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Abstract: In the last few years, biomedical research has been boosted by the technological
development of analytical instrumentation generating a large volume of data. Such information
has increased in complexity from basic (i.e., blood samples) to extensive sets encompassing many
aspects of a subject phenotype, and now rapidly extending into genetic and, more recently, radiomic
information. Radiogenomics integrates both aspects, investigating the relationship between imaging
features and gene expression. From a methodological point of view, radiogenomics takes advantage
of non-conventional data analysis techniques that reveal meaningful information for decision-support
in cancer diagnosis and treatment. This survey is aimed to review the state-of-the-art techniques
employed in radiomics and genomics with special focus on analysis methods based on molecular
and multimodal probes. The impact of single and combined techniques will be discussed in light of
their suitability in correlation and predictive studies of specific oncologic diseases.

Keywords: radiogenomics; cancer; MR; texture analysis; microarray; NGS technologies;
correlation matrix; molecular imaging; data mining

1. Introduction

Cancer diagnosis and classification are traditionally based on the histological examination of
bioptic specimens. However, this approach presents challenges related to the invasive gathering of
tissue, failures to distinguish between clinically relevant subtypes of cancer, and inter- and intra-
observer variability [1]. In response to these drawbacks, new high-throughput platforms have emerged
with the aim of better characterizing cancer at the molecular level, allowing an earlier diagnosis,
better stratification, and more accurate prognosis than the histopathological approaches for targeted
treatments. In this scenario, technological improvements in the field of imaging and molecular
biology have led to “radiogenomics” or “imaging genomics” [2]. Literally, radiogenomics refers to
the analytical processes aimed at correlating cancer imaging features (radiomics) with genomic data
(genomics) [3].

The concept behind radiogenomics is the possibility of investigating the relationship between
imaging, genomics, and clinical knowledge simply by looking at data, regardless of any qualitative
interpretation; roughly speaking, by letting the data speak for themselves [4,5]. Therefore,
radiogenomic approaches are extensively based on numerical calculus and computer science methods,
allowing the management and analysis of a very large number of variables for each sample and
modality. For instance, the image of an oncological lesion (as shown in Figure 1) is commonly rated by
a radiologist using functional/morphological attributes (spiculated, enhanced, hyper-intense, focal,

Int. J. Mol. Sci. 2017, 18, 805; doi:10.3390/ijms18040805 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2017, 18, 805 2 of 28

glucose avid), but the imaging study, itself, is a multivariate source of data; therefore, the main aim
of radiomics is to extract meaningful information directly from data. How much radiogenomics
has benefited from data processing techniques is clear, as it requires sophisticated algorithms and
high-performance computing for the analytical processes. This latter consideration reveals the
inherent multi-disciplinary nature of this emerging field, where radiologists, oncologists, biologists,
and computer and statistical scientists work together to gain useful insights for personalized medicine.
The wide development of this novel analytical approach is not limited to oncology; it is also successfully
employed in neurology, where textural features related to oncological lesions can be replaced by
morpho-functional features or connectivity of brain structures [6,7].
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Figure 1. Schematic radiomic workflow. The process starts with the acquisition of common diagnostic
images (Computed Tomography (CT), Positron Emission Tomography (PET), Magnetic Resonance
(MR) see Section 2.1.1) and the identification of the lesions under investigation. The target regions
are segmented (for the sake of simplicity, the process is shown for a single regions of interest (ROI)
in the PET image only, as highlighted by the red circle) with the chosen approach (see Section 2.1.2).
Finally, for each segmented region up to some hundreds of features, which are typically divided in
shape-based, first-, second- and higher-order statistical features, can be computed (see Section 2.1.3).
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Although the basic concepts underlying the radiogenomics are essentially intuitive, the definition
of their scope is rather controversial [8,9]. Two main reasons of ambiguity can be identified. The first
one arises from the prefix radio that may be interpreted as referring to radiation leading to the
radiogenomics meant as radiation genomics. This should aim to develop an assay able to predict
which cancer patients might develop toxicity as a result of radiotherapy treatment and to identify
genes possessing single nucleotide polymorphisms (SNPs) as possible biomarkers of radiation-induced
adverse effect. The second reason lies in the suffix omics: it implies the generation of complex
high-dimensional mineable data from each biological and imaging sample [10]. This requirement
is not completely fulfilled by those radiogenomic studies that simply conduct correlations between
low-dimensional data of imaging and genomic data.

Here, we report the most recent advances in molecular profiling research and technology applied
to cancer, and their integration with imaging features. In the following sections, radiomic and genomic
techniques will be treated separately, and will be followed by a subsection regarding their integration
and data analysis approaches. In the Discussion section, the radiogenomics approach will be outlined
for specific neoplastic diseases, separately analyzed by specifying the applied radiomic and genomic
methods, also considering the goal of each study. Finally, in the last section, critical issues and future
perspectives will be put forward.

In conclusion, this review aims to critically illustrate the most relevant radiomic and genomic
techniques applied in the radiogenomics field, and how this new methodological approach was used
in predictive and correlation oncological studies.

2. Methodologies

2.1. Radiomics

Radiomics refers to the comprehensive quantification of tumour phenotypes by the extraction
of a large number of quantitative features from medical images. This high-throughput extraction
of quantitative imaging features is the result of a workflow that is composed of three main steps
(Figure 1):

• Acquiring the images
• Segmenting the regions of interest (ROIs)
• Estimating descriptive features.

Each point involves well-established medical image acquisition and processing techniques, but the
integration of these procedures into a reliable and reproducible pipeline for radiogenomic analyses
deals with complex and challenging issues in each step. In what follows, these steps will be separately
described and discussed.

2.1.1. Image Acquisition

A great advantage of radiomic analyses is their feasibility relative to conventional clinical scanners
and imaging techniques. Indeed, the first step of the radiomic pipeline involves the acquisition of
images that are typically part of diagnostic or treatment planning protocols for oncological patients [11],
without the addition of examinations or extension of a scanning session, which could be unpleasant for
the subject. However, when images are analyzed numerically to extract meaningful data, as is done in
radiomic studies, variations in acquisition and image reconstruction parameters can introduce changes
that are not necessarily due to underlying biological effects [5]. Consequently, the used acquisition
protocols should be highly standardized in order to collect a dataset that is suitable for reliable analyses
avoiding issues that can create difficulties in comparing results. Radiomics can be performed using
tomographic images from Computed Tomography (CT), Magnetic Resonance (MR) imaging and
Positron Emission Tomography (PET) [12] studies. Each modality has its own imaging issues, which
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will be pointed out in the following subsections. Significant efforts are required to identify univocal
acquisition and reconstruction protocols and to match them between scanners [13].

Computed Tomography (CT)

Relevant parameters have to be taken into account to obtain standardized protocols are related
not only to image acquisition, but also to the reconstruction procedure, which delivers the image to the
analysis step. Slice thickness, current (mA), and tube potential (kVp) are responsible for the photon
statistics within a slice, therefore affecting the histogram and the noise level of an image. The axial
field of view and the reconstruction matrix size change the voxel size within a slice, while the pitch,
which is frequently optimized by each scan manufacturer, is crucial for the control of image noise.
With respect to the reconstruction algorithm different approaches can lead to changes in Hounsfield
units [13]. This may result in different quantitative features being extracted from the same acquisition
protocol, with obvious negative effects on the reproducibility of radiomic analyses.

Positron Emission Tomography (PET)

Many issues related to the standardization of PET acquisition can be attributed to the calibration
and quality controls are necessary to perform a quantitative examination [14]. With respect to CT,
the scan and reconstruction parameters have to be standardized. For example, differences in grid size
and post-reconstruction filter width imply large variations in the extracted features [15]. Additionally,
the partial volume effect (PVE), which is mainly due to limited spatial resolutions and a relatively high
noise contributions from PET systems, may quantitatively affect the voxel values and, consequently,
the extracted features, especially in the case of small patterns that are comparable to the spatial
resolution [16]. Consequently, there is a great interest in PVE correction methods that improve
the reliability of quantitative index extraction [17]. Moreover, when dealing with PET quantitative
acquisition, a precise patient protocol also has to be taken into account, with respect to dose calibration,
blood glucose level, and uptake period [18].

Magnetic Resonance (MR)

Due to its complexity, MR can potentially play an important role in radiomic studies. MR
images provide multi-parametric information, according to the used contrast weighting, which can
be useful in categorizing a tumour. Ideally, MR images should all have, at least, the same field of
view and acquisition matrix, field strength, and slice thickness, as these parameters strongly affect
the Signal-to-Noise Ratio (SNR). Moreover, each acquisition technique requires specific expedients.
For example, the commonly-used diffusion-weighted imaging (DWI) technique is strongly dependent
on the k-space trajectory, gradient strength, and b-values, while dynamic contrast-enhanced (DCE)
MR, and dynamic susceptibility contrast (DSC) MR depend on the contrast agent dose, administration
procedure, and pulse sequence [13].

2.1.2. Region of Interest Segmentation

This step requires a preliminary identification of target regions of prognostic value. Radiomics is
based on the concept that restricting the features to mine at the input point may be inefficient, while it
is worth capturing as much data as possible, and identifying the features with the highest prognostic
values, only at the end-point of the process using database mining [5]. Consequently, sub volumes of
interest within the lesions, representing physiologically-distinct volumes (habitats), can be captured
and added to the analyses [19,20].

Once the volumes of interest have been identified, the segmentation strategy has to be chosen.
This point is very critical as the resulting feature values depend on the adopted strategy and the
segmentation accuracy. In radiomic studies, the preferred segmentation method should be time
efficient and should also provide accurate and reproducible boundaries. Usually, manual segmentation
by expert readers is considered the gold standard, but it is a time-consuming process with high
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inter-operator variability [21,22]. On the other hand, many automated methods have been developed
across various image modalities and anatomical regions. They are completely reliable and reproducible
in ideal conditions (such as normal structures and the absence of image artifacts), but they can fail in
pathological situations, above all in complex cases of tumours with indistinct borders, because of inter-
and intra-subject morphologic and contrast heterogeneity. Consequently, the best compromise has been
identified in computer-aided detection systems [5,13,23] that work semi-automatically, with minimal
user interaction (i.e., identification of seed points or manual correction). The use of semi-automated
methods has also paved the way for three-dimensional (3D) segmentation. Volumetric segmentation
allows a comprehensive view of the total tumour burden and volumetric assessment has shown good
performance when related to different end points [24,25]. When comparing 3D with 2D approaches,
it should be taken into account that tridimensional regions of interest, not only allow for a more
complete description of the shape of the lesion [26], but also increase the number of points included in
the statistical feature computation, leading to more reliable results, which do not suffer from sampling
errors [27]. However, volumetric segmentation cannot be tackled with a standard, labor-intensive,
manual approach. By reducing the manual workload, computer-aided approaches allow fast and
reproducible 3D volumetric segmentations in large cohorts of patients, such as in radiomic studies [23].

2.1.3. Descriptive Features

Once each ROI has been segmented, radiomic analyses are based on the automated extraction
of features that robustly and quantitatively describe the attribute and the complexity of individual
ROIs. These quantitative image features should offer information on the tumour phenotype and
microenvironment, which represent an evolution of the semantic features, which have been introduced
in the clinical evaluation of several oncological lesions (BI-RADS for breast cancer [28], PI-RADS for
prostate cancer [29], VASARI for glioblastoma [30]). Semantic features are qualitative extracted by
a radiologist that follows a controlled lexicon to describe lesions and represents a coarse attempt
to approach radiomics. Their quantitative translation with mathematically-extracted descriptors,
which go beyond of the expert eye of radiologist, can complement and overcome them with an
operator-independent and high throughput approach.

Typically, extracted features can be divided into shape-based, as well as first-, second-, and
higher-order statistical outputs.

Shape-Based Features

Shape-based features rely heavily on the segmentation approach used, and capture numeric
information regarding geometric characteristics, such as size, shape, and spiculation. Some intuitive
examples are:

• Volume:
V = N·vs (1)

where N is the number of voxels within a segmented volume of interest, and vs is the voxel size of
the acquisition.

• Surface area:

A =
NT

∑
i=1

1
2
|
→

aibi ×
→

aici| (2)

NT is the number of triangles obtained from the triangulation of a tumour surface; ai, bi, and ci
are the vertices of the i-th triangle. The surface area, together with the volume, and eventually,
the maximum diameter, provide information on the size of a lesion.

• Compactness:

c = 36π
V2

A3 (3)
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This factor measures how much a lesion is different from a sphere, indicating, consequently,
its irregularity.

First-Order Statistics

These features describe the distribution of voxel values without concern for their spatial
relationships. They are generally histogram-based and can be used to quantify phenotypic traits [31].
Some examples are:

• Mean: shows the average intensity value and is given by:

X =
1
N

N

∑
i=1

X(i) (4)

X(i) is the gray value of the i-th voxels within a region of interest. Other estimates of the central
tendency, used in descriptive statistics, can be computed, such as the mode and median.

• Standard deviation: indicates how widely intensity values vary, and is computed as:

σ =

√√√√ 1
N − 1

N

∑
i=1

(
X(i)− X

)2 (5)

Other measures of histogram dispersions are the variance and the mean absolute deviation.
The variability within a volume can also be indicated by common statistics, such as minimum,
maximum and range values.

• Entropy: a statistical measure of randomness within a data sample, given by:

entropy = −
Nl

∑
i=1

P(i)log2P(i) (6)

where P is the first-order histogram of the volume of interest, computed on Nlbins. Additionally,
uniformity and energy can be used to measure the randomness of a volume histogram.

• Skewness: a parameter that describes the asymmetry of a histogram around the mean,
calculated as:

skew =
∑N

i=1
(
X(i)− X

)3

Nσ3 (7)

• Kurtosis: a parameter that depicts the degree of peakedness (broad or narrow) of a histogram and
is given by:

kurt =
∑N

i=1
(
X(i)− X

)4

Nσ4 (8)

Second-Order Statistics

Second-order statistical descriptors, typically referred to as “texture” features, describe spatial
relationships between voxels with similar gray levels within a lesion. They provide a measure of
intralesional heterogeneity [32]. Typically-used techniques are the Gray Level Co-occurrence Matrix
(GLCM) [33], also known as Haralick features, the Gray Level Run-Length Matrix (GLRLM) [34],
and the Gray Tone Difference Matrix (GTDM) [35].

• Gray Level Co-occurrence Matrix: These matrices determine how often a pixel of intensity i finds
itself within a certain relationship to another pixel of intensity j. A GLCM is a joint probability
function, defined as P (i,j;d,a), where the elements (i,j) represent the number of times that intensity
levels i and j occur in two voxels separated by distance d in the direction a. The matrix size



Int. J. Mol. Sci. 2017, 18, 805 7 of 28

depends on the intensity levels within a segmented lesion and the number of matrices on the
chosen d and a. For each matrix, several features can be extracted, and the final value for each d
considered is obtained as the mean of the feature over the directions. Examples of characteristics
that are mineable from each matrix are: Mean, standard deviation, and entropy for the joint and
marginal probabilities, autocorrelation, cluster prominence, cluster shade and tendency, contrast,
correlation, difference entropy, dissimilarity, energy, homogeneity, etc. [36].

• Gray Level Run-Length Matrix: A gray level run is the number of consecutive pixels having the
same grey levels. In a GLRLM, defined as p (i,j;a), the row indices represent the discretized gray
values and the column indices are the number of consecutive occurrences of the i-th gray value
in direction a. The matrix size, consequently, depends on the number of gray values in a lesion
(number of rows) and the maximum run length (number of columns). A GLRLM can be obtained
for each a, and the textural features can be obtained as the mean over the directions of the values
extracted from each matrix. Examples of mineable features are: Short and long run emphasis,
gray level non-uniformity, run-length non-uniformity, run percentage, low and high gray level
run emphasis, etc. [30].

• Gray Tone Difference Matrix: A column matrix, in which elements s (i) are the sum over the
set of pixels having gray tone i, of the difference between the voxels of the set and the mean
value, computed over the corresponding neighborhood. Consequently, the matrix depends on the
size of the neighborhood. From GTDM, several features can be computed: Coarseness, contrast,
busyness, complexity, and strength.

Higher-Order Statistics

Higher-order statistics impose filter grids on an image to extract repetitive or non-repetitive
patterns. From filtered images, first- or second-order features are computed. Filters that are most often
used in radiomic studies are:

• Laplacian of Gaussian filter [32]: This allows the highlighting of structures at a particular scale,
corresponding to the width of a filter. Consequently, increasingly coarse texture patterns can be
extracted from an image and analyzed using second-order statistics.

• Gabor filters: These allow for edge detection in different directions and widths [37]. For each
filtered image, the Gabor energy feature can be extracted as a sum of the square intensity over all
tumour pixels.

• Wavelet transform: This decouples textural information by decomposing the input image into low-
and high-frequency coefficients without losing spatial localization. In particular, high-frequency
coefficients also contain information on texture directionality. If an undecimated scheme is chosen,
lesion segmentation, identified in the original image, can be used for computation of the first-order
statistics and textural features from the wavelet coefficients.

• Fractal dimensions: These are estimates of object complexity. Fractal dimensions describe the
relationship between the change in a measuring scale and the measurement at that scale [31],
and can be calculated using a 3D box-counting algorithm [15]. Successively, values, such as mean
and standard deviation, can be extracted.

As a result of features extraction, up to hundreds of features will be delivered to the statistical
analysis, for only the radiomic part.

2.2. Genomics

Genomics is an interdisciplinary field of science focusing on genomes, which is actually performed
using a combination of high-throughput molecular biology technologies with complex computing and
math techniques (bioinformatics analysis). Nowadays, technological improvements have provided the
possibility of determining the expression of thousands of genes involved in different fields of human
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health and pathologies. Generally, two technologies are critical for genomics analyses: (1) microarray;
and (2) next-generation sequencing (NGS) including DNA and RNA sequencing (Figure 2).Int. J. Mol. Sci. 2017, 18, 805 8 of 27 
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Figure 2. Schematic workflow of the most used genomic approaches that could be applied in the
field of radiogenomics. Methylated DNA immune precipitation sequencing (MeDIP Seq) and Chip
sequencing (Chip Seq) provide information about DNA methylation, DNA/protein interactions, and
histone modification. Microarray is a technique used to measure the expression levels of large numbers
of genes. RNA sequencing (RNA Seq) allows performing an in-depth analysis of the transcriptome with
the identification of novel transcripts, alternative splicing allele specific expression, gene fusions, and
genetic variations. Moreover, RNA Seq can give information about the transcriptome dynamics such
as RNA editing, small insertions/deletions, exon connections, non-coding RNAs, and small RNAs.

2.2.1. Microarray

Microarray technology allows the understanding of complex functional mechanisms that are
involved in physiological and pathological cellular processes. Indeed, DNA microarrays provide a
rapid and accurate analysis of global gene expression, in contrast to previous methods for quantifying
mRNAs, such as Northern blotting or quantitative PCR, that are able to measure a few genes at
a time. DNA microarrays method, individual PCR-amplified double-stranded cDNA fragments
(about 500 base pairs) are spotted onto microscopic glass slides; typically this technique exploits a
spotted two-color hybridization to visualize and measure gene expression levels when comparing gene
expression profiles from multiple samples [38,39]. In case of comparisons across a large number of
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samples, a common reference sample is usually used as standard in all experiments [40–42]. The result
of a DNA microarray is like a snapshot of actively expressed genes and transcripts (transcriptome) at a
given point in time. However, although microarrays are used for identifying the expression of known
genes and transcripts, this method fails to detect unidentified genes or transcripts. The solution to
this issue can be circumvented by the use of in-depth sequencing analyses, such as Next-generation
sequencing (NGS) analyses, discussed below. DNA microarrays are also exploited in the field of
epigenetics, which refers to changes in gene expression occurring without alterations to the DNA
sequence. It is known that many neoplastic transformation events are connected to deregulated
epigenetic machinery, such as DNA methylation of the CpG island within promoter regions and
the covalent modification of histone proteins, such as acetylation, phosphorylation, methylation,
and ubiquitilation, are able to regulate gene activity [43]. For large sample size genome-wide DNA
methylation studies, the most used platform is the Infinium HumanMethylation450 BeadChip kit
(Illumina, San Diego, CA, USA). This technology is able to obtain a rapid quantitative DNA methylation
analysis of more than 485,000 CpG dinucleotides (methylation sites) located across the genome [44]
(Figure 2). As reported in the Discussion section, most radiogenomics studies, on a variety of human
cancers, used microarray technology. In these studies, genomic data were compared using different
radiomic approaches such as MRI, CT, and PET. The aim of these studies was to identify imaging and
genomic features that are able to ameliorate the diagnosis and prognosis of cancer patients.

2.2.2. Next-Generation Sequencing

Next-generation sequencing (NGS), also known as high-throughput sequencing, comprises a
number of different modern technologies that are able to provide more accurate information than
the previously-used Sanger method, revolutionizing the study of genomes and representing new
opportunities for clinical applications [45,46]. The NGS-era started in 2004 with the introduction of
massively parallel sequencing platforms [47] (e.g., the Applied Biosystems and the Helicos BioScience
HeliScope) able to produce 400 million of 25–35 bp reads [48]. Although there are different technical
details, a single DNA molecule in each sample is, first, fragmented, amplified, and then sequenced.
A common feature among NGS technologies is that the template is attached to a solid surface or support,
which enables, simultaneously, thousands, and up to billions of sequencing reactions. The massive
amount of data generated is attractive, and the elimination of the cloning step for the DNA fragments
to be sequenced is the greatest benefit of these new technologies. The broadest application of NGS
may be the resequencing of different genomes and, in particular, human genomes for an in-depth
understanding of genetic differences in health and disease. Furthermore, these platforms have been
used in many genomic applications, leading to a wide range of so-called “Seq” protocols, such as
RNA-Seq for transcriptomics, Chip-Seq for DNA-protein interaction analyses, and methyl-Seq for
epigenetic mark profiling. Several programs can be used for data handling and visualization, quality
assessment, interpretation, and statistical analyses [49–51] (Figure 2).

RNA-Sequencing

Particular interest in oncology is focused on the field of transcriptomics for the identification
and quantification of the RNA in cells, tissues, or biological fluids, representing a powerful tool for
the assessment of specific biological activities [52]. In a single RNA-Seq experiment, it is possible
to investigate, not only gene expression, but also alternative splicing [53], novel transcripts [54,55],
allele specific expression [56], gene fusions [57], and genetic variations [58,59]. Moreover, RNA-Seq
can provide more interesting information regarding transcriptome dynamics, such as RNA editing,
small insertions/deletions, exon connections, non-coding RNAs, and small RNAs [60]. Today, there
are three widely-accepted, commercially-available NGS devices for RNA-Seq: 454 GS FLX (up to 400
bp) (Roche, Basel, Switzerland), Genome Analyzer II, with paired-end reads up to 100 bp (Illumina,
San Diego, CA, USA), and SOLiD (up to 35–50 bp) (Applied Biosystems, Foster City, CA, USA) [61,62].
Although each platform works differently, they are all based on similar principles: Shearing target
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nucleic acids into small pieces, binding individual molecules to a solid surface, amplifying each
molecule into a cluster, copying one base at a time, and detecting different signals for each nucleotide
base. The majority of the platforms only allow for the sequencing of DNA molecules. Therefore, RNA
molecules are, first, reverse transcribed into cDNA. Once reverse-transcription is complete, the RNA
molecule is removed. At the end of the entire process, the result is a sequence of images, where each
lighted spot corresponds to a cluster and the color of each cluster represents a different base type [51].

The first step of RNA-Seq data analysis is the quality control of the raw reads, particularly the
determination of sequence quality, GC content, overrepresented k-mers, and duplicated reads, in order
to detect sequencing errors, PCR artifacts, or contamination [63]. An important indicator of sequencing
quality/accuracy and absence of contaminating DNA is represented by the percentage of mapped
reads [64,65]. After quality control, NGS-data analysis is performed by mapping the sequence reads.
Indeed, reads are aligned to a reference genome, or to reference transcripts, or assembled de novo
without a referenced genomic sequence to produce a genome-scale transcription map, consisting of
the transcriptional structure and or the expression level for each gene. When a reference genome
is available, RNA-Seq analysis involves the mapping of the reads onto the reference genome or
transcriptome, even with the limitation of discovery new transcripts. If an organism does not have
a sequenced genome, a de novo assembling approach to produce a genome-scale transcriptional
map is necessary [66–69]. For the identification of novel transcripts, several software packages and
algorithms are used to assess splice junctions and transcription start and end sites [70–75]. Gene-finding
prediction tools, such as Augustus [76], can exploit RNA-Seq data to better annotate protein-coding
transcripts [77].

The second phase of RNA-Seq analysis provides the quantification of transcript expressions using
programs such as HTSeq-count [78] or feature Counts [79], based on the aggregation of the raw counts
of mapped reads. Quantitative gene expression data from RNA-Seq have been shown to be comparable
to those of microarrays, but with a better dynamic range and lower detection limit for low-expressed
transcripts [59] (Figure 2).

RNA-Seq is also used to study the biological role and signature of small RNAs (sRNAs). Although
sRNA-Seq libraries are rarely sequenced as deeply as classical RNA-Seq libraries, and bioinformatics
analysis is different from standard RNA-Seq protocols, obtained sRNA reads are aligned to a genome or
transcriptome reference using bioinformatic tools, such as Bowtie2 [80], STAR [81], or Burrows-Wheeler
Aligner (BWA) [82].

Innovations in RNA-Seq have made quantitative transcriptome analysis of a single cell possible,
even when RNA-Seq is performed on a large number of cells in the same run [83]. Furthermore,
methods that integrate DNA whole exome sequencing (DNA-WES), or Chip-Seq, with RNA-Seq have
allowed increased mutation detection performance [49,84,85]. Finally, an in situ method of RNA-Seq
has also been developed for preserved tissue sections or cell samples [86].

RNA-Seq offers several advantages compared with other transcriptomics methods [59,87],
providing high-throughput solutions for the construction of single-base resolution expression profiles
with low background noise and a low amount of required starting RNA. Furthermore, it can generate
millions of reads in a single run. Nevertheless, few studies used the RNA-Seq technology in
combination with radiomic technologies (MRI) to address clinical issue, are reported in Table 1.
Indeed, although RNA-Seq provides results that are superior to microarray analysis, in terms of
sensitivity, specificity, and abundance estimation, microarrays are still used more than RNA-Seq. This
is probably due to costs, run time, and the large volume of data, that make it necessary to dedicate
platforms to data storage (Big Data). In light of this, although RNA-Seq is promising, technological
improvements for reducing costs, improving data processing/storage, and gold standards for analyses
are necessary to best use this powerful platform in research laboratories and clinics.
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2.2.3. Immunohistochemistry

The utility of the immunohistochemistry (IHC) technique for the improvement of microscopic
diagnosis of neoplasia is known. This method aims to characterize cellular or tissue constituents
for example by identifying therapeutic targets (markers) for cancer by taking advantage of
antigen-antibodies interactions. This method expects different steps: Deparaffinization of tissue
sections, quenching of endogenous enzymes to avoid false positive results, antigen retrieval, blocking of
nonspecific binding sites, binding primary antibodies, binding with biotinylated secondary antibodies,
detection by using one or several methods as peroxidases- antiperoxidase, avidin biotin conjugates,
peroxidase complexes, or by using a polymer-labelling two-step method, addition of chromogen
substrate, counterstaining, dehydrating, and cover slipping the slide. Advantages of these methods
include protein localization and distribution, applicable for different sizes of tissue biopsies, and
fixed tissues and validation of other high-throughput studies (DNA microarray). Nevertheless,
these methods show some limited ability regarding the detection of protein modifications and
quantifications [88].

2.3. Radiogenomic Data Analysis

Once both radiomic and genomic features are extracted for each subject, radiogenomic analysis are
performed on a population dataset, including the clinical outcome related to each sample. A prediction
study is aimed to forecast either an overall or progression-free survival or response to a particular
treatment [89]. In addition, prediction studies are needed to recognize a class of disease or to predict
genotype from imaging phenotype and vice-versa [90]. A simple radiogenomic correlation study,
by contrast, can be performed investigating the mutual statistical relationship between radiomic and
genomic features for a given disease, regardless the clinical outcome [91].

Considering the very large dimensionality of the feature space, especially when dealing with
multimodal imaging, advanced algorithms that rank features by their importance for a given disease
outcome are often essential to reduce over fitting, increase reliability, and address the curse of
dimensionality [92]. The latter, which refers to a crucial aspect in radiogenomic data analysis, can be
roughly summarized as the requirement of higher sample sizes as the number of the features increase.

Feature selection can be performed as a preparatory step (filtering approach) or can be embedded
within the classification or regression procedures, identifying a sparse set of features that can be used
to train highly-accurate predictors of individualized outcomes. In References [93,94] features were
ranked and selected on a test-retest reproducibility basis before proceeding with a correlation analysis;
redundancy was avoided by first eliminating highly-correlated features [95]; see Reference [96]
for a comprehensive description and evaluation of the most popular feature filtering methods.
As an instance of embedded feature selection, the work in Reference [97] employed a LASSO
regularization [98] within a logistic regression to assess the predictive power of each feature.

Since the domain of each feature can be different, data normalization strategies should be
considered on the basis of statistical analysis methods; a well-established choice is the use of a
z-score transformation [96], but, as previously demonstrated [36], radiomic data can be employed
without any normalization processing.

Once each sample is arranged into a suitable feature space, data can be classified in a supervised
or unsupervised manner. Unsupervised methods, such as clustering and principal component
analysis, are data-driven methods aimed at discovering clusters, representing different radiogenomic
phenotypes, within the feature space [99]. Supervised methods, such as machine learning approaches,
involves a prior labelling of data containing the clinical outcome (e.g., overall survive/not survive;
responder/non-responder) and a training step to infer a model underlying the data, which can be
used for predicting the labels of unseen observations. Classifiers, such as support vector machines
(SVM), span different areas of computer and information science; see Reference [96] for a description of
well-established methods employed in radiogenomics. Alongside typical machine learning methods,
the family of deep learning algorithms is gaining increasing interest as robust classifiers for the
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radiogenomic domain [100,101]. It is worth mentioning that machine learning and correlation analyses
do not solve the problem of causal inference in observational data sets [4]. Therefore, conventional
radiogenomic methods carry out a correlative association of radiomic signatures with gene signatures.
Alternatively, a recent study [102] proposed a preclinical radiogenomic methodology to demonstrate
that image features are causally related to genetic factors.

Figure 3 shows the whole radiogenomics pipeline, in light of methodological issues described
throughout this section.Int. J. Mol. Sci. 2017, 18, 805 12 of 27 

 
Figure 3. The figure shows a general workflow for radiogenomic study. The first step includes data 
acquisition (clinical information, imaging and genomic data). Subsequently, data are normalized and 
underwent an integrative analysis to characterize each radiomic feature and identify specific 
underlying molecular functions. The overall flow, here schematically depicted, could represent a 
novel integrated approach for cancer diagnosis and prognosis. 

3. Discussion 

In the last five years there has been a significant increase of studies that use the radiogenomic 
approach to obtain clinically-significant information to be translated into the clinical practice. As 
outlined in Figure 3, there are multiplicity of methods involved in radiogenomics, as well as wide 
variety of the possible outcome of a radiogenomic study. 

Table 1 summarizes most of the relevant oncological studies in radiogenomics, crossing imaging 
and biological data. We searched multiple electronic databases for original research studies including 
the following words: “radiogenomics and breast cancer”, “radiogenomics and glioblastoma”, 
“radiogenomics and lung cancer”, “radiogenomics and kidney cancer”, “radiogenomics and renal 
cancer”, “radiogenomics and hepatic carcinoma” “radiogenomics and prostate cancer”. We excluded 
studies that associated the term radiogenomics to the radiation therapy response. The studies are 
classified according to the neoplastic disease and for each of them the methodological approach, as 
introduced in the previous sections, and the performed statistical analysis are pointed. In the next 
sections, the main results of the application of the radiogenomic approach as well as the techniques 
employed will be deeply discussed for each oncological disease.

Figure 3. The figure shows a general workflow for radiogenomic study. The first step includes data
acquisition (clinical information, imaging and genomic data). Subsequently, data are normalized
and underwent an integrative analysis to characterize each radiomic feature and identify specific
underlying molecular functions. The overall flow, here schematically depicted, could represent a novel
integrated approach for cancer diagnosis and prognosis.

3. Discussion

In the last five years there has been a significant increase of studies that use the radiogenomic
approach to obtain clinically-significant information to be translated into the clinical practice.
As outlined in Figure 3, there are multiplicity of methods involved in radiogenomics, as well as
wide variety of the possible outcome of a radiogenomic study.

Table 1 summarizes most of the relevant oncological studies in radiogenomics, crossing imaging
and biological data. We searched multiple electronic databases for original research studies including
the following words: “radiogenomics and breast cancer”, “radiogenomics and glioblastoma”,
“radiogenomics and lung cancer”, “radiogenomics and kidney cancer”, “radiogenomics and renal
cancer”, “radiogenomics and hepatic carcinoma” “radiogenomics and prostate cancer”. We excluded
studies that associated the term radiogenomics to the radiation therapy response. The studies are
classified according to the neoplastic disease and for each of them the methodological approach,
as introduced in the previous sections, and the performed statistical analysis are pointed. In the next
sections, the main results of the application of the radiogenomic approach as well as the techniques
employed will be deeply discussed for each oncological disease.
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Table 1. Radiogenomic studies published in oncology.

Tumour Type Rationale of
the Study

Number
of Sample Imaging Data Imaging Features Segmentation Genomic Features Statistical Analysis Ref.

BREAST CANCER
(BC)

Correlation 275 MRI (T1WI,
T2WI, DCE)

Shape-based features, second- and
higher-order statistics, kinetic parameters Semi-automated IHC Binary multivariate logistic regression

model and univariate models [103]

Prediction 91 MRI (DCE) Shape-based features, second-order
statistics, kinetic parameters Semi-automated RNA Seq Microarray

(TCGA)
Logistic regression with LASSO
regularization and ROC analysis [97]

Correlation 48 MRI (T1WI,
T2WI, DCE)

Shape-based features, second-order
statistics, kinetic parameters Semi-automated IHC Multivariate logistic regression models [104]

Correlation 221 MRI (T1WI,
T2WI, DCE) Semantic features Manual IHC Wilcoxon test and Fisher’s tests [105]

Correlation
Prediction 95 MRI (T1WI,

T2WI, DCE)
Shape-based features, first- and

second-order statistics Manual IHC Microarray Multiple linear regression analysis and
Spearman’s rank correlation [106]

Correlation 178 MRI (T1WI,
T2WI, DCE)

Shape-based features, first- and
second-order statistics Manual IHC

Multiclass support vector machines
with the a leave-one-out

cross-validation approach
[107]

Correlation 176 MRI (T2WI DCE) Semantic features Manual IHC Chi-squared and Fisher’s tests [108]

Correlation 353 MRI (T1WI, DCE) Semantic features Manual Microarray Spearman rank-correlation [109]

Correlation 109 MRI (T1WI, DCE) Shape-based features, first- and
second-order statistics, kinetic parameters Automated RNA Seq Cox regression analysis [110]

Correlation 92 MRI (T2WI,
DWI, DCE) Semantic features, ADC Manual IHC Mann–Whitney U and

Kruskal–Wallis H tests [111]

Correlation 115 MRI (T1WI, T2WI,
DWI, DCE) ADC Manual IHC Mann–Whitney U and

Kruskal–Wallis H tests [112]

Prediction 50 MRI (T1WI,
T2WI, DCE) Semantic features Manual IHC Student’s unpaired t-test, one-way

ANOVA, Chi-squared and Fisher’s test [113]

Correlation 282 MRI (T1WI,
T2WI, DCE) Shape-based features Manual IHC Multiple linear regression analysis [114]

Prediction 96 MRI (T1WI, T2WI,
DWI, DCE) Shape-based features, ADC Manual IHC Multivariate logistic

regression analysis [115]

Prediction 214
MRI (T1WI, T2WI,

DWI, DCE)
PET/CT

ADC, SUV Manual IHC Mann–Whitney U and
Kruskal–Wallis H tests [116]

Correlation 103 PET/CT SUV Manual IHC Chi-squared test, Fisher’s and
Wilcoxon tests [117]

Correlation 552 PET/CT SUV Manual IHC Univariate and multiple linear
regression analysis [118]
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Table 1. Cont.

Tumour Type Rationale of
the Study

Number
of Sample Imaging Data Imaging Features Segmentation Genomic Features Statistical Analysis Ref.

BREAST CANCER
(BC)

Correlation 82 PET/CT SUV Manual IHC Chi-squared test, Fisher’s and Mann
Whitney tests [119]

Correlation 91 MRI (DCE) Shape-based features, second-order
statistics, kinetic parameters Semi-automated Microarray (TGCA) Regression and clustering analysis [91]

Correlation 228 MRI (T2WI, DCE) Kinetic parameters Semi-automated IHC Kruskal–Wallis H test [120]

Prediction 36 MRI (DCE) Kinetic parameters Manual IHC Microarray
Wilcoxon test, Spearman’s

rank correlation, and
Kruskal–Wallis H test

[121]

Correlation 36 PET SUV Manual IHC Microarray
Two-way unsupervised hierarchic

clustering and Spearman’s rank
correlation

[122]

Correlation 18 PET SUV Manual Microarray Rank-rank hypergeometric overlap [123]

GLIOBLASTOMA
(GBM)

Correlation
Prediction 25 MRI Semantic features Manual Microarray Correlation analysis [124]

Correlation 78 MRI-FLAIR, T1-c Size, volume Automated TCGA Pathways genomic analysis [125]

Correlation 23 MRI (T1-c, DSC) Semantic features Manual Microarray (GSEA) Correlation analysis [126]

Correlation
Prediction 76 MRI (TCIA) MRI

(T1-c, FLAIR) Semantic features Semi-automated Microarray (TCGA) Student’s t-test ,ROC AUC analysis [127]

Correlation
Prediction 92 MRI (TCIA) Semantic features Manual Microarray (TCGA) Hierarchical clustering and

survival analysis [128]

Correlation 48 MRI anatomical Second-order statistics NA CGH array exome
sequencing

Multivariate predictive
decision-tree models [129]

Correlation
Prediction 55 MRI (TCIA) Semantic features Manual Microarray (TCGA) Cox proportional hazards modeling

and correlation analysis [130]

Correlation 21 MRI (DSC) Mean values Manual Microarray Cox regression analysis [131]

Correlation 152 MRI (DWI,DSC,
SWI,T1WI,T2W2) First-order statistics, Semantic features Manual Microarray Hierarchical clustering [132]

Correlation 13 MRI (DWI, DSC) Mean values Manual Microarray Correlation analysis [133]

Correlation
Prediction 52 MRI (T1-c,DSC) Clinical scores NA Microarray Univariate Cox proportional

hazard models [134]

Prediction 78 MRI (T1-c, DSC) Semantic features Manual Microarray (TGCA) Proportional Hazards Model [135]

Prediction 71 MRI Clinical scores NA Microarray Multivariate Cox proportional
hazard models [136]

Prediction 104 MRI (T1, T2 CE) Semantic features Manual Microarray (TGCA) Univariate proportional
hazards regression [137]
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Table 1. Cont.

Tumour Type Rationale of
the Study

Number
of Sample Imaging Data Imaging Features Segmentation Genomic Features Statistical Analysis Ref.

GLIOBLASTOMA
(GBM)

Correlation 18 perfusion CT Perfusion parameters Manual Microarray (TGCA) Correlation analysis [138]

Correlation 46 MRI (DCE, FLAIR) Semantic features Manual Microarray Kruskal – Wallis H test [139]

Prediction 68 MRI (DCE, DWI,
anatomy ) Semantic features Manual Microarray (TGCA) Univariate Cox Regression models [140]

Correlation 27 MRS Metabolite concentration Manual IHC, PCR Correlation analysis [141]

Correlation 26 MRI (DCE, DWI,
DSC, MRS) Semantic features Manual IHC Correlation analysis [142]

Prediction 108 MRI (DCE, DWI) Semantic features Manual Microarray (TGCA) NA [143]

LUNG

Prediction 186 CT Semantic features Manual PCR Univariate analysis and multivariate
decision tree models [144]

Prediction 138 PET/CT Shape-based feature, second-order
statistics, semantic features Manual Microarray Generalized linear regression with

LASSO regularization [145]

Correlation
Prediction 355 PET/CT SUV Manual Microarray Student’s t-test, Wilcoxon test,

Chi-squared and Fisher’s test [146]

Prediction 422 CT Shape-based features, first-, second- and
higher-order statistics Manual Microarray Intraclass correlation coefficient,

Friedman test [36]

KIDNEY

Prediction 70 CT First-order statistics, semantic features Manual Microarray Multivariate linear regression [99]

Correlation 233 CT Shape-based features, first-order statistics,
Semantic features Manual DNA-Seq (TCGA) Fisher’s tests [147]

Correlation 103 CT and MRI Shape-based features, first-order statistics,
Semantic features Manual Microarray (TCGA) Pearson’s test and Mann–Whitney

U test [148]

Prediction 58 CT (TCIA) Shape-based features, first- and
second-order statistics Manual Microarray (TCGA) Support vector machine classifier [149]

LIVER (HCC)

Correlation 30 DCE-CT Semantic features NA Microarray Correlation analysis [94]

Correlation
Prediction 47 three-phase contrast

enhanced CT Semantic features NA Microarray Bayesian models [150]

Correlation 77
Liver-specific

contrast
enhanced-MRI

Clinical scores NA IHC Microarray Student’s t-test [151]

PROSTATE

Correlation 45 MRI (T1WI, T2WI,
DWI, DCE)

First-order statistics, kinetic parameters,
ADC Manual IHC Spearman’s rank

correlation coefficient [152]

Prediction 17 MRI (T2WI, DWI,
DCE)

First-order statistics, kinetic parameters,
ADC Semi-automated Microarray Pearson’s correlation, two-way

hierarchical clustering [153]

ADC: apparent diffusion coefficient; DCE: dynamic contrast-enhanced; DSC: dynamic susceptability contrast; DWI: diffusion weithed imaging; IHC: immunohistochemistry; MRS: Magnetic
Resonance Spectroscopy; NA: not applicable; T1WI: T1 weighed imaging; T2WI: T2 weighed imaging; T1-c: T1 weighed post contrast.
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3.1. Radiogenomics in Breast Cancer

The election imaging method for Breast Cancer (BC) was MRI (78%) [91,97,103–116,120,121].
About 78% of the BC published papers were correlation studies [91,103–112,114,117–120,122,123] and
the most used genomic data was IHC results (65%) [103–105,107,108,111–120]. However, although
IHC is routinely applied in the clinical practice, it is not an “omic” approach, remaining the elective
method to determine the BC molecular subtypes (Luminal A, Luminal B, basal-like, and triple-negative
(TNBC)), useful for therapeutic indications [154].

The first study, dates back to 2009, in which authors found a significant correlation between
high histological grade, unifocal lesion, mass lesion type, smooth mass margin, rim enhancement,
persistent enhancement pattern, and very high intratumoural signal intensity on T2W MR images
with the triple-negative subtype [108]. This finding was confirmed by Sung and colleagues [105].
Cipolla et al. and Molinari et al. reported a significant correlation between ADC values with tumour
aggressiveness in terms of grade and the Ki67proliferation index [111,112]. In addition, the Ki67 index
and ER score correlated with the roundness of tumour, although in an independent manner [114].
Only three studies correlated IHC results and PET/CT imaging features, reporting an association
between FDG uptake and Ki67 [117,119], FDG uptake and tumour size in TNBC [117] and higher
SUVmax with triple-negative and HER2-positive tumours [118].Three works focused on prediction
studies combining IHC with MRI [113,115,116] or with PET [116].

Few works focused on correlation (21%) and predictive (12.5%) studies performed by the use of
genomic data (DNA microarray or RNA Seq) in combination with MRI [91,97,106,109,110,121] and PET
features [122,123]. According to the primary goal of radiogenomics, as described in previous sections,
these studies clearly fulfill the radiogenomics concept. Specifically, Yamamoto et al. evidenced that
contrast-enhanced MRI systematically correlated with complex transcriptome profiles [109] paving the
way for the generation of imaging biomarkers correlated with individual patient biology. Recently,
Sutton et al. evidenced in patients with invasive ductal carcinoma that MR imaging-derived features
were correlated with the Oncotype Dx RS scoresbased on the expression levels of 21 BC-associated
genes [106]. The ODx score correlated with the magnitude of chemotherapy, as well as the 10 years
risk of distance metastases, representing a possible prognostic and predictive surrogate genomic-based
test. The usefulness of in-depth imaging analysis of BC vascularity by MRI, using the Dynamic
Contrast-Enhanced (DCE) parameters, has been witnessed in a recent study by Mehta et al. [121].
The authors found that DCE MRI could provide criteria for patient stratification in the case of an
anti-angiogenesis trial. Indeed, patients with a high Ktrans value at diagnosis disclosed a higher
complexity in terms of proliferating cancer genes, as well as increased vasculature. Based on these
findings the authors postulated that DCE-MRI could evidence, in a non-invasive way, candidates that
could benefit from anti-angiogenic therapy. Future studies are needed to evaluate, in large BC patient
cohort, the clinical usefulness of the MRI-derived imaging biomarkers. In this context it is important
to consider a recent paper where, for 91 breast-invasive carcinomas, it was possible to integrate The
Cancer Genome Atlas (TCGA) data with the MRI data from The Cancer Imaging Archive (TCIA) [91].
In this work quantitative MRI phenotypes, such as tumour size, shape, margin, and blood flow kinetics,
were associated with their corresponding molecular profile, including DNA mutation, gene, miRNA,
and protein expression, as well as copy number variation. Only two studies used RNA-Seq methods
in combination with MRI features [97,110]. The first one, a predictive study, analyzed the genomic
and radiomic data of 91 BC patients from TCGA and TCIA in order to predict clinical outcomes [97].
The work of Yamamoto, instead, was a correlation study which introduced, for the first time, the use
of long non-coding RNA (lncRNA) as genomic data combined with MRI features. A radiogenomic
analysis allowed identifying eight lncRNAs, three of which were unnamed. The pathway analysis
showed that known lncRNAs molecules were involved in metastasis, cell cycle, cell death and survival,
cellular development, and cellular growth and proliferation. In particular, higher levels of lncRNAs
HOTAIR and LINC00511 were found in tumour samples of invasive ductal carcinoma than in normal
breast tissue with a significant positive correlation with texture features [110].
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3.2. Radiogenomics in Glioblastoma Multiforme

From Table 1, the wide use of semantic features in GBM appears obvious; these are preferred to
descriptive features, more suitable for radiomic analyses, due to their high level of standardization. It is
worth to mention that the majority of GMB radiogenomic study exploits the intrinsic multimodality
of MR, considering both anatomical and functional features. Therefore, the radiogenomic approach
has proven successful in determining the MRI phenotype associated with genetic alterations detected
via DNA microarray analysis in GBM. The first study dates back to 2007. In this study, the authors
evaluated Vascular Endothelial Growth Factor (VEGF) and related gene expression in 71 malignant
GBM tissues in order to analyze their relationship with edema and survival. By using DNA microarray
and MRI methods, they found that VEGF expression was predictive of survival with tumours with
little or no edema in GBM-affected patients [136]. Subsequently, Diehn and colleagues combined
neuroimaging (MRI) and DNA microarray analysis in a correlation/predictive study to create a
multidimensional map of gene expression patterns, which provided clinically relevant insights into
tumour biology. This study offered a potential strategy for noninvasively selecting patients who may
be candidates for individualized therapies [124]. In the same year, in a similar study, the relationship
between gene expression and MRI enhancement in GBM was evaluated. Results showed that gene
expression was able to discriminate magnetic resonance imaging features in incompletely enhancing
(IE) and completely enhancing (CE) tumours and to predict patient survival [134]. In order to increase
the use of non-invasive imaging as an emerging field of treatment response and personalized medicine,
over the years, other works have been published in the field of the radiogenomics for the study
of brain tumours, through the analysis of gene expression and DNA copy number variations in
tumour tissues. Most of these are correlation studies that were performed using DNA microarray and
MRI imaging modalities [125,126,129,131–133,139,141]. On the other hand, a plethora of studies
investigated the possible predictive value of the radiogenomics approach, showing promising
results [127,128,130,135,137,140,143]. The only study that used the CT modality associated with a
DNA microarray assay showed a correlation between anti- and pro-angiogenic genes with tumour
perfusion parameters [138]. In addition, recently, Demerath and colleagues used MRI and the less
innovative molecular technique of IHC, to focus their study on the use of mesoscopic measures as
surrogate markers for specific gene expression patterns in GBM [142].

3.3. Radiogenomics in Lung Cancer

Most radiogenomics works applied to lung cancer are predictive study. One of the first works,
dating back to 2012, was focused on CT and PET images features in patients with non-small cell lung
cancer (NSCLC) [145]. The authors explored the relationship between differential genome-wide
expression using DNA microarrays and different FDG uptake levels in NSCLC, finding a gene
expression signature associated with prognostically-relevant FDG uptake features. In particular,
they exploited public gene expression microarray data and 180 image features from CT and PET/CT,
identifying 243 statistically-significant pairwise correlations between image features and metagenes
to assess prognosis and therapeutic response [145]. Subsequently, in a large cohort of patients with
diagnosed NSCLC, Nair and colleagues found that Nuclear factor-κB (NF-κB) IHC expression was
related to tumour metabolism, measured using FDG-PET, and prognosis provided a methodology for
studying tumour biology using computational approaches [146]. Four hundred and forty quantitative
image features, describing tumour phenotype characteristics (tumour image intensity, shape, texture
and multiscale wavelet), were defined, and Aerts et al. compared these radiomic signatures with
gene-expression profiles using gene-set enrichment analysis (GSEA) [36]. They found that a large
number of radiomic features had prognostic power in lung and head-and-neck cancer patients, many
of which were not previously identified as significant. Indeed, this radiogenomic approach revealed
that a prognostic radiomic signature, capturing intratumour heterogeneity, was associated with
gene-expression patterns, providing an opportunity to improve decision-support in cancer treatment
at low cost. Recently, whether epidermal growth factor receptor (EGFR) and KRAS mutation status
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can be predicted using CT imaging data, as been investigated [144]. In this study, the authors found a
statistically-significant model for predicting EGFR, but not for KRAS mutations, showing the potential
of quantitative imaging to predict molecular properties in a non-invasive manner.

3.4. Radiogenomics in Kidney Cancer

Few works using radiogenomic models have been published in the field of kidney carcinoma
since 2014. These preliminary studies revealed the association between CT features of clear-cell renal
cell carcinoma (ccRCC) with somatic mutations in several genes detected by PCR amplification and
DNA sequencing. These genes (VHL, PBRMI, SETD2, KDM5C, BAP1 and MUC4) were known to
be related to advanced grade, stage, and reduced survival prognosis [147,148]. Study published by
Karlo et al. was upgraded by the work of Jamishidi et al., were the authors constructed a complex,
multi-feature imaging predictor by using a multi-gene predictive gene expression signature and 28 CT
images [148].Through these discoveries, the authors identified imaging features that were potentially
predictive of outcomes.

3.5. Radiogenomics in Prostate Cancer

Several studies have addressed the utility of MRI to determine the aggressiveness of prostate
cancer using ADC, DCE, and Gleason score parameters. To our knowledge, the first studies in prostate
cancer, investigating the associations between MRI parameters with the genomic markers, were
published in 2016 [152,153]. McCann and coauthors studied the correlation between quantitative
imaging features of multi-parametric MRI and phosphatase and tensin homolog (PTEN) protein
expression by IHC analysis. They found a significant, although weak, associations between the
extracellular space and plasma (Kep) and the Gleason score with PTEN expression, claiming that
the use of this model can improve the risk assessment of patients with prostate cancer. The study
performed by Stoyanova et al. showed a correlation between radiogenomic parameters and prostate
cancer, exploiting MRI-guided biopsy. They identified radiomic features in normal-appearing tissues
associated with high-risk gene expression profiles, as well as radiomic biomarkers in cancer tissues
associated with genes of adverse outcomes. Gene expression profiles of tissue specimens were
determined using DNA microarray.

3.6. Radiogenomics in Liver Cancer

By using an integrated imaging-genomic approach, the first study on liver cancer dates back to
2007. The aim of that work was to determine whether conventional contrast-enhanced CT could be
used in identifying imaging phenotypes associated with a doxorubicin drug response gene expression
program in hepatocellular carcinoma (HCC) [94]. They found that tumour margins in arterial phase
images showed significant correlation with (i) the doxorubicin-response gene expression program;
(ii) HCC venous invasion; and (iii) tumour stage. Furthermore, tumours with higher tumour margin
scores were associated with the doxorubicin resistance transcriptional program, and had a greater
prevalence of venous invasion a worse stage. In the same year, a study was published showing that 28
dynamic imaging traits in CT correlated with gene expression programs of primary human liver cancer.
Specifically, the combinations of imaging features were able to reconstruct 78% of the global gene
expression profiles, revealing cell proliferation, liver synthetic function, and patient prognosis [150].
Recently, Miura and coauthors aimed at evaluating the clinicopathological and biological properties of
high HCC-correlating ethoxybenzyl-magnetic resonance imaging hyperintensity with gene expression
signatures [151]. They identified 53 up-regulated and 71 down-regulated probe sets in the high-HCC
group compared with the low-HCC group, showing that clinicopathological and global gene expression
analyses revealed low-grade malignancies in high HCCs compared with low HCCs.
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3.7. General Considerations

Imaging features listed in Table 1 show that the majority of studies are based on a qualitative
and supervised analyses of imaging data, therefore, partially exploiting the full potential of radiomics
features as described above. Although the NGS approaches could offer high capabilities for in-depth
characterization of tumour biology, most of the radiogenomic studies integrate genomic features by
using microarray to assess differential changes in gene expression levels. In fact, the application of this
methodology in radiogenomic studies is limited due to the lack of standard references for analysis,
it is expensive in terms of cost and time, and Big Data are produced, which require a dedicate storage
platform [155]. In addition, Table 1 shows a wide heterogeneity of methods for features generation,
as well as the statistical analyses employed, supporting that radiogenomics is still an elusive concept,
wherein the standardization of procedures should be addressed.

In this context, an interesting scientific debate begun about the potential utility of radiogenomics
compared to separated imaging and genomics approaches in clinical practice [8,9]. One advantage of
the integrated approach arises from the limitations of currently available datasets, exploiting its ability
to deal with limited and incomplete data to generate meaningful information [8]. Scientific studies
regarding the relationship between a few imaging features and a restricted number of gene expressions
should not be considered as a pure radiogenomics approach. Radiogenomic studies must combine
a large number of quantitative imaging features with a massive genomic signature using computer
algorithms. In addition, both radiomics and genomics are needful for the clinical decision making and
neither one can replace the other, but their potential can be increased through the interpretation of
the two methods to improve the management of cancer patients. Furthermore, the study of mutual
relationships between imaging and genomics can provide novel insights for the understanding of
neoplastic transformation.

The large number of measured variables can lead to a “fishing expedition”; as discussed in
Reference [81], such a poor practice can be avoided with appropriate prior hypotheses about the study.
From a statistical point of view, multiple comparisons should be controlled by correcting the accepted
criteria for significance, such as the well-known Bonferroni P value correction or the False Discovery
Rate (FDR) [118]. In order to translate radiogenomic research to the clinical practice, reproducibility
and reliability of the measures and procedures are crucial issues to take into account, requiring the
validation on an independent test-retest data set. In addition, a large cohort study gives power to
the method validation but, to date, in the published studies an acceptable sample size is lacking.
Although genomics has been demonstrated to be a robust analytical tool, the performance of radiomic
measurements is still under investigation. Parmaret et al. have investigated the reproducibility of
image segmentation and subsequent radiomic feature extraction, showing the better performance of
semi-automated techniques [23]. In a recent study Zhao et al. [119] showed that radiomic features are
reproducible over a wide range of imaging settings, but they suggest awareness of the importance of
properly setting imaging acquisition parameters.

4. Conclusions

As tissue imaging can correlate with tissue pathology, radiomics aims at creating imaging
biomarkers that can identify the genomics of a disease, especially cancer, without the need for a
biopsy. Integration with genomic data in the last twenty years, including DNA microarrays and
RNA-Seq, as allowed the investigation of the relationship between cellular genomics and tissue-scale
imaging. The simultaneous use of these apparently different methods to answer a clinical question is
called radiogenomics, and is aimed at correlating cancer imaging and gene features.

The increasing amount of imaging and genomic data identified in several types of cancer is
encouraging an integrated approach that combines phenotype and genetics for advancing tumour
characterization and precision medicine. To this aim, radiogenomics represents a powerful strategy,
potentially enabling clinical decision tools to enhance diagnostic accuracy, as well as to measure the
response to drug or radiation therapy, leading to an overall improvement of patient management.
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However, as with all new diagnostic approaches, it is still in the early phases, limiting its ability to
be used to improve cancer patient management requiring standardization of imaging and genomic
protocols, image acquisition, and post-processing. The next challenge of radiogenomics will be to
identify specific signatures of intra- and inter-tumour heterogeneity in a proper anatomic context.
In this way, the radiogenomic analysis of cancer heterogeneity could offer validity by adding and aiding
in the assessment of tumour aggressiveness in a variety of clinical settings and oncological outcomes.
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