates decreased as expected. The isometric plot 
of the standard deviations of the rate constant map is shown 
as Fig. 5 (top right). A rate constant map for photobleaching 
of benzo(a)pyrene, displayed as differences in gray level val- 
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ues, is shown as Fig. 5 (bottom right). The gray scale for the 
rate constant map ranges from 0 to 0.255 s-L 

The localization and microenvironment of a probe within 
cells had a marked effect on photochemical processes. In our 
initial studies of these processes, we have used fluorescent 
probes that label both live and fixed cells. Acridine orange 
has been used to stain acidic compartments and nuclear 
regions, NBD-cholesterol to investigate membrane labeling 
and fluorescein isothiocyanate (FITC)qabeled antibodies to 
explore fixed material. 



FIGURE 5 Isometric plots of photobleaching rate constant maps for benzo(a)pyrene in fibroblasts. (Left panels) Isometric plots of 
the calculated maps of the photobleaching rate constants, given as klx m. The excitation light was 1,60, and 100% of the maximum 
intensity level, respectively. For all plots, the scale for the x- and y-axes is 10 ~m and 0-0.032 s -~ for the z-axis. (Right top) 
Isometric plots of the standard deviations of the left bottom rate constant map displayed on the same scale. (Right bottom) Rate 
constant map of benzo(a)pyrene photobleaching. The gray scale for the values of rate constants was from 0 to 0.128 s -1. 

$ 

As shown in Fig. 6 for a primary rat hepatocyte, acridine 
orange-labeled nuclei, particularly nucleoli and acidic com- 
partments. The left panels of Fig. 6 demonstrate the rapid 
photobleaching that occurred within 30 s. The brightest struc- 
tures can be visualized at higher camera gains even after 
extensive photobleaching (top right image in Fig. 6, left). The 
graph in Fig. 6 (bottom right image in left panel) gives a more 
objective evaluation of the difference in photobleach rates 
between two small areas, one over an acidic compartment 
and the other over a nucleolus. The data were obtained by 
sampling each area at increasing times of illumination. The 
solid lines are those calculated from the three-parameter 
monoexponential fit software. The rate constant for the acidic 
compartment (O) was 0.048 s -~ and 0.154 s -~ for the nucleolus 
(x). The right panel of Fig. 6 (top left image) gives the rate 
constant map for the entire image. The range of photobleach- 
ing rates in this particular experiment was 0.031-0.194 s -t. 
The bottom left image of the right panel of Fig. 6 is an 
isometric projection of the rate constant map. 

To determine the consequences of these differential pho- 
tobleach rates on the evaluation of fluorescence images ob- 
tained by the more conventional photographic image, we 
compared the zero-time image calculated from the three- 

parameter exponential fit with a "photograph" calculated by 
summing the intensities from the 20 images taken during the 
photobleaching experiment. The reasoning is that a photo- 
graphic film would integrate the decreasing intensities for 
about the same time used to determine the photobleaching 
rates. These two images, the zero-time image and the "pho- 
tograph," were compared by subtracting the "photograph" 
from the zero-time image. The isometric projection of the 
differences in intensity values is shown in the fight panel of 
Fig. 6 (top right image). In this figure, a positive value indi- 
cates that the Atx,y~ + B(x.y~ image, the calculated zero time 
image without photobleaching, was brighter or more intense 
than the "photograph," the integrated image. The results 
indicate that areas with the highest rate constants are signifi- 
cantly underrepresented in the photographic image, as much 
as 20-fold in some areas. This underrepresentation would be 
most acute in a "real" experiment, where it is necessary to 
locate and focus a given region before actually exposing the 
photographic emulsion. 

Finally, we have observed that, with acridine orange, there 
may be multiple reactions and/or compartments within a cell. 
This is shown in the right panel of Fig. 6 (bottom right plot), 
which is an isometric projection of the plot of the rate con- 
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FIGURE 6 Photobleaching of acridine orange in hepatocytes. (Left page) (left images) Fluorescent images taken at 1, 10, and 30 
s, respectively, under continuous excitation. Bar, 10 /~m. (Top right image) Fluorescent image taken at 6.3 min, 3 min after 
termination of continuous excitation. The camera gain was increased 30-fold, compared with that for the left images. (Bottom 
right) Intensity values samples from two areas, 1 /~m in diameter, over a nucleolus (O) and over an acidic compartment (x). Lines 
indicate a fit of a three-parameter monoexponential to the raw data. (Right page) (top/eft image) Rate constant map of the entire 
image, given as k~x,~. The gray scale for the values of rate constants ranges from 0 and 0.255 s -1. The mean rate constant within 
the cell perimeter was 0.134 s -1, with an intracellular range of 0.021-0.194 s -~. (Bottom /eft) Isometric projection of the rate 
constant image. The scale for the z-axis is 0-0.064 s -~, and 10/~m for the x- and y-axes. (Top right) Isometric projection of the 
difference in intensity values obtained by subtraction of the image obtained by integration of the 20 images acquired during the 
photobleaching time course from the calculated initial intensity image, as described in Materials and Methods. The scale for the 
x- and y-axes is 10 ~m and 64 gray levels for the z-axis. (Bottom right) Isometric projection of the rate constants as a function of 
initial fluorescence intensity values. Calculated initial fluorescence intensity values are plotted on the x-axis, the values for the 
rate constants on the y-axis, and the frequency of pixels with given values for intensities (x) and rate constants (y) on the z~axis. 
The scale for the rate constants on the y-axis is 0.031-0.194 s -T. For the initial intensity values on the x-axis, the scale is 0-255 
gray levels. For the number of pixels at each location, the scale is 0-64 on the z-axis. 
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stants versus the initial fluorescence intensity. The histogram 
is complex, with many components of the photobleaching 
population. 

Photobleaching of NBD-Cholesterol 

We have used NBD-cholesterol as a probe of lipid environ- 
ments in living cells. The microenvironments accessible to 
this probe generated marked differences in the rates of pho- 
tobleaching. A result for human fibroblasts, loaded by incu- 
bation with l0 #M NBD-cholesterol in 100 #M 1-palmitoyl- 
2-oleoylphosphatidylcholine vesicles for 24 h at 37 °, is shown 
in the left panel of Fig. 7. Images were taken at ! and 100 s 
after exposure to excitation light, left top and bottom images, 
respectively. The calculated zero-time image and the final 
image at infinite time are shown as the right top and bottom 
images, respectively. The rate constant data are illustrated in 
the right panel of Fig. 7 as a gray scale image (top left image) 
and as an isometric projection of the data (bottom left plot). 
The differences in fluorescence intensities between the inte- 
grated "photograph" and the calculated zero-time image are 
shown as the top right plot in the right panel of Fig. 7. Positive 
values represent rapidly bleaching areas from which intensity 
information would be lost by recording the image using a 
photographic emulsion. The differences were I 0-fold in some 
areas. Fig. 7, (bottom right plot) shows a bivariate frequency 
histogram of initial fluorescence intensity versus photobleach- 
ing rate constant on a pixel-by-pixel basis. This analysis shows 
a complex pattern, with at least two populations of values, 
arguing for the existence of different microenvironments that 
produce different photobleaching effects for this lipid probe. 

Photobleaching of Fixed Cells Stained with 
Antibodies for Conventional 
Indirect Immunofluorescence 

We have evaluated the photobleaching rates of cells fixed 
and stained by conventional procedures for indirect immu- 
nofluorescence. Fixed WI-38 fibroblasts were incubated with 
a murine monoclonal antibody to human platelet gelsolin to 
demonstrate stress fibers in these cells (37). FITC-conjugated 
goat anti-mouse IgG was then applied to the cells. Fig. 8 
illustrates the results. Fig. 8 (top left image) is the calculated 
zero-time image and Fig. 8 (left upper center panel) is the 
final image at infinite time. The rate constant map and 
isometric projection of the rate constant map appear as the 
two lower left panels of Fig. 8. The difference between the 
calculated zero-time image and the integrated image is Fig. 8 
(top right panel). The differences were as much as 17-fold in 
some areas. The distribution of photobleaching rate constants 
was heterogenous. The two principal components of the bi- 
variate frequency histogram of initial intensity values versus 
observed rate constants are illustrated in Fig. 8 (right bottom 
panel). Each population of rate constants was associated with 
specific regions of the image. The locations of the rate constant 
cluster at the left end of the projection were located outside 
the cell boundaries, the white areas in the right upper center 
image. The rate constants for areas inside the cell, the white 
area in the right lower center image, range to the right end of 
the projection. 

The photobleaching rate constants for several fluorophores, 
studied in microemulsions and in both fixed and living cells, 
are summarized in Table I. The values observed in single 
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FIGURE 7 Photobleaching of NBD-cholesterol in human fibroblasts. Human fibroblasts were labeled with NBD-cholesterol in 1- 
palmitoyl-2-oleoylphosphatdylcholine vesicles as described in Materials and Methods. (Left page) (left images) Images taken at 1 
and 100 s, respectively, of continuous exposure to maximum intensity excitation light. (Right images) Calculated initial and final 
intensity images, respectively. The zero-time image is given as Aix,~ + B(x,y), and at infinite time, image is given as A(~,y). Bar, 10 #m. 
(Right page) (left top image) Rate constant map, given as kl,,y), with a range of 0-0.255 s -1, full scale. (Left bottom) Isometric 
projection of the rate constant map. The scale for the x- and y-axes is 10 pm and 0-0.064 s -1 for the z-axis. (Right top) Isometric 
projection of the difference in intensity values obtained by subtraction of the image obtained by integration of the 20 images 
acquired during the photobleaching time course from the calculated initial intensity image, as described in Materials and Methods. 
The scale for the x- and y-axes is 10 #m and 64 gray levels for the z-axis. (Right bottom) Bivariate frequency histogram of rate 
constants as a function of initial fluorescence intensity values. The scale for the rate constant on the y-axis is 0-0.255 s-l; for the 
initial intensity values on the x-axis is 0-255 gray levels; and for the number of pixels at each coordinate is 0-64 on the z-axis. 

pixel samples occurred in punctate areas in the cells. The rate 
constants for individual cells were obtained by the following 
procedure. A spatial mask was defined with the appropriate 
phase image to include only areas within the perimeter of the 
cell. The corresponding rate constant map of only the intra- 
cellular area was then analyzed with this spatial mask. Pres- 
entation of the rate constant data as an average of the entire 
cell obscures the differences in photobleaching that can be 
appreciated only by a pixel-by-pixel comparison of rate con- 
sLant values of the cellular maps. Data acquired by photo- 
multipliers as sensing devices in microscopy systems appear 
to underestimate significantly the magnitude of photobleach- 
ing. 

D I S C U S S I O N  

A detailed discussion of all the photochemical processes that 
lead to decreased fluorescence frequently observed during 
microscopic measurements is beyond the scope of this paper. 
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These light-induced chemical reactions are mechanistically 
distinct from oxygen quenching of fluorescence described by 
Vaughn and Weber (38). This quenching is a reversible pho- 
tophysical process that does not produce chemically modified 
ground state products. Unfortunately, the identification and 
quantification of the products of photodegradation processes 
occurring in specimens studied with a fluorescence micro- 
scope will be difficult, for two reasons. First, the observation 
of different rates of fluorescence decay suggests multiple re- 
actions are occurring. Second, the extremely small amounts 
of material generated preclude most analytical methods. 

Several studies have been concerned with the nature of 
these photoprocesses and the role of 02. Oster et al. (39, 40) 
established that fluorescein and acridine act as photosensitiz- 
ers in the oxidation ofp-toluenediamine. This photochemical 
process was dependent on oxygen concentration, showing 
saturation above 20 ~M or -2% (vol/vol). Livingston and 
Owen (4 l) postulated that the long-lived triplet states (~ l0 -4 
s) that are quenched efficiently by 02 react to generate per- 



oxides which in turn oxidized the fluorophores. This proposal 
is supported by the observations of Lanni et al. (2 l) that there 
was no photobleaching of FITC-actin upon excitation by a 
milliwatt laser if the solutions are carefully deoxygenated. 
Khan and Kasha (42) have also shown that benzo(a)pyrene 
in organic solution generates singlet oxygen (02) when irra- 
diated at 365 nm. This process appears to involve triplet state 
interactions. Johnson et al. (43), by contrast, report that 
oxygen does not significantly contribute to the photochemical 
degradation of FITC conjugates, although the actual oxygen 
concentrations of the solutions used in this study were not 
determined independently. In addition, the introduction of 
argon above the solutions is not an efficient method to 
deoxygenate aqueous solutions (44). 

Other studies suggest that at least two mechanisms may be 
involved. In addition to interaction of molecular O2 with 
triplet states to produce ringlet oxygen, a second mechanism, 
the absorption by a triplet state of a second photon to produce 
a radical and a solvated electron (45), may be important in 
photosensitized reactions. This second mechanism would per- 
mit a fluorophore to be photodegraded in the absence of 
oxygen. 

Irrespective of the exact nature of the photochemistry in- 
volved in the bleaching reactions, some objective means is 
necessary to study these processes and evaluate fluorescence 
images in a quantitative fashion. Our approach to this prob- 
lem has been to develop a digital image processing system 
that incorporates a low light level camera to maximize the 
signal to noise ratio and to minimize illumination levels and 
exposure times. This strategy provides an objective means to 
compare video equipment and to maximize control of day- 
to-day variables such as lens alignment, lamp stability, and 

focus. Moreover, it furnishes a means to initiate the develop- 
ment of radiometric and geometric microscopic fluorescence 
standards and, finally, allows the application of a whole range 
of image processing and image analysis methodology (22-26, 
46-50). 

We have used this instrumentation to study the effects of 
photobleaching on fluorescence experiments and to evaluate 
the degree to which photobleaching complicates the interpre- 
tation of such experiments. In calibrating our instrument, we 
have used an Optoliner, a device manufactured by Optical 
Instruments Corporation, that projects a pattern of known 
intensity onto the target of the camera. By using neutral- 
density filters, which have been standardized by absorption 
spectrophotometry, the output from the Optoliner was atten- 
uated in steps to determine and calibrate the camera response 
directly. We emphasize that "white light" was used in these 
experiments. We have not made any effort to determine the 
spectral sensitivity of the camera. 

The frequency response of the camera was estimated by 
measuring the contrast transfer function. From Fig. 2, there 
is a 60% reduction in contrast, for the camera only, at 15.8 
line pairs per millimeter on the target. Assuming that the 
transfer functions for the optical elements in the microscope 
are 1.0, this resolution at the specimen plane, using the x 63 
objective and no ocular lens, would be 1.6 line pairs per 
micrometer. In a bright field image, this means we would 
have a 60% reduction of contrast when two black lines were 
spaced 0.6-0.7 #m from each other. We assume this resolution 
is valid for fluorescence images, in that comparable fluores- 
cent resolution standards are not available. 

The results for actual experiments show that the photo- 
bleaching reactions are first order or pseudo-first order, except 
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TABLE I 

Photobleaching Rate Constants for Fluorophores 

Fluorophore system Single pixel rate constant Intracellular rate constant 
S-1 

Benzo(a)pyrene 
Cells 0.025 + 0.002 (3) s 
Microemulsion 0.029 ± 0.007 (18) 

N BD-cholesterol 
CelIslLDL* 0.151 ± 0.05 (7) 
CelIs/POPC* 0.141 ± 0.04 (9) 

Acridine orange 
Cells 0.048 ~ 

O. 154** 
Rhodamine-123 

Cells 0.069 _ 0.007 (5) 
FITC 

Cells* 0.007 __. 0.003 (12) 
Tetramethylrhodamine isothiocyanine 

Cells* 0.006 ± 0.002 (3) 
I ,I ' -Dioctadecyl-3,3,3 ' ,3 ' , tetramethyl indocarbocyanine 

Cells 0.003 ± 0.001 (5) 

5-I 

0.042 + 0.006 (0.0-0.125) I 
0.025 _ 0.003 (0.018-0.030) 

0.116 + 0.019 (0.0-0.196) 

0.134 + 0.026 (0.03-0.194) 

0.012 __ 0.001 (0.009-0.021) 

* NBD-cholesterol was added as a component of LDL and 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles (POPC), respectively. 
* Fibroblasts were fixed with 3% formaldehyde and permeabilized with 0.1% Triton X-1130. 
i Number of experiments 
I Range of rate constants within the cell perimeter. 
! Acidic compartment from Fig. 6, lower right graph. 

Nucleolus from Fig. 6, lower right graph. 

at the highest intensities where there is some indication from 
the decay curves that multiphoton processes may become 
more important (45). The observed rate constants over this 
range are linearly dependent upon the excitation energy. What 
was somewhat surprising is the clear observation that the rate 
constants for at least two environmentally sensitive probes 
are spatially heterogeneous. We originally observed variations 
in rate constants, determined on a limited number of pixels 
in different areas of a cell, and therefore implemented the 
algorithm to determine the three-parameter analysis for each 
pixel in the full image. 

The origin(s) of the rate constant heterogeneity is unclear 
and will have to elucidated for each probe and for different 
cellular compartments. We suggest several possible origins for 
the differential photobleaching rates. 

(a) Photophysical processes that affect quantum yield of 
the fluorophore are potentially important. Two examples 
seem likely. Certain fluorophores may partition into a specific 
compartment and reach sufficiently high concentrations to 
self-quench, or may have a high local concentration of 

quenching molecule(s). 
(b) A particular compartment may contain molecules, such 

as cytochromes or pigments, that absorb at the excitation 
wavelength sufficiently to decrease the observed rate constant 
due to inner filter effects. 

(c) There may be a high local concentration of one of the 
reactants for the photochemical processes. This seems partic- 
ularly likely for 02, which can reach high concentrations in 
lipid environments. 

Which, if any, of these possibilities gives rise to the hetero- 
geneity observed with NBD-cholesterol and acridine orange 
is not yet clear, although we suspect that concentration 
quenching may be important (51, 52). 

One important finding for quantitative fluorescence mea- 
surements that emerges from the exponential fit data is the 
necessity to recognize and make the appropriate corrections 
for differences in photobleaching rates. We have illustrated 
this point by calculating the zero-time image and then com- 
paring this image with a "photograph" obtained by summing 
images. The differences are significant and demonstrate that 

FIGURE 8 Photobleaching of FITC-IgG in Wl-38 fibroblasts. Fixed and permeabil ized Wl-38 fibroblasts were labeled initially 
with a murine monoclonal ant ibody to gelsolin and then with goat anti-mouse FITC-conjugated IgG. (Left top and upper center 
images) Calculated initial and final intensity images, respectively. The zero-t ime image is given as Ai~.y) + B{x,y), and infinite-time 
image is given as Ai~,vl. (Left lower center image) Rate constant map, given as kix,y), with a range of 0-0.025 s -1, full scale. Within 
the cell, the mean value for k(~,~l was 0.012 _ 0.0016. Bar, 20 #m. (Left bottom) Isometric projection of the rate constant map. 
Scales for the x- and y-axis are 20 #m, and 0.064 s -1 for the x-axis. (Right top) Isometric projection of the difference in intensity 
values obtained by subtraction of the image obtained by integration of the 20 images acquired during the photobleaching t ime 
course from the calculated initial intensity image. The scale of the x- and y-axes is 20 #m and 64 gray levels for the z-axis. (Right 
upper center image) The extracellular areas of the image are shown as the white areas. (Right lower center image) The intracellular 
areas of the image are shown in white. (Right bottom) Bivariate frequency histogram of rate constants as a function of initial 
fluorescence intensity values. The component  of the histogram to the left end of the plot is shown as the white extracellular 
regions in the right upper center image above. The low broad component  to the right end of the plot is shown as the white 
intracellular area in the right lower center image. The scale for the rate constant on the y-axis is 0-0.025 s -1. For the initial 
intensity values on the x-axis, the scale is 0-255 gray levels. For the number of pixels at each coordinate, the scale is 0-64 on the 
z-axis. 
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rapidly photobleaching components are underrepresented in 
the summed image. The observation argues that fluorescence 
quantification schemes based on conventional photography 
and subsequent densitometry will not prove to be useful. The 
heterogeneity of  these photochemical reactions suggests that 
attempts to quantify fluorescence intensities by extrapolation, 
assuming there is only a single rate constant, back to initial 
intensity distributions may also be hazardous. 

Finally, the results of  this study also argue that it will be 
necessary to account for photobleaching in any serious at- 
tempts to measure fluorescence, either qualitatively or quan- 
titatively, with a microscope. This may be done in fixed 
material by deoxygenating the mounting medium or by using 
free radical scavengers (53, 54). The problem of photobleach- 
ing will be more acute in living cells, where the only clear 
strategy appears to be a reduction in the intensity of  excitation 
illumination to tolerable levels, in combination with quanti- 
fication of  the rates of photobleaching based on the methods 
developed in this study. This analytic approach is particularly 
important in experiments in which multiple fluorophores are 
used to obtain ratios of  intensity values, where the differences 
in photobleach rates between the probes will cause significant 
error. 
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