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Abstract 

Background:  Polypharmacy is a type of treatment that involves the concurrent use 
of multiple medications. Drugs may interact when they are used simultaneously. So, 
understanding and mitigating polypharmacy side effects are critical for patient safety 
and health. Since the known polypharmacy side effects are rare and they are not 
detected in clinical trials, computational methods are developed to model polyphar-
macy side effects.

Results:  We propose a neural network-based method for polypharmacy side effects 
prediction (NNPS) by using novel feature vectors based on mono side effects, and 
drug–protein interaction information. The proposed method is fast and efficient 
which allows the investigation of large numbers of polypharmacy side effects. Our 
novelty is defining new feature vectors for drugs and combining them with a neural 
network architecture to apply for the context of polypharmacy side effects prediction. 
We compare NNPS on a benchmark dataset to predict 964 polypharmacy side effects 
against 5 well-established methods and show that NNPS achieves better results than 
the results of all 5 methods in terms of accuracy, complexity, and running time speed. 
NNPS outperforms about 9.2% in Area Under the Receiver-Operating Characteristic, 
12.8% in Area Under the Precision–Recall Curve, 8.6% in F-score, 10.3% in Accuracy, 
and 18.7% in Matthews Correlation Coefficient with 5-fold cross-validation against the 
best algorithm among other well-established methods (Decagon method). Also, the 
running time of the Decagon method which is 15 days for one fold of cross-validation 
is reduced to 8 h by the NNPS method.

Conclusions:  The performance of NNPS is benchmarked against 5 well-known 
methods, Decagon, Concatenated drug features, Deep Walk, DEDICOM, and RESCAL, 
for 964 polypharmacy side effects. We adopt the 5-fold cross-validation for 50 iterations 
and use the average of the results to assess the performance of the NNPS method. The 
evaluation of the NNPS against five well-known methods, in terms of accuracy, com-
plexity, and running time speed shows the performance of the presented method for 
an essential and challenging problem in pharmacology. Datasets and code for NNPS 
algorithm are freely accessible at https://​github.​com/​raziy​ehmas​umshah/​NNPS.

Keywords:  Polypharmacy side effects prediction, Neural network, Drug–protein 
interactions, Drug–drug interactions
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Introduction
Drug combination, commonly referred to as polypharmacy, has become a common 
practice in modern medicine especially in elderly and patients with complex diseases 
[1–9]. While this strategy may treat the diseases more effectively, drug-drug interac-
tions (DDIs) can occur unexpectedly [5, 6, 10–18]. DDI is a change in the pharma-
cologic effect of one drug when used with another drug. DDIs are the most common 
reason for patients to go to emergency units [4, 6, 12, 19–22] and can associate with 
Adverse Drug Reactions (ADRs) (i.e. side effects) including death, and it is a critical 
problem for public health [6, 10, 23–27]. Shtar et  al. demonstrated that between 3 
and 5% of all hospital medication injuries were dedicated to DDI [19]. Although some 
side effects can be discovered in experiments and clinical trials, they are usually costly 
and consuming time [10]. Most of the known polypharmacy side effects are rare and 
they are usually not observed in small clinical trials. So, it is difficult to identify these 
side effects manually [16]. Therefore, developing computational methods is desired 
for predicting DDIs. The methods in DDI prediction problem are divided into two 
categories. The first category just determines the presence or the absence of inter-
actions, and they do not detect the type of side effects. These methods collect the 
interactions via experiments and clinical studies, medical records, and also through 
network modeling based on DDIs similarities, side effects similarities, and structure 
similarities [11, 28–41]. On the other hand, the goal of the second category is deter-
mining the type of side effects between drugs [16, 42–45]. To reduce the impact of 
polypharmacy side effects, the methods in the second category execute their role. In 
the following, some studies are expressed which address this issue. Nickel et al. pro-
posed the relational learning approach named RESCAL which was based on a tensor 
factorization method [42]. DEDICOM was introduced by Papalexakis et al. and simi-
lar to RESCAL method was based on tensor decomposition [43]. Deep Walk method 
was based on a neural embedding approach which used a logistic regression classi-
fier [44, 45]. The concatenated drug features method used a gradient boosting trees 
classifier to predict side effects [16]. Zitnik et al. designed a multi-relational method 
called Decagon, which was based on a tensor factorization decoder [16]. In this study, 
we develop neural network-based method for polypharmacy side effects prediction 
(NNPS). NNPS utilizes the neural network model mentioned with novel features 
achieves better results in comparison with the results of 5 well-known methods in 
terms of accuracy, complexity, and running time speed.

In next section, we describe the required datasets and the details of NNPS algorithm. 
In results section, the results of the NNPS model are compared with the results of the 
Decagon, Concatenated drug features, Deep Walk, DEDICOM, and RESCAL methods. 
The conclusion and some possible further works are presented in Discussion Section.

Method
Datasets

In this section, the mono side effects, the drug–protein interactions (DPIs), and the 
DDIs information are presented in details. In the following, we describe the databases 
and the summary of these databases is given in Table 1.
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Drug–drug interactions and mono side effects information

As the multi-drug treatment is a common way [1–3], and modification in drug effect by 
another drug which is called DDIs, can produce adverse side effects, so, the knowledge 
of side effects information of DDI becomes the key issue in drug development and dis-
ease treatment. The DDI side effects (polypharmacy side effects) are collected from the 
TWOSIDES database [46]. TWOSIDES provides a reliable and comprehensive database 
for DDIs and has 1317 side effects on 645 drugs across 63,473 drug pairs. TWOSIDES is 
extracted from the Food and Drug Administration (FDA) Adverse Event Reporting Sys-
tem (FAERS). Like the previous study in the predicting polypharmacy side effects task 
[16], we consider 964 polypharmacy side effects which are occurred in at least 500 DDIs.

The side effects of individual drugs (mono side effects) are obtained from Side Effect 
Resource (SIDER) and OFFSIDES databases [46, 47]. The information of SIDER database 
is extracted from drug labels and contains 1556 drugs and 5868 side effects compiled 
from public documents. The information of OFFSIDES database is observed during clin-
ical trials and contains 1332 drugs and 10,097 off-label side effects. Like TWOSIDES, 
OFFSIDES was generated from FAERS that collected from doctor reports, patients, 
and drug companies. Finally, by the union and the elimination of synonym side effects 
in SIDER and OFFSIDES databases, for 645 drugs which are in TWOSIDES database, 
10,184 mono side effects are obtained.

Drug–protein interactions

DPIs are obtained from the Search Tool for Interactions of Chemicals (STITCH) data-
base, which provide relationships between drugs and target proteins [48–51]. By using 
the STITCH database, we gain interactions between 8934 proteins and 645 drugs which 
are in TWOSIDES database. The number of interactions between these proteins and 
drugs is 18,690.

Feature vectors

For each side effect, two types of feature matrices including mono side effects matrix 
with dimension 645× 10,184 and DPIs matrix with dimension 645× 8934 are con-
sidered. Due to the large length of the features and their sparsities, using the fea-
ture extraction methods can be an effective way to reduce the size of features without 

Table 1  Databases details

DDIs Drug–drug interactions, DPIs Drug–protein interactions, CC chemical compound, int interaction

Matrix Databases Details of databases Details of matrix Ref

DDIs TWOSIDES No. drugs = 645 No. pairs = 
63,473 No. side effects = 
1317

No. drugs = 645 No. pairs = 
63,473 No. side effects = 964

[46]

Mono side effects SIDER OFFSIDES No. drugs = 1556 No. side 
effects = 5868 No. drugs 
= 1332 No. side effects = 
10,097

No. drugs = 645 No. side 
effects = 10,184

[46, 47]

DPIs STITCH No. CC = 519,022 No. proteins 
= 8934 No. int = 8,083,600

No. drugs =645 No. proteins = 
8934 No. int = 18,690

[48–51]
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losing important information. So, the Principle Components Analysis (PCA) is applied 
on mono side effects and DPIs matrices. The minimum number of the principle com-
ponents is chosen such that 95% on variance in each matrix is retained. Two reduced 
feature matrices are denoted by F1 with dimension 645× 503 and F2 with dimension 
645× 22 , respectively. Then, by concatenating F1 (blue) and F2 (green), the drug feature 
matrix with dimension 645× 525 is resulted (Fig. 1a). The rows of the resulting drug fea-
ture matrix indicate the drugs ID, while the columns show the features information. For 
a given drug pair (di, dj) , i-th and j-th rows of the drug feature matrix are summed for 
representing the drug-drug pairs feature and feed to the neural network (Fig. 1b).

Training the neural network model

The drug pairs associated with each type of side effects are split into training, validation, 
and test sets, and 5-fold cross-validation is considered. We use 80 percent of drug pairs 
for the training set, 10 percent for the validation set, and 10 percent for the test set. The 
following steps are considered to achieve the best neural network architecture based on 
training datasets. 

1	 The number of hidden layers: {1, 2, 3, 4, 5}
2	 The number of neurons in hidden layers: {25, 50, 100, 200, 300}
3	 Activation functions: {Rectified Linear Unit (ReLU), hyperbolic tangent (tanh), and 

sigmoid}
4	 The dropout rate: {0.1, 0.3, 0.5}
5	 The learning rate: {0.01, 0.001}
6	 The momentum: {0.7, 0.9}

We trained several networks with two, three, four, and five hidden layers and varying 
numbers of neurons (300, 200, 100, 50 and 25). We have included the best results for 
each trained network in the Table  2. As shown in this table, training a network with 
three hidden layers improves the results without significantly increasing the train-
ing time when compared to training a network with two hidden layers. The results 
improve slightly for networks with four or five hidden layers, but the computational time 
increases significantly. We chose a network with three hidden layers with 300, 200, and 
100 neurons, respectively, due to the significant increase in computational cost and little 
benefit in terms of model performance of other structures. We had good results in terms 
of both Area Under the Receiver-Operating Characteristic (AUROC) and Area Under 
the Precision–Recall Curve (AUPRC) for the mentioned network, with a computational 
time of 8 h and 40 min.

The architecture of neural network

The Neural Network is a feedforward network with fully connected layers consist-
ing of an input layer, three hidden layers, and the output layer (Fig. 1c). The number 
of input layer neurons is equal to the size of the feature vector with size 525. The 
output layer has one neuron with probability value. For i-th side effect, we assign 
a class 0 (absence an interaction) or 1 (represent an interaction) to the output by 
using a threshold θi in the range of (0, 1). If the probability value is greater than 
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θi , the method suggests that the i-th side effect represents in the selected pair of 
drugs, otherwise, this side effects is not represent in the considered pair of drugs. 
For initialization weights, the Glorot normal initializer, also called Xavier normal 
initializer is applied [52]. By learning and investigating the results of the activation 

Fig. 1  For the i-th side effect, the NNPS architecture is used. a Concatenation of the PCA representation of 
mono side effects (F1) (blue) and the PCA representation of drug–protein interactions (F2) (green). b Sum of 
the i-th and j-th rows in the drug features matrix for each di and dj drug pair. c A three-layer neural network 
that computes the probability pi and classifies the i-th side effect based on the threshold i
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function of the neural network, we utilize the ReLU activation function between the 
layers of the neural model and consider a sigmoid activation function for the out-
put layer (Fig. 1c). The optimization of the model parameters is done by using the 
binary-cross-entropy loss function and Stochastic Gradient Descent (SGD) [53]. In 
addition, we trained datasets based on different parameters (see Additional file  1: 
Table S1). We calculated and averaged loss value (MLoss) of each model over all 964 
side effects for each epoch. Figure 2 shows the results of this investigation. In this 
work, MLoss is obtained by the following formula:

We depicted the Fig. 3 that considered AUROC against loss value when selecting epoch 
for the best performing model (NNPS).To do so, we calculated and averaged the AUROC 
(MAUROC) and MLoss of the best performing model for each epoch over all 964 side 
effects and plotted them, where MAUROC is obtained by the following formula:

As shown in this figure, the considering structure works well across 964 polypharmacy 
side effects. As a result, we considered epoch 50 based on Figs. 2 and 3 for the best per-
formance model of our neural network.

(1)MLossi =
�964

j=1
Lossside effectj

964
, for epoch i = 1, . . . , 50

(2)MAUROCi =
�964

j=1
AUROCside effectj

964
, for epoch i = 1, . . . , 50

Table 2  Results of different neural network architectures

The selected model is indicated in bold

No. hidden layers No. neurons AUROC AUPRC Running time

2 300, 200 0.961 0.950 8 h, 10 min

3 300, 200, 100 0.966 0.953 8 h, 40 min
4 300, 200, 100, 50 0.966 0.954 8 h, 50 min

5 300, 200, 100, 50, 25 0.967 0.954 14 h

Fig. 2  Loss curves of models based on different parameters for 50 epochs over all 964 polypharmacy side 
effects
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Results
Training hyperparameters

According to Fig. 2, the hyperparameters based on 5-fold cross-validation for the best 
model which we named NNPS are tuned by 50 epochs and batch size 1024 with a 
dropout rate of 0.1 for preventing over-fitting and learning rate 0.01 and momentum 
value 0.9 by trial and error are considered. Because the presence or absence of poly-
pharmacy side effects is determined by a threshold, a ROC curve for each side effect 
is plotted, and the threshold θi with the highest F-score value is chosen. The hyperpa-
rameter values, the standard deviation, and the average thresholds for NNPS method 
are shown in Table 3.

Assessment and comparison

In this section, the performance of NNPS is benchmarked against 5 well-known 
methods, Decagon, Concatenated drug features, Deep Walk, DEDICOM, and RES-
CAL, for 964 polypharmacy side effects. We adopt the 5-fold cross-validation for 50 
iterations and use the average of the results to assess the performance of the NNPS 
method. The average of AUROC and AUPRC values of all methods for 964 polyp-
harmacy side effects are presented in Table  4. Because only the source code and 
implementation of Decagon are available, we execute 5-fold cross-validation for 50 
iterations for the Decagon method and see that the obtained results are very simi-
lar to the reported results of the Decagon method in [16]. In Table  4, we mention 
the average of the obtained results for the Decagon method and the reported perfor-
mances of other methods that we do not have their source code by using Table 2 in 
[16]. According to Table 4, NNPS achieves the improvement 9.2% and 12.8% against 
Decagon which is the best algorithm among other well-known methods in terms of 

Fig. 3  MAUROC and MLoss of NNPS model for 50 epochs over all 964 polypharmacy side effects

Table 3  The selected hyperparameter values

Threshold for 964 side effect ( θi ), Standard Deviation (SD)

No. hidden layers No. neurons Dropout rate Learning rate Momentum SD θi Mean θi

3 300, 200, 100 0.1 0.01 0.9 0.166 0.530
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AUROC and AUPRC, respectively. To compare the results of NNPS more precisely, 
we compare it to the results of the Decagon with more details and by some more cri-
teria. Figure 4 illustrates the boxplots of AUROC and AUPRC criteria for 964 polyp-
harmacy side effects resulted by NNPS and Decagon methods, respectively. As shown 
in Fig.  4, it can be concluded that the median of the AUROC and AUPRC criteria 
related to NNPS are much higher than the median of the AUROC and AUPRC cri-
teria related to the Decagon method, and the range of variation of the AUROC and 
AUPRC criteria for NNPS method are less than the range of variation of the AUROC 
and AUPRC criteria for the Decagon method which is the evidence of good perfor-
mance of NNPS.

For more evaluation, the best thresholds that have produced the best results for each 
polypharmacy side effects based on F-score values for NNPS and Decagon methods are 
detected and the results of NNPS and Decagon based on F-score, Accuracy (ACC), and 
Matthews Correlation Coefficient (MCC) are compared. Table 5 reports True Positive 

Fig. 4  Boxplot of area under the receiver-operating characteristic (AUROC) and area under the precision–
recall curve (AUPRC) values of all 964 side effects for NNPS and Decagon methods

Table 4  The average of Area under ROC curve (AUROC), area under precision–recall curve (AUPRC) 
for 964 polypharmacy side effects prediction

Bold numbers show the best performance for each criteria

Method AUROC AUPRC

NNPS 0.966 0.953
Decagon 0.874 0.825

Concatenated drug features 0.793 0.764

DeepWalk 0.761 0.737

DEDICOM 0.705 0.637

RESCAL 0.693 0.613

Table 5  The average of the best results for NNPS and Decagon methods for 964 side effects

Bold numbers show the best performance for each criteria

Method TP FP TN FN Precision Recall F-score ACC​ MCC

NNPS 105,153 12,013 95,955 2608 0.901 0.976 0.936 0.934 0.872
Decagon 208,963 54,855 163,988 9880 0.771 0.950 0.850 0.831 0.685
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(TP), False Positive (FP), True Negative (TN), False Negative (FN), Precision, Recall, 
F-score, ACC and MCC of these two methods for all 964 side effects. According to 
Table  5, NNPS outperforms about 8.6%, 10.3%, and 18.1% against Decagon based on 
F-score, ACC, and MCC criteria, respectively.

Evaluation of feature selection, aggregation, and train/test set sizes

In this part, to show the significance of the PCA algorithm for dimension reduction, 
we compare the results of NNPS by using the low variance filter and autoencoder tech-
niques as two another feature selection methods. We use these two techniques to reduce 
the mono side effects and drug–protein interaction matrices features to 503 and 22 
features, respectively. In Table  6, the results of NNPS with both dimension reduction 
techniques are presented. This table shows that the performance of the NNPS method 
is higher when PCA technique was used. Also, we adopt two operators (i.e., summa-
tion and concatenation) to aggregate the feature vectors of two drugs into one feature 
vector for representing the drug-drug pairs in neural network architecture. As shown 
in Table  7, the summation operator achieves better results with respect to the results 
of NNPS when we concatenate the feature vectors of two drugs as features for feeding 
the neural network. We train the NNPS method with two different size of train, valida-
tion, and test sets, and represent the results in Table 8. This table shows that the perfor-
mance of the NNPS method has very little reduction by decreasing the size of the train 
set which is evidence of the advantage of the method. Finally, we compared the perfor-
mance of our method to four well-known machine learning algorithms using AUROC 
and AUPRC. The average results of these methods for all 964 polypharmacy side effects 
are shown in Table 9. According to the values in the Table 9, NNPS has the best perfor-
mance among all methods.

Time complexity

Between the previous methods, only the source code and implementation of Deca-
gon are available. So, we can only compare the time complexity of NNPS to Decagon 
method. The time of NNPS is about 8 h (Linux (Ubuntu 16.04), 15 CPUs, Intel Xeon(R) 
2.00 GHz) on DPIs and DDIs datasets and is therefore noticeably faster than Decagon 
which requires 15 days for 5-fold cross-validation on a single GTX1080Ti graphic card. 
This decreased training time in NNPS that stems from the simplicity and efficiency of 
this model, is one of the main advantages of NNPS which can further be generalized to 
other purposes and datasets as well.

Discussion and conclusion
Due to the enormous number of drug combinations, screening all possible pairs to 
achieve polypharmacy side effects are unfeasible in terms of cost and time. On the other 
hand, understanding the side effects of DDIs is an essential step in drug development and 
drug co-administration. So, some computational methods are developed for predicting 
polypharmacy side effects. The lately approach in this task (Decagon method) predicts 
the performance of polypharmacy side effects up to 0.874 and 0.825 in terms of accuracy 
on AUROC and AUPRC, respectively. In this study, we consider a neural network archi-
tecture with novel feature vectors. In NNPS method, each drug represents by a feature 
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vector based on mono side effects and drug–protein interactions, and to decrease the 
method complexity, the PCA is used for dimension reduction of feature vectors. For a 
given drug pair, the corresponding drug feature vectors are summed to train the neu-
ral network for predicting polypharmacy side effects. The superior performance of 
NNPS occurs for two reasons. The first main reason is the novel feature vectors that are 
obtained by the dimension reduction techniques. The second reason is chosen a simple 
neural network architecture. We can see NNPS achieves excellent accuracy on the poly-
pharmacy side effects prediction task that are shown in Additional file 1 and Table 10. 
We have provided 10 best and worst performance polypharmacy side effects based on 
AUROC and AUPRC in both NNPS and Decagon methods. The results can be found in 
Additional file 1: Tables S2–S7. These tables belong to the results of NNPS and Decagon 
which show that the performance of the NNPS method is better than the performance 
of the Decagon method. Figure 5 part (a) shows the ROC curve for Schizoaffective dis-
order side effect (one of the best performances of NNPS). Part (b) of Fig. 5 illustrates the 
loss curve of model for different epochs. Similarly, Fig. 6 part (a) and (b) show the ROC 
and Loss curves for NNPS related to Icterus side effect, one of the worst performances 
of NNPS, respectively. As shown by these figures, NNPS works well for each side effect 
alone and is acceptable with respect to the loss values for epoch 50. Among side effects 
with the best performance in NNPS, five important side effects that can lead to death or 
serious complications are selected [54–58]. The performance results in NNPS and Deca-
gon methods and the literature evidence for supporting these dangerous side effects are 
collected in Table 10. According to Table 10, the performances of dangerous polyphar-
macy side effects in NNPS on AUROC have values of 1.0, but in Decagon are located 
between 0.791 and 0.936. Also, we can see that on AUPRC the NNPS method have val-
ues of 1.0 but the Decagon performances are between 0.789 and 0.911. The finding of 
this tables show that in dangerous side effects, the performance of NNPS is higher than 
the performance of Decagon, and the NNPS is an effective approach for predicting poly-
pharmacy side effects especially in order to detect dangerous side effects.

Fig. 5  Receiver-Operating Characteristic (ROC) curve (part a) and loss curve (part b) of Schizoaffective 
disorder polypharmacy side effect for 50 epochs
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In summary, the evaluation of the NNPS against five well-known methods, in terms 
of accuracy, complexity, and running time speed shows the performance of the pre-
sented method for an essential and challenging problem in pharmacology.

As for future work, we suggest adding the protein–protein interaction information 
to the model, as it plays a crucial role in many biological functions and may lead to 
more accurate results. Another avenue for research is to apply the proposed method 
to other datasets and compare their findings on the association of diseases and polyp-
harmacy side effects with the current work.

Table 9  Results of different machine learning methods

Bold numbers show the best performance for each criteria

Method AUROC AUPRC Running time

NNPS 0.966 0.953 8 h, 40 min
LassoCV 0.930 0.917 11 h, 30 min

SVM 0.871 0.813 1 day

Random forest 0.797 0.742 1 h, 30 min

KNN 0.746 0.692 12 h

Fig. 6  Receiver-Operating Characteristic (ROC) curve (part a) and loss curve (part b) of Icterus polypharmacy 
side effect for 50 epochs

Table 10  Results of dangerous side effects in NNPS and Decagon on AUROC and AUPRC

Bold numbers show the best performance

Polypharmacy side 
effects

AUROC (NNPS) AUROC 
(Decagon)

AUPRC (NNPS) AUPRC 
(Decagon)

Evidence

Sarcoma 1.0 0.791 1.0 0.789 Serban et al. [54]

Carcinoma of the cervix 1.0 0.879 1.0 0.810 Arbyne et al. [55]

Malignant hypertension 1.0 0.906 1.0 0.858 Januszewicz et al. [56]

Epidural hematoma 1.0 0.936 1.0 0.906 Atci et al. [57]

Oophorectomy 1.0 0.917 1.0 0.911 Evans et al. [58]
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