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Abstract

Motivation: Pseudotime estimation from single-cell gene expression data allows the recovery of tem-

poral information from otherwise static profiles of individual cells. Conventional pseudotime inference

methods emphasize an unsupervised transcriptome-wide approach and use retrospective analysis to

evaluate the behaviour of individual genes. However, the resulting trajectories can only be understood

in terms of abstract geometric structures and not in terms of interpretable models of gene behaviour.

Results: Here we introduce an orthogonal Bayesian approach termed ‘Ouija’ that learns pseudotimes

from a small set of marker genes that might ordinarily be used to retrospectively confirm the accuracy

of unsupervised pseudotime algorithms. Crucially, we model these genes in terms of switch-like or

transient behaviour along the trajectory, allowing us to understand why the pseudotimes have been

inferred and learn informative parameters about the behaviour of each gene. Since each gene is asso-

ciated with a switch or peak time the genes are effectively ordered along with the cells, allowing each

part of the trajectory to be understood in terms of the behaviour of certain genes. We demonstrate

that this small panel of marker genes can recover pseudotimes that are consistent with those obtained

using the entire transcriptome. Furthermore, we show that our method can detect differences in the

regulation timings between two genes and identify ‘metastable’ states—discrete cell types along the

continuous trajectories—that recapitulate known cell types.

Availability and implementation: An open source implementation is available as an R package at

http://www.github.com/kieranrcampbell/ouija and as a Python/TensorFlow package at http://www.

github.com/kieranrcampbell/ouijaflow.

Contact: c.yau@bham.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of high-throughput single-cell technologies has revolu-

tionized single-cell biology by allowing dense molecular profiling

for studies involving 100–10 000 s of cells (Kalisky and Quake,

2011; Macaulay and Voet, 2014; Shapiro et al., 2013; Wills and

Mead, 2015). The increased availability of single-cell data has

driven the development of novel analytical methods specifically

tailored to single cell properties (Stegle et al., 2015; Trapnell, 2015).

The difficulties in conducting genuine time-series experiments at the

single-cell level has led to the development of computational techni-

ques known as pseudotime ordering algorithms that extract tem-

poral information from snapshot molecular profiles of individual

cells. These algorithms exploit studies in which the captured cells be-

have asynchronously and therefore each is at a different stage of
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some underlying temporal biological process such as cell differenti-

ation. In sufficient numbers, it is possible to infer an ordering of the

cellular profiles that correlates with actual temporal dynamics and

these approaches have promoted insights into a number of time-

evolving biological systems (Bendall et al., 2014; Haghverdi et al.,

2016; Hanchate et al., 2015; Qiu et al., 2011; Reid and Wernisch,

2016; Setty et al., 2016; Shin et al., 2015; Trapnell et al., 2014).

A predominant feature of current pseudotime algorithms is that

they emphasize an ‘unsupervised’ approach. The high-dimensional

molecular profiles for each cell are projected on to a reduced dimen-

sional space by using a (non)linear transformation of the molecular

features. In this reduced dimensional space, it is hoped that any tem-

poral variation is sufficiently strong to cause the cells to align against

a trajectory along which pseudotime can be measured. This approach

is therefore subject to a number of analysis choices including gene se-

lection, dimensionality reduction technique, and cell ordering algo-

rithm, all of which could lead to considerable variation in the

pseudotime estimates obtained. In order to verify that any specific set

of pseudotime estimates are biologically plausible, it is typical for

investigators to retrospectively examine specific marker genes or pro-

teins to confirm that the predicted (pseudo)temporal behaviour

matches a priori beliefs. An iterative ‘semi-supervised’ process maybe

therefore be required to concentrate pseudotime algorithms on behav-

iours that are both consistent with the measured data and compliant

with a limited amount of known gene behaviour.

2 Approach

In this paper we present an orthogonal approach implemented within a

Bayesian latent variable statistical framework called ‘Ouija’ that learns

pseudotimes from small panels of putative or known marker genes

(Fig. 1A). Our model focuses on switch-like and transient expression

behaviour along pseudotime trajectories, explicitly modelling when a

gene turns on or off along a trajectory or at which point its expression

peaks. Crucially, this allows the pseudotime inference procedure to be

understood in terms of descriptive gene regulation events along the tra-

jectory (Fig. 1B). As each gene is associated with a particular switch or

peak time, it allows us to order the genes along the trajectory as well as

the cells and discover which parts of the trajectory are governed by the

behaviour of which genes. For example, if the pseudotimes for a set of

differentiating cells run from 0 (stem cell like) to 1 (differentiated) and

only two genes have switch times less than 0.25 then a researcher

would conclude that the beginning of differentiation is regulated by

those two genes. We further formulate a Bayesian hypothesis test as to

whether a given gene is regulated before another along the pseudotem-

poral trajectory (Fig. 1C) for all pairwise combinations of genes.

Furthermore, by using such a probabilistic model we can identify dis-

crete cell types or ‘metastable states’ along continuous developmental

trajectories (Fig. 1D) that correspond to known cell types.

3 Materials and methods

3.1 Overview
The aim of pseudotime ordering is to associate a G-dimensional expres-

sion measurement to a latent unobserved pseudotime. Mathematically

we can express this as:

yn|{z}
Expression

¼ f|{z}
Mapping

 
tn|{z}

Pseudotime

!
þ �n|{z}

Noise

(1)

where the function f maps the one-dimensional pseudotime tn for cell

n to the G-dimensional observation space. The challenge lies in the

fact that both the mapping function f and the pseudotimes are un-

known. Our objective here is to use parametric forms for the map-

ping function f that will enable relatively fast computations whilst

characterising certain gene expression temporal behaviours. The spe-

cification of a statistical pseudotime algorithm therefore comes down

to the choice of the mean function f and the noise model on � (see

Supplementary Text Section S5 for an in-depth discussion).

3.2 Input data normalization
We index N cells by n 2 1; . . . ;N and G genes by g 2 1; . . . ;G. Let

yng ¼ Y½ �ng denote the log-transformed non-negative observed cell-

by-gene expression matrix. In order to make the strength parameters

comparable between genes we normalize the gene expression so the

approximate half-peak expression is 1 through the transformation

yng ! y0ng ¼ yng=sg where sg is a gene-specific size factor defined by

sg ¼
1

jY�gj
X

y�ng2Y�g

y�ng (2)

and Y�g ¼ fyng : yng > 0g.

3.3 Noise model
Our statistical model can be specified as a Bayesian hierarchical

model where the likelihood is given by a bimodal distribution

formed from a mixture of zero-component (dropout) and an non-

zero expressing cell population. If l(tn, Hg) is the mean for cell n

and gene g (evaluated at pseudotime tn with gene-specific parame-

ters Hg) then

b0; b1 � Normal 0;0:1ð Þ

png � Bernoulli logit�1 b0 þ b1l tn;Hg

� �� �� �
;

p yngjpng; lng; rng

� �
¼ pngd yng

� �
þ 1� png

� �
T� yngjl tn;Hg

� �
; r2

ng

� �
;

(3)

where png is the probability of observing a dropout (zero-count) in

cell n gene g and T� is the density function of the Student-t distribu-

tion with � degrees of freedom.

The relationship between dropout rate and expression level is

expressed as a logistic regression model (Kharchenko et al., 2014).

Furthermore, we impose a mean-variance relationship of the form

r2
ng ¼ 1þ /ð Þl tn;Hg

� �
þ � where / is the dispersion parameter with

prior / � Gamma a/; b/

� �
, which is motivated by empirical obser-

vations of marker gene behaviour (Supplementary Text S4.1).

3.4 Mean functions
We then need to specify the form of the mean functions l(tn, Hg),

for which we consider both sigmoidal and transient gene behaviour.

For genes we expect to be a priori switch-like we model

l tn;Hg

� �
¼

2gg

1þ exp �kg tn � t
0ð Þ

g

� �� � ; (4)

where kg and t
0ð Þ

g denote the activation strength and activation

time parameters for each gene and gg the average peak expression

with priors gg � Gamma d=2; 1=2ð Þ, kg � Normal l kð Þ
g ; 1=s kð Þ

g

� �
,

t
0ð Þ

g � TruncNorm 0;1½ Þ l tð Þ
g ;1=s

tð Þ
g

� �
. If available, user-supplied prior

Marker gene single-cell pseudotime inference 29

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty498#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty498#supplementary-data


information can be encoded by specifying priors on the parameters

l kð Þ
g ; s kð Þ

g ;l tð Þ
g ; s

tð Þ
g . Otherwise, inference can be performed using unin-

formative hyperpriors on these parameters. Specifying l kð Þ
g encodes a

prior belief in the strength and direction of the activation of gene g

along the trajectory with s kð Þ
g (inversely-) representing the strength of

this belief. Similarly, specifying l tð Þ
g encodes a prior belief of where

in the trajectory gene g exhibits behaviour (either turning on or off)

with s tð Þ
g encoding the strength of this belief.

For the transient case we have

l tn;Hg

� �
¼ 2gg exp �kbg tn � pg

� �2
� �

; (5)

where we take k¼10 to be a constant and with prior structure

gg � Gamma d=2; 1=2ð Þ, pg � TruncNorm 0;1½ Þ l pð Þ
g ; 1=s pð Þ

g

� �
, bg �

TruncNorm 0;1½ Þ l pð Þ
g ;1=s pð Þ

g

� �
, where informative priors may be

placed on p and b as before.

3.5 Inference
Under this framework learning the single-cell trajectory becomes

Bayesian inference of p t;HjYÞð —the joint posterior distribution of

the pseudotimes and gene behaviour parameters given the expres-

sion data. We performed posterior inference using Markov Chain

Monte Carlo (MCMC) stochastic simulation algorithms, specifically

the No U-Turn Hamiltonian Monte Carlo approach (Homan and

Gelman, 2014) implemented in the STAN probabilistic program-

ming language (Carpenter et al., 2017). The parameter �¼0.01 is

used to avoid numerical issues in MCMC computation. For larger

marker gene panels, such as in the cell cycle analysis section, we

used stochastic gradient variational Bayes implemented in Edward

(Tran et al., 2016) to perform approximate Bayesian inference.

4 Results and discussion

4.1 Pseudotime inference from small marker gene

panels
The transcriptomes of both single cells and bulk samples exhibit re-

markable correlations across genes and transcripts. Such concerted

regulation of expression is thought to be due to pathway-dependent

transcription (Braun et al., 2008; Tegge et al., 2012) and is necessary

for the field of network inference from gene expression data

(Langfelder and Horvath, 2008). An example of such transcriptome

wide correlations can be seen in Figure 2A for the Trapnell et al.

(2014) dataset, where hierarchical clustering reveals a block-

diagonal structure, implying an intrinsic low-dimensionality of the

data that can be efficiently compressed using techniques such as

principal components analysis (Supplementary Fig. S1).

This redundancy of expression is often exploited by statistical

models of single-cell RNA-seq data. Examples include Heimberg

et al. (2016) where the intrinsic low-dimensionality is used to recon-

struct transcriptome-wide gene expression from ultra-shallow read

depths; Cleary et al. (2017) apply compressed sensing techniques to

reconstruct high-dimensional gene expression profiles from low-

dimensional random projection; and McCurdy et al. (2017) who

propose a column subset selection procedure where a small number

of genes are chosen to represent the full transcriptome. The com-

pressibility of transcriptome data is likewise exploited by many

single-cell pseudotime inference algorithms via initial dimensionality

reduction steps. For example, Monocle (Trapnell et al., 2014)

reduces the expression data down to 2 dimensions using independ-

ent component analysis, while both TSCAN (Ji and Ji, 2016) and

Waterfall (Shin et al., 2015) apply PCA to reduce the data down to

2 dimensions. The implication behind such approaches that there is

sufficient information in just two dimensions of the data via a linear

Fig. 1. Learning single-cell pseudotimes with parametric models. (A) Ouija infers pseudotimes using Bayesian nonlinear factor analysis by decomposing the input

gene expression matrix through a parametric mapping function (sigmoidal or transient). The latent variables become the pseudotimes of the cells while the factor

loading matrix is informative of different types of gene behaviour. A heteroskedastic dispersed noise model with dropout is used to accurately model scRNA-seq

data. (B) Each gene’s expression over pseudotime is modelled either as a sigmoidal shape (capturing both linear and switch-like behaviour) or through a

Gaussian shape (capturing transient expression patterns). These models include several interpretable parameters including the pseudotime at which the gene is

switched on and the pseudotime at which a gene peaks. (C) The posterior distributions over the switch and peak times can be inferred leading to a Bayesian stat-

istical test of whether the regulation of a given gene occurs before another in the pseudotemporal trajectory. (D) Ouija can identify discrete cell types that exist

along continuous trajectories by clustering the matrix formed by considering the empirical probability one cell is before another in pseudotime

30 K.R.Campbell and C.Yau

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty498#supplementary-data


projection to learn ‘transcriptome-wide’ pseudotime and that the

majority of expression is redundant given the low-dimensional

projection.

In Ouija, we exploit the high gene-gene correlations by model-

ling a small number of marker genes that are representative of the

whole transcriptome. Such an approach is advantageous as by mod-

elling the data directly rather than a reduced-dimension representa-

tion we can understand the pseudotimes for each cell in terms of the

behaviour of genes through time rather than abstract notions of

manifolds embedded in high-dimensional space. This takes the form

of a nonlinear factor analysis model, departing from previous mod-

els that have relied upon linear factor analysis (Campbell and Yau,

2017a; Pierson and Yau, 2015) by introducing sigmoidal nonlinear-

ities and transient expression functions, both of which have been

successfully applied previously in post-processing of single-cell tra-

jectories (Campbell and Yau, 2016, 2017b; Sander et al., 2017).

We then turn to the question of how to choose the small number

of marker genes in order to fit the pseudotimes. In single-cell pseu-

dotime studies, the cells under examination undergo a known bio-

logical process such as differentiation or cell cycle. Importantly, key

marker genes associated with these processes are usually known

a priori by investigators. These marker genes act as positive controls

whose behaviour is used post-hoc to confirm the validity of the

transcriptome-wide pseudotime fit. Examples include the markers of

myoblast differentiation MYH3, MEF2C and MYOG in Trapnell

et al. (2014); the markers of neurogenesis Gfap and Sox2 in Shin

et al. (2015); and in Li et al. (2016) the authors tabulate the marker

genes they expect to be involved in the process along with their

expected behaviour along the differentiation trajectory. Given both

the widespread a priori knowledge of such markers and their re-

quirement to validate transcriptome-wide pseudotime fits, we there-

fore propose to derive pseudotimes directly from such markers.

We first sought to test whether our model applied to small panels

of marker genes could accurately recapitulate the transcriptome-

wide pseudotimes inferred by popular pseudotime methods. We

applied Monocle 2, DPT and TSCAN to five publicly available

single-cell RNA-seq datasets (Chu et al., 2016; Dulken et al., 2017;

Shin et al., 2015; Trapnell et al., 2014; Zhou et al., 2016) using the

500 most variable genes as input [the default in packages such as

Scater (McCarthy et al., 2017) for PCA representations]. For each

dataset, we then inferred pseudotimes using Ouija based only on a

small number of marker genes reported in each paper (ranging

from 5 to 12), and compared the Pearson correlation between the

Ouija pseudotimes and the pseudotimes reported for each dataset

(Fig. 2B). There was good agreement between the marker-based

pseudotimes inferred using Ouija and the transcriptome-wide pseu-

dotimes inferred using existing algorithms, with the correlation

exceeding 0.75 in the majority of comparisons.

Fig. 2. Transcriptome-wide pseudotimes can be inferred from small marker gene panels. (A) A gene-by-gene correlation matrix for the Trapnell et al. (2014) data-

set reveals similarities in the transcriptional response of hundreds of genes. The redundancy of expression implies the information content of the transcriptome

may be compressed through techniques such as principal components analysis (PCA) or by picking informative marker genes. (B) Comparison of pseudotimes

fitted using Ouija on a small panel of marker genes to transcriptome-wide fits (using the 500 most variable genes) across five datasets using the algorithms

Monocle 2, DPT and TSCAN. The marker gene fits show high correlation to the transcriptome-wide fits with the exception of the Shin et al. (2015) dataset. (C)

Gene expression profiles for two marker genes ID1 and MYOG from the Trapnell et al. (2014) dataset. The solid red line denotes the maximum a posteriori (MAP)

Ouija fit while the grey lines show draws from the posterior mean function. (D) Gene expression profiles for the same genes for the algorithms DPT, Monocle 2

and TSCAN show similar expression fits, demonstrating equivalent pseudotemporal trajectories have been inferred. The solid red line denotes a LOESS fit (Color

version of this figure is available at Bioinformatics online.)
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Noting that the correlation will not be 1 unless the algorithms are

identical, we sought to compare Ouija’s correlation to transcriptome-

wide pseudotime to the agreement of the transcriptome-wide pseudo-

times with each other. We found large variability in the agreement

between existing algorithms using transcriptome-wide pseudotimes,

with correlations as high as 0.93 but as low as 0.61 (Supplementary

Fig. S2). We found the marker-based Ouija pseudotimes have higher

correlations to one of the transcriptome-wide algorithms than they

have amongst each other in all but one of the datasets studied. On

average, the correlation between Ouija’s marker based pseudotime

with the transcriptome-wide pseudotimes was around 0.1 lower than

the correlation amongst the transcriptome-wide pseudotimes, though

given Ouija uses around 1–2% the number of input genes we believe

this is a positive result that represents transcriptome-wide pseudotimes

may be inferred using interpretable, parametric models on a small

number of marker genes chosen a priori.

This equivalence of transcriptome-wide and marker-based

pseudotimes is further confirmed by examining the qualitative fit of

the marker genes across the different algorithms. For example,

Figure 2C shows the posterior fit of the marker-based pseudotime for

two marker genes from (Trapnell et al., 2014), correctly inferring the

switch-like downregulation of ID1 and the upregulation of MYOG.

Near identical behaviour is found using transcriptome-wide pseudo-

times derived from DPT, Monocle and TSCAN (Fig. 2D). We note

the low correlations of the marker-based Ouija pseudotimes with the

transcriptome-wide fits for the Shin et al. dataset. Upon close inspec-

tion of the marker genes (Supplementary Fig. S3) we found that the

expression of four of the marker genes (Aldoc, Apoe, Eomes, Sox11)

were highly correlated (the switch times are similar) whilst Gfap and

Stmn1 showed little variation over pseudotime. This meant that there

was effectively only a single marker gene for this dataset—too few for

reliable marker gene-based pseudotime inference.

4.2 Gene regulation timing from marker gene-based

pseudotime
Having demonstrated Ouija can accurately recapitulate transcriptome-

wide pseudotimes using just small marker gene panels, we next sought

to show how it allows for marker-driven interpretable inference of

such trajectories. We applied Ouija to a single-cell time-series dataset

of human embryonic stem cells differentiating into definitive endoderm

cells (Chu et al., 2016). The authors examined the expression of key

marker genes over time and found nine to exhibit approximately

switch-like behaviour (POU5F1, NANOG, SOX2, EOMES, CER1,

GATA4, DKK4, MYCT1 and PRDM1) with a further two exhibiting

transient expression (CDX1 and MSX2). We applied Ouija using non-

informative priors over the behaviour parameters with no information

about the capture times of the cells included.

The resulting pseudotime fit demonstrates we can understand single-

cell pseudotime in terms of the behaviour of particular genes. Figure 3A

shows a heatmap of the nine switch-like genes (top) and two transient

genes (bottom), ordered by the posterior switch time of each gene. It can

be seen that the early trajectory is characterized by the expression of

NANOG, SOX2 and POUF51, which then leads to a cascade of

switch-like activation of the remaining genes as the cells differentiate.

While transcriptome-wide pseudotime algorithms could provide

similar heatmaps if the marker genes were known in advance, the

key departure of Ouija is that we can quantitatively associate each

gene with a region of pseudotime at which its regulation (switch

time or peak time) occurs. This is illustrated in Figure 3B–C showing

the posterior values for the regulation timing along with the associ-

ated uncertainty. In essence, Ouija allows us to order genes along

trajectories as well as being able to order the cells, which provides

insight into gene regulation relationships.

To approach such questions of gene regulation timings in a

quantitative and rigorous manner we constructed a Bayesian hy-

pothesis test to find out whether one gene is regulated before an-

other given the noise in the data. If t
0ð Þ

Gene A and t
0ð Þ

Gene B are the

regulation timings of genes A and B respectively, we calculate the

posterior distribution p t
0ð Þ

Gene A � t
0ð Þ

Gene BjY
� �

, and if both the lower

and upper bounds of the 95% posterior credible interval fall outside

0 we say the two genes are regulated at significantly different times.

We applied this to the pseudotime fit in the Chu et al. dataset, the

results of which can be seen in Figure 3D for a subset of genes. The

model suggests that EOMES is downregulated before DKK4 and

MYCT1 is downregulated after PRDM1. Furthermore, it suggests

the switch-like downregulation of DKK4 occurs after the transient

Fig. 3. Parametric models lead to pseudotimes centred around gene regulation timing. (A) An expression heatmap for the nine switch-like genes and two transi-

ent genes in the Chu et al. dataset, with genes ordered by the posterior mean of the switch time. (B–C) Posterior distributions over the switch times and peak

times for the 11 genes, coloured by their up or down regulation along pseudotime. The horizontal error bars show the 95% highest probability density credible

intervals. (D) A Bayesian hypothesis test can quantify whether the posterior difference between two regulation timings (either switch or peak time) is significantly

different from 0, allowing us to determine whether a given gene is regulated before or after another along pseudotime
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peak-time of CDX1. However, it suggests the difference in regula-

tion timings of DKK4 and MYCT1 are not significantly different

from zero, which could imply co-regulation.

4.3 Ouija is robust to gene behaviour misspecification
A potential disadvantage of our model is the requirement to pre-

specify genes as having switch-like or transient behaviour over pseu-

dotime, which may result in biased or erroneous pseudotimes. We

noticed such an effect in the Li et al. (2016) dataset, where the

authors pre-specified how they expected several marker genes to be-

have over pseudotime. Upon fitting the pseudotimes using Ouija, we

noted that the genes Mef2c and Pik3r2 exhibited the correct upregu-

lation over pseudotime (Supplementary Fig. S4A), but that Scd1 that

was supposed to exhibit transient, peaking expression was effective-

ly constant along the trajectory (Supplementary Fig. S4B).

We first asked whether this was a particular failing of Ouija or a

result common to all pseudotime algorithms so fitted transcriptome-

wide pseudotimes using TSCAN, Monocle 2 and DPT. We found

remarkably low correlations between the different pseudotime algo-

rithms (Supplementary Fig. S4C), with the highest correlations

reported between Ouija using markers only and Monocle 2 using

the full transcriptome. Furthermore, none of the pseudotime fits dis-

plays consistent nor expected behaviour for the set of marker genes

(Supplementary Fig. S5).

We supplemented this with extensive simulations to discover

wether Ouija is in general robust to gene behaviour misspecification.

We simulated datasets where either 75 or 50% of the genes were

switch-like (Supplementary Fig. S4D) for 8, 12, 16 and 24 genes

with 100 replications for each situation, and re-inferred the pseudo-

times using Ouija assuming all genes were switch-like. The results in

Supplementary Figure S4D show with four switch-like and four

transient genes Ouija still achieves a median correlation greater than

0.9 with the true pseudotimes, demonstrating Ouija is highly robust

to misspecification of prior knowledge of gene behaviour.

It is further possible to identify errors in the prior belief of gene

behaviour without having to explicitly fit a pseudotemporal

trajectory. If a dataset contains a number of switch-like and transi-

ent genes, the switch-like genes will have high absolute correlation

with themselves but low absolute correlation with the transient

genes, which will in turn have high absolute correlation with them-

selves. This effect is exemplified in the Chu et al. dataset that con-

tains nine switch-like and two transient genes. A hierarchical

clustering of the absolute correlations across the genes reveals the

transient genes clustering separately from the switch-like genes

(Supplementary Fig. S6). Therefore, an investigator could corrobor-

ate their prior expectations through similar investigations.

4.4 Identifying discrete cell types along continuous

developmental trajectories
We further investigated the single cell expression data from a study

tracking the differentiation of embryonic precursor cells into haemato-

poietic stem cells (HSCs) (Zhou et al., 2016). The cells begin as haemo-

genic endothelial cells (ECs) before successively transforming into

pre-HSC and finally HSC cells. The authors identified six marker genes

that would be down-regulated along the differentiation trajectory, with

early down-regulation of Nrp2 and Nr2f2 as the cells transform from

ECs into pre-HSCs, and late down-regulation of Nrp1, Hey1, Efnb2

and Ephb4 as the cells emerge from pre-HSCs to become HSCs. The

study investigated a number of distinct cell types at different stages of dif-

ferentiation: EC cells, T1 cells (CDK45– pre-HSCs), T2 cells (CDK45þ

pre-HSCs) and HSC cells at the E12 and E14 developmental stages.

We therefore sought to identify the existence of these discrete

cell types along the continuous developmental trajectory. As Ouija

uses a probabilistic model and inference we were able to obtain a

posterior ordering ‘consistency’ matrix (Fig. 4A) where an entry in

row i column j denotes the empirical probability that cell i is ordered

before cell j. Performing PCA on this matrix gives a rank-one repre-

sentation of cell-cell continuity, which is then clustered using a

Gaussian mixture model to find discrete cell states along the con-

tinuous trajectory (where the number of states is chosen such that

the Bayesian information criterion is maximized).

Fig. 4. Pseudotime ordering and cell type identification of haematopoeietic stem cell differentiation. (A) Consistency matrix of pseudotime ordering. Entry in the

ith row and jth column is the proportion of times cell i was ordered before cell j in the MCMC posterior traces. Gaussian mixture modelling on the first principal

component of the matrix identified three clusters that are evident in the heatmap. (B) Confusion matrix for cell types identified in original study (columns) and

Ouija inferred (rows). Ouija inferred cluster 1 largely corresponds to EC cells, cluster 2 corresponds to pre-HSC cells while cluster 3 corresponds to HSC cells. (C)

HSC gene expression as a function of pseudotime ordering for six marker genes. Background colour denotes the maximum likelihood estimate for the Ouija

inferred cell type in that region of pseudotime
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Applying this methodology to the Zhou et al. dataset uncovered

three metastable groups of cells corresponding to endothelial, pre-

HSCs and HSCs respectively (Fig. 4B). Misclassifications within cell

types (T1/T2 and E12/E14 cells) could be explained by examining a

principal components analysis of the global expression profiles

(Supplementary Fig. S7) which suggests that these cell types are not

completely distinct in terms of expression. When examining the

inferred pseudotime progression of each marker gene (Fig. 4C),

these three metastable states corresponded to the activation of all

genes at the beginning of pseudotime time, the complete inactivation

of all the marker genes at the end of the pseudotime and a interven-

ing transitory period as each marker gene turns off. Each metastable

state clearly associates with a particular cell type with Nrp2 and

Nr2f2 exhibiting early down-regulation and Nrp1, Hey1, Efnb2

and Ephb4 all exhibiting late down-regulation. Using this HSC for-

mation system as a proof-of-principle it is evident that, if a small

number of switch-like marker genes are known, it is possible to re-

cover signatures of temporal progression using Ouija and that these

trajectories are compatible with real biology.

To show the widespread applicability of this method we applied it

to two further publically available datasets. Dulken et al. (2017) exam-

ined the trajectory of quiescent neural stem cells (qNSCs) as they dif-

ferentiate into activated neural stem cells (aNSCs) and neural

progenitor cells (NPCs). Applying Ouija’s clustering-along-pseudotime

revealed seven distinct clusters (Supplementary Fig. S8; Supplementary

Table S1) with clusters 1–2 corresponding to early and late qNSCs,

cluster 3 defining the qNSC to aNSC transition, clusters 4–6 corre-

sponding to early to late aNSCs and cluster 7 defining the aNSC to

NPC transition. We similarly applied this method to the Chu et al.

dataset of time-series scRNA-seq that identified 8 distinct clusters

along pseudotime (Supplementary Fig. S9; Supplementary Table S2).

Clusters 1–4 track the cells as the progress through the 4 stages from 0

to 36 h, while clusters 5–8 track the 3 stages from 36 to 96 h but with

much more heterogeneity within each cluster, which is expected due to

the longer time-scales considered.

4.5 Scalable pseudotime inference using TensorFlow
Finally, we wanted to consider a study composed of a large panel of

putative marker genes to determine if Ouija could automatically

identify genes satisfying its behavioural constraints. We identified a

single-cell RNA-seq study (Kowalczyk et al., 2015) that examined

variation between individual hematopoietic stem and progenitor

cells from two mouse strains (C57BL/6 and DBA/2) as they age.

Principal component analysis for each cell type and age showed a

striking association of the top principal components with cell

cycle-related genes (Fig. 5A), indicating that transcriptional hetero-

geneity was dominated by cell cycle status. They scored each cell

for its likely cell cycle phase using signatures based on functional

annotations (Reference Genome Group of the Gene Ontology

Consortium, 2009) and profiles from synchronized HeLa cells

(Whitfield et al., 2002) for the G1/S, S, G2 and G2/M phases.

We investigated if Ouija could be used to identify cell cycle phase,

treating the inferential problem as a continuous pseudotime process and

assuming all genes as candidate switch genes. We applied Ouija to 1008

C57Bl/6 HSCs using 374 GO cell cycle genes that satisfied gene selec-

tion criteria used in the original study. This large number of genes and

cells makes inference using Hamiltonian Monte Carlo (HMC) slow so

we implemented a second version of Ouija (termed Ouijaflow) using

the probabilistic programming language Edward (Tran et al., 2016)

based on TensorFlow (Abadi et al., 2016). This performs fast approxi-

mate Bayesian inference using stochastic gradient variational inference

(Supplementary Fig. S10).

The estimated pseudotime progression given by Ouija recapitulates

the trajectory observed in principal component space (Fig. 5A). The

Fig. 5. Cell cycle phase prediction. Principal component representation of hematopoietic stem cells coloured according to (A) the original cell cycle progression

score (Kowalczyk et al., 2015) and (B) Ouija—cell cycle classes indicated are based on original study classifications. (C) Distribution of Ouija inferred pseudotime

versus the original cell cycle classifications. (D) Estimated activation strengths for the 374 cell cycle gene panels. (E) Gene expression profile for 88 switch-like

genes with cells ordered by pseudotime and (F) genes ordered by activation time
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estimated pseudotime distribution correlates well with the cell cycle

phase categorization given in the original study (Fig. 5C). Furthermore,

we identified 88 genes with large activation strengths indicating strong

switching-on behaviour (Fig. 5D). Ordering the genes by activation time

demonstrates a cascade of expression activation across these 88 genes

over cell cycle progression with the quiescent (G0) indicated by com-

plete inactivation of all 88 genes (Fig. 5E, F). The explicit parametric

model assumed by Ouija makes this gene selection and ordering process

simple and quantitative compared to a non-parametric approach that

would require some retrospective analysis or visual inspection.

5 Conclusion

We have developed a novel approach for pseudotime estimation based

on modelling switch-like and transient expression behaviour for a

small panel of marker genes chosen a priori. Our strategy provides an

orthogonal and complementary approach to unsupervised whole-

transcriptome methods that do not explicitly model any gene-specific

behaviours and do not readily permit the inclusion of prior knowledge.

We demonstrate that the selection of a few marker genes allows

comparable pseudotime estimates to whole transcriptome methods on

real single cell datasets. Furthermore, using a parametric gene behav-

iour model and full Bayesian inference we are able to recover posterior

uncertainty information about key parameters, such as the gene activa-

tion time, allowing us to explicitly determine a potential ordering of

gene (de)activation and peaking events over pseudotime. The posterior

ordering uncertainty can also be used to identify homogeneous meta-

stable phases of transcriptional activity that might correspond to tran-

sient, but discrete, cell states. In summary, Ouija provides a novel

contribution to the increasing plethora of pseudotime estimation meth-

ods available for single cell gene expression data.
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