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 Abstract: Background: The HIV epidemic is increasing among Men who have Sex with Men 

(MSM) and the risk for AIDS defining cancer (ADC) is higher among them. 

Objective: To examine the effect of MSM and CD4+ count on time to cancer AIDS (ADC) and non-

cancer AIDS in competing risks setting in the HAART era. 

Method: Using Ontario HIV Treatment Network Cohort Study data, HIV-positive adults diagnosed 

between January 1997 and October 2012 having baseline CD4+ counts ≤ 500 cells/mm
3
 were eval-

uated. Two survival outcomes, cancer AIDS and non-cancer AIDS, were treated as competing risks. 

Kaplan-Meier analysis, Cox cause-specific hazards (CSH) model and joint modeling of longitudinal 

and survival outcomes were used. 

Results: Among the 822 participants, 657 (79.9%) were males; 686 (83.5%) received anti-retroviral 

(ARV) ever. Regarding risk category, the majority (58.5%) were men who have Sex with men 

(MSM). Mean age was 37.4 years (SD = 10.3). In the multivariate Cox CSH models, MSM were 

not associated with cancer AIDS but with non-cancer AIDS [HR = 2.92; P = 0.055, HR = 0.54; P = 

0.0009, respectively]. However, in joint models of longitudinal and survival outcomes, MSM were 

associated with cancer AIDS but not with non-cancer AIDS [HR = 3.86; P = 0.013, HR = 0.73; P = 

0.10]. CD4+ count, age, ARV ever were associated with both events in the joint models. 

Conclusion: This study demonstrates the importance of considering competing risks, and time-

dependent biomarker in the survival model. MSM have higher hazard for cancer AIDS. CD4+ count 

is associated with both survival outcomes.  
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1. INTRODUCTION 

In the highly active anti-retroviral therapy (HAART) era, 
the HIV epidemic is expanding among individuals in the 
HIV risk category men who have sex with men (MSM); this 
has been recognized in high-income countries, including 
Australia, France, the United Kingdom, and the United 
States [1-3]. In Canada, the proportion of HIV cases that are 
categorized as MSM has decreased over the years but it still 
represents the largest group of HIV infected adults (≥ 15 
years old) [4]. In 2016, 44.1% of adult HIV cases with a 
known exposure category were MSM [4].

 

HIV-infected people with weakened immune systems are 
vulnerable to opportunistic infections (OIs) [5]. More specif-
ically, HIV-infected persons who have CD4+ count less than 
500 are at higher risk for OIs [5]. The Centre for Disease 
Control and Prevention (CDC) developed a list of OIs  
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that are considered as AIDS-defining conditions (ADC) or 
AIDS-defining illness (ADI) [6]. Kaposi’s sarcoma (KS), 
non-Hodgkin lymphoma (NHL), and cervical cancer are 
ADC based on the list. These ADC are defined as AIDS-
defining cancer or cancer-related AIDS [7-9]. 

The risk of these ADC is higher among HIV-infected in-
dividuals [10].

 

Cancer and HIV have been associated since 1981 when 
KS was identified for the first time in an immunosuppressed 
white MSM [11]. HIV-infected people with a weak immune 
system have also been diagnosed with NHL and invasive 
cervical cancer [7, 11]. Although the incidence of NHL and 
KS among HIV-infected individuals have decreased in the 
HAART era, they remain higher in HIV-infected individuals 
compared to HIV uninfected people [12, 13]. In a multi-
state, population-based study in the USA by Hernández-
Ramírez, the incidence rate of cancer-related AIDS was 
2.1/1000 person-years over the follow-up period of 1996 to 
2012 [14]. Shiels et al., in a sample of American military 
personnel or their beneficiaries, found that the risk of devel-
oping cancer-AIDS and non-cancer AIDS among HIV posi-
tive individuals in the HAART era was 2.6/1000 person-

1873-4251/18 $58.00+.00 © 2018 Bentham Science Publishers  
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years and 13.1/1000 person-years respectively [15]. By spe-
cific cancer AIDS malignancy type, Alberta HIV patients in 
the HAART era were found to have 4 cases of KS per 1000 
person-years and 2 cases of NHL per 1000 person-years, 
respectively [16]. Among HIV patients in British Columbia, 
123 of 4918 (2.5%) developed cancer AIDS when followed 
through 1996 to 2008 [17]. 

 In this study, the objective is to examine the effect of 
covariates on survival outcomes. However, survival outcome 
can be associated with time-dependent longitudinal meas-
urements/outcome which should be considered when study-
ing the effect of covariates on survival outcomes [18-22]. 
Joint modeling of longitudinal and survival outcomes con-
siders this association by modeling two outcomes simultane-
ously and provides more efficient, almost unbiased estimates 
[20, 23-26]. In joint modeling, two models are joined; a 
model for longitudinal measurements or outcome and a 
model for survival outcome. Using this approach, one can 
study the effect of covariates on the longitudinal outcome, 
the survival outcome or both. It is also possible to examine 
the effect of the longitudinal outcome on survival outcome. 

There were two survival outcomes in this study: cancer 
AIDS and, non-cancer AIDS, which are considered as com-
peting risks of each other [15, 27, 28]. Hence, we apply the 
joint modeling method with competing risks [29-35].

 

2. METHODS 

2.1. Study Population 

HAART has been widely available since 1997 [16, 36]. 
From the Ontario HIV Treatment Network Cohort Study 
(OCS), individuals whose HIV-positive year was 1997 or 
later (i.e. HAART era) and were a minimum of 15 years of 
age at diagnosis were considered in this study. OCS is an 
observational study of HIV-infected people in Ontario, Can-
ada [37, 38].

 

There were 2345 participants from the HAART era in the 
OCS. Of them, 1155 individuals had CD4+ counts available 
at baseline (within 3 months of first HIV+ date). In the cur-
rent study, ADI was used as the survival endpoint/outcome, 
which was identified by the occurrence of OIs [6]. OIs are 
relatively uncommon among people who have CD4+ counts 
> 500 cells/mm

3 
[5]. Hence, to maintain homogeneity among 

study participants in terms of immunological characteristics, 
only individuals with baseline CD4+ counts less than or 
equal to 500 cells/mm

3 
were included in the study. At base-

line, 825 individuals had CD4+ counts ≤ 500 cells/mm
3
. 

However, three of these participants had both a cancer AIDS 
and a non-cancer AIDS diagnosis made at the same visit; as 
survival analysis of completing risks requires time to first 
outcome, these subjects were excluded. Therefore, the final 
study population consisted of 822 adult individuals who 
were diagnosed between January 1997 and October 2012. 
The maximum and median follow-up times were 16 years 
and 6.2 years, respectively. A total of 16,593 CD4+ counts 
measurements were observed, with a median of 18 meas-
urements. The covariate “HIV risk category” was catego-
rized into two major groups: MSM (MSM and MSM-IDU 
[injection drug users] combined) and others. Participants’ 
demographic and clinical characteristics are presented in 
Table 1. 

2.2. Survival Endpoints 

The AIDS-defining illness either with AIDS-defining 
cancer (cancer AIDS) or another clinical AIDS-defining 
event (non-cancer AIDS) was considered as the survival 
event. As one event can change the likelihood of observing 
the other event, they were treated as event of inter-
est/competing event in this study [15, 28, 39]. When cancer 
AIDS was the main event of interest then non-cancer AIDS 
was considered as a competing risk, and vice versa. There 
were no patients with cervical cancer in our study data. 
Hence, the cancer AIDS only included patients with KS or 
NHL. All other ADI defined by the CDC [6] were consid-
ered as non-cancer AIDS. Subsequent ADI diagnoses that 
arose after the first ADI diagnosis were not considered to be 
events in this analysis. Therefore, for analysis, a patient 
could develop either cancer AIDS or non-cancer AIDS (dis-
joint first event). Time-to-event was calculated from the HIV 
diagnosis date to the date of first ADI, death, or last visit. 

2.3. Statistical Analysis 

Mean and median were reported for continuous variables. 
Number and proportion were reported for categorical varia-
bles. We used the t-test or Wilcoxon non-parametric test to 
compare continuous variables between two groups. Chi-
square test was used to compare categorical variables. Cox 
cause-specific hazard (CSH) and Kaplan-Meier analyses 
were used to perform survival analysis [40, 41]. Two surviv-
al outcomes (cancer AIDS and non-cancer AIDS) were con-
sidered as event of interest/competing risk in this study. In 
competing risks scenarios, the traditional approach to study 
the effect of a covariate on a particular cause of failure is to 
model the CSH function, generally using Cox CSH models 
[27, 42]. We applied joint modeling method to incorporate 
time-dependent outcome in the Cox CSH regression model. 

Two joint models were fitted: (i) with CD4+ counts and 
cancer AIDS, (ii) with CD4+ counts and non-cancer AIDS. 
Linear mixed effect (LME) model with random intercept and 
random slope was used to model longitudinal CD4+ counts 
[43]. 

 To normalize CD4+ counts, the square root of the CD4+ 
counts was used. For the ��� subject, the following LME 
model (also regarded as a submodel) was considered for the 
square root of the ��� CD4+ counts measurement: 

��� ���� ����������� � ������ � ������ � ������

� ������� � ��� � ��������� � ��� 

where ��� ��� indicates the square root of the ��� 
CD4+ counts measurement on the ��� individual, ��������������
��, ��������������� and ��� is the mutually independent meas-
urement errors. We used the following Cox CSH models 
(submodels): 

For cancer AIDS,  

��� � � ��� � ��� ������� � ������� � �������
� ��������
� � ��� � ��������� � �������

� ������� � ������� � �������� � ����
� ���������� � 
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For non-cancer AIDS,  

��� � � ��� � ��� ������� � ������� � �������
� ��������
� � ��� � ��������� � �������

� ������� � ������� � �������� � ����
� ���������� � 

where ��� �  and ��� � �are the unspecified baseline 
cause-specific hazards for cancer AIDS and non-cancer 
AIDS, respectively and � is the regression coefficient for the 
true CD4+ count (also regarded as association parameter 
between CD4+ counts and survival outcome). 

The JM package in R was used to fit joint models [44]. 
Other analyses were done using SAS 9.4 (SAS Institute Inc., 
Cary, NC, U.S.A.). The level of significance was set at 0.05. 

3. RESULTS 

3.1. Descriptive Analysis 

Of a total of 822 participants, 657 (79.9%) were males, 
103 (12.5%) were Hepatitis C virus-infected, and 686 
(83.5%) were exposed to anti-retroviral (ARV) medications 
at some time in their care (Table 1). The majority of partici-
pants were white (55.0%), followed by Black/African 
(19.2%). In the HIV risk category, the majority were MSM 
(MSM and MSM-IDU, 58.5%), 17.4% had previously resid-
ed in an HIV-endemic area, and 10.3% were heterosexual. 
Participants’ mean age was 37.4 years (SD = 10.3) at the 
time of HIV diagnosis. At baseline, the mean CD4+ count 
was 260 cells/mm

3
 (SD = 145) and the mean log10 viral load 

was 4.5 copies/mL (SD = 0.9). The median follow-up time 
of the study was 6.2 years (interquartile range = 7.2). Among 
822 individuals, 22(2.7%) developed cancer-related AIDS 
and 123 (15.0%) developed non-cancer AIDS. The incidence 
rate of cancer AIDS was 4.2 per 1,000 person-years [95% 
Confidence Interval (CI): (2.7, 6.3)] and the incidence rate of 
non-cancer AIDS was 23.3 per 1,000 person-years [95% CI: 
(19.5, 27.8)]. These values are similar to the findings of oth-
er studies (14-17). 

 

Table 1.  Demographics and clinical characteristics of the 

participants (N=822). 

Variable  Number (%)  

Male  657 (79.9%)  

Age at HIV positive date    

   Mean (SD)  37.4 (10.3)  

   Median (interquartile range)  37.0 (14.0)  

Race    

   Multiple race  39 (4.7%)  

   Black/African  158 (19.2%)  

   South Asian  40 (4.9%)  

   White  452 (55.0%)  

   Other  95 (11.5%)  

   Unknown  38 (4.6%)  

HIV risk category    

   Men Sex Men (MSM)  442 (53.8%)  

   MSM-Injection Drug User (IDU)  39 (4.7%)  

   IDU  61 (7.4%)  

   Clotting factor  6 (0.7%)  

   Transfusion  7 (0.9%)  

   HIV-endemic  143 (17.4%)  

   Heterosexual transmission  85 (10.3%)  

   MTC mother to child transmission  1 (0.1%)  

   Occupational  1 (0.1%)  

   NIR Non-identified risk  37 (4.5%)  

Ever Hepatitis C infection  103 (12.5%)  

Ever ARV  686 (83.5%)  

CD4+ counts (cells/mm3) at baseline    

   Mean (SD)  260 (145)  

   Median (interquartile range)  268 (240)  

Log10 HIV viral load (copies/mL) at base-

line  
  

   Mean (SD)  4.5 (0.9)  

   Median (interquartile range)  4.6 (1.1)  

Follow-up time, median (interquartile 

range)  
6.2 (7.2)  

 

3.1.1. Men Who Have Sex With Men (MSM) 

Compared with all other ethnicities, white individuals 
were significantly more likely to be MSM (33.7% vs. 70.1%; 
P < 0.0001) (Table 2). The mean baseline CD4+ count and 
Log10 HIV viral load were significantly higher for MSM 
compared to all other HIV risk categories (275 cells/mm

3
 vs. 

240 cells/mm
3
; P = 0.0008, 4.7 copies/mL vs. 4.3 copies/mL; 

P < 0.0001, respectively). The proportion of ARV exposures 
ever was not different between the two groups (P = 0.38). 
Nonetheless, the proportion of hepatitis C virus (HCV) infec-
tion ever was significantly lower among MSM (6.7% vs. 
20.8%; P < 0.0001). Median follow-up time for MSM was 
significantly higher than that of the other group (6.5 vs. 5.8; 
P = 0.025) (Table 2). 
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Table 2.  Demographic and clinical characteristics associated with MSM. 

Covariates  

HIV Risk Category 

(MSM) 

(N = 481, 58.5%)  

HIV Risk Category 

(Other) 

(N = 341, 41.5%)  

P - value  

Ethnicity (White)  70.1%  33.7%  < 0.0001a  

Age in years        

   Mean (SDd)  37.9 (10.3)  36.7 (10.3)  0.12b  

   Median (IQRe)  37.0 (13.0)  36.0 (14.0)    

Ever Hepatitis C infection  32 (6.7%)  72 (20.8%)  < 0.0001a  

Ever ARV  406 (84.4%)  280 (82.1%)  0.38a  

CD4+ count (cells/mm3) at baseline        

   Mean (SDd)  275 (142)  240 (146)  0.0008b  

   Median (IQRe)  293 (222)  240 (244)    

Log10 HIV viral load (copies/mL) at baseline        

   Mean (SDd)  4.7 (0.9)  4.3 (0.9)  < 0.0001b  

   Median (IQRe)  4.8 (1.1)  4.4 (1.0)    

Follow-up time, median (IQR) 6.5 (6.1) 5.8 (8.0) 0.025c

aChi-square test; bT-test; cWilcoxon test; dStandard deviation; eInterquartile range 

 

Fig. (1). Kaplan-Meier survival plot to compare time to cancer AIDS between MSM and Other. 

 
3.2. Kaplan-Meier Analysis 

In the Kaplan-Meier analysis for the event of cancer 
AIDS, the time to cancer AIDS was significantly different 
between the two HIV risk categories (MSM and other) (Fig. 
1). Ps for Log-Rank and Wilcoxon tests were 0.032 and 
0.047, respectively. Compared to MSM, the other risk group 
had better survival for cancer AIDS. 

The Kaplan-Meier survival curves for the length of time 
after HIV infection until the occurrence of non-cancer AIDS 

are presented in Fig. (2). There was a significant difference 
in survival times between MSM and other risk groups. Ps for 
Log-Rank and Wilcoxon tests were 0.0004 and 0.0007, re-
spectively. For non-cancer AIDS, MSM had better survival 
compared to the other risk group. 

3.3. Cox Cause-Specific Hazards (CSH) Model 

In the univariable cause-specific hazards analysis, MSM 
had significantly higher hazards for cancer AIDS but signifi-
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Fig. (2). Kaplan-Meier survival plot to compare time to non-cancer AIDS between MSM and Other. 

 

Table 3.  Univariable Cox cause-specific hazards model. 

 Event = Cancer AIDS   Event = Non-cancer AIDS   

Covariates  Estimate (SE
a
)  HR

b
 (95% CI

c
)  P-value  Estimate (SE

a
)  HR

b
 (95% CI

c
)  P-value  

MSM  1.12 (0.55)  3.07 (1.04, 9.06)  0.042  -0.63 (0.18)  0.53 (0.37, 0.76)  0.0005  

Age at diagnosis  0.05 (0.02)  1.05 (1.02, 1.09)  0.005  0.01 (0.01)  1.01 (1.00, 1.03)  0.15  

Gender (Male)d        -0.62 (0.20)  0.54 (0.37, 0.79)  0.001  

White ethnicity  0.53 (0.46)  1.70 (0.69, 4.16)  0.24  -0.29 (0.18)  0.75 (0.53, 1.07)  0.11  

Ever ARV  -1.92 (0.43)  0.15 (0.06, 0.34)  <0.0001  -1.98 (0.18)  0.14 (0.10, 0.20)  <0.0001  

Ever Hepatitis C in-

fection  
-1.12 (1.02)  0.33 (0.04, 2.42)  0.27  0.09 (0.26)  1.09 (0.66, 1.83)  0.73  

aStandard error; bHazards ratio; cConfidence interval; dUnable to estimate HR for cancer AIDS as no female participants had cancer AIDS 

 
cantly lower hazards for non-cancer AIDS compared to other 
HIV risk group [HR = 3.07; P = 0.042, HR = 0.53; P = 
0.0005] (Table 3). Older people had higher hazards for can-
cer AIDS. Age was not associated with noncancer AIDS. We 
were not able to estimate the effect of sex for cancer AIDS 
as no female participants had this outcome. Males had lower 
hazards for non-cancer AIDS. Individuals with ever use of 
ARV had significantly lower risk for both events. Ethnicity 
and hepatitis C infection were not associated with either of 
the events (Table 3). 

Covariates MSM, age, ever ARV, and ever Hep C infec-
tion were included in the multivariate Cox CSH models. 
Ethnicity was not included as it was highly correlated with 
MSM. In the multivariate CSH model for cancer AIDS, age, 
ever ARV were significant, but MSM was not (Table 4). 
MSM was still significant in the multivariate model for non-
cancer AIDS [HR = 0.54; P = 0.0009] (Table 4). 

3.4. Joint Model 

MSM, age, and ever ARV were significant in the survival 
submodel for cancer AIDS (Table 5). MSM and older partic-
ipants had higher hazards of cancer AIDS. Participants with 
ever use of ARV had lower hazards of cancer AIDS. The as-
sociation parameter was significantly different from zero, in-
dicating a strong association between the square root of CD4+ 
counts and the risk for cancer. The negative value of the asso-
ciation parameter (0.17) indicated that the slope of CD4+ 
counts was negatively associated with the hazard for cancer 
AIDS, with a unit increase in this marker corresponded to a 
16% decrease in the risk for cancer AIDS (HR = 0.84; P 
<0.0001). MSM was not significant in the survival submodel 
for non-cancer AIDS (Table 5). Age and ever ARV were sig-
nificant. Older participants had higher hazards, while partici-
pants with ever use of ARV had lower hazards of non-cancer 
AIDS. The association parameter was significant; a unit 
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Table 4.  Multivariate Cox cause-specific hazards model. 

  Event = Cancer AIDS   Event = Non-cancer AIDS   

Covariates  Estimate (SE
a
)  HR

b
 (95% CI

c
)  P-value  Estimate (SE

a
)  HR

b
 (95% CI

c
)  P-value  

MSM  1.07 (0.56)  2.92 (0.97, 8.76)  0.055  -0.62 (0.19)  0.54 (0.37, 0.78)  0.0009  

Age at diagnosis  0.06 (0.02)  1.06 (1.02, 1.10)  0.002  0.01 (0.01)  1.01 (1.00, 1.03)  0.12  

Ever ARV  -2.06 (0.44)  0.13 (0.05, 0.30)  <0.0001  -1.96 (0.18)  0.14 (0.10, 0.20)  <0.0001  

Ever Hepatitis C 

infection  
-0.94 (1.04)  0.39 (0.05, 2.98)  0.36  -0.14 (0.27)  0.87 (0.51, 1.47)  0.60  

aStandard error; bHazards ratio; cConfidence interval; 

 
Table 5.  Joint modeling of longitudinal and survival outcomes. 

 Event = Cancer AIDS  Event = Non-cancer AIDS  

Longitudinal submodel  Estimate (SE
a
)  P-value  Estimate (SE

a
)  P-value  

Intercept  17.36 (0.21)  <0.0001  17.35 (0.20)  <0.0001  

Time  0.95 (0.01)  <0.0001  0.95 (0.01)  <0.0001  

MSM  1.64 (0.10)  <0.0001  1.63 (0.09)  <0.0001  

Age at diagnosis  -0.06 (0.001)  <0.0001  -0.05 (0.004)  <0.0001  

Ever ARV  0.33 (0.13)  0.01  0.32 (0.12)  0.01  

Ever Hepatitis C infection  0.38 (0.13)  0.004  0.37 (0.13)  0.004  

Survival submodel  Estimate (SE
a
)  HR

b
 (95% CI

c
)  P-value  Estimate (SE

a
)  HR

b
 (95% CI

c
)  P-value  

MSM  1.35 (0.55)  3.86 (1.32, 11.29)  0.013  -0.31 (0.19)  0.73 (0.50, 1.07 )  0.104  

Age at diagnosis  0.06 (0.01)  1.06 (1.03, 1.09)  <0.0001  0.02 (0.01)  1.02 (1.01, 1.03)  0.004  

Ever ARV  -1.96 (0.45)  0.14 (0.06, 0.34)  <0.0001  -1.85 (0.19)  0.16 (0.11, 0.23)  <0.0001  

Ever Hepatitis C infection  -1.06 (1.03)  0.35 (0.05, 2.63)  0.36  -0.44 (0.27)  0.65 (0.38, 1.11)  0.11  

CD4+ count  -0.17 (0.04)  0.84 (0.77, 0.91)  <0.0001  -0.20 (0.02)  0.82 (0.80, 0.85)  <0.0001  

aStandard error; bHazards ratio; cConfidence interval; 

 
increase in CD4+ counts corresponded to a 18% decrease in 
the risk for non-cancer AIDS (HR = 0.82; P <0.0001). 

Covariates MSM, time, age at diagnosis, ever ARV, and 
Hep C infection were significant in the longitudinal submodels 
for both cancer AIDS and non-cancer AIDS (Table 5). The 
mean CD4+ count was significantly higher for MSM, partici-
pants with ever use of ARV, and Hep C infection. CD4+ 
counts decreased with the increment of age at diagnosis. 

Since the association parameter was highly significant in 
the joint models for cancer AIDS, and non-cancer AIDS, this 
provided strong evidence that both survival outcomes were 
associated with the longitudinal trajectory of CD4+ counts. 
In the multivariate Cox CSH model for cancer AIDS (Table 
4), MSM had a higher hazard of cancer AIDS but not signif-
icantly higher (HR = 2.92; P = 0.055). However, in joint 
analysis (Table 5), MSM had significantly higher hazard of 
cancer AIDS (HR = 3.86; P = 0.013). In the multivariate Cox 
CSH model for noncancer AIDS (Table 4), MSM had signif-

icantly lower hazard of non-cancer AIDS (HR = 0.54; P = 
0.0009). Nevertheless, in joint analyses (Table 5), MSM did 
not have significantly lower hazard of non-cancer AIDS (HR 
= 0.73; P = 0.10). Thus, the joint models, which incorporated 
the effect of time-varying biomarker, provided different re-
sults from the separate multivariate Cox CSH models. 

4. DISCUSSION 

In our study of participants with lower CD4+ counts (≤ 
500 cells/mm

3
) at baseline, MSM had significantly higher 

hazards for cancer-related AIDS. CD4+ count was associated 
with both cancer AIDS and non-cancer AIDS. Several stud-
ies reported that the incidence of KS and NHL has signifi-
cantly decreased and that survival time from these cancers 
has been improved for most patients with the initiation of 
HAART [16, 45]. However, KS was frequently identified in 
MSM in a study by Gingues and Gill [16]. Suárez-García et 
al. [46] also observed higher risk of KS among MSM in their 
study. MSM also had higher hazards of NHL in work by 
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Bohlius et al. [47]. Biggar et al. [48] found NHL and KS to 
be associated with severe depletion of CD4+ count. Thus the 
results of our study are consistent with other study findings. 

According to Gingues and Gill [16] patients who do not 
present for HIV care after diagnosis and patients who do not 
receive antiretroviral therapy at the time of diagnosis are 
more likely to be diagnosed with AIDS-defining cancers. 
Clifford et al. [49] observed that the use of HAART might 
lower the risk of KS and NHL. Bonnet et al. [50] reported 
that patients with elevated HIV RNA levels for long periods 
may have a higher risk of NHL. In our study, the median 
log10 HIV RNA level at baseline was significantly higher 
among MSM compared to the other group (4.8 copies/mL vs. 
4.4 copies/mL, respectively). Thus, higher HIV RNA levels 
could possibly make these individuals more vulnerable to 
cancer-related AIDS. Since ARV treatment can suppress the 
viral load to a low level, our results emphasize the signifi-
cance of earlier ARV initiation for the MSM risk group. 

Our study data is from a large cohort which includes 
three-quarters of all HIV-infected people in Ontario [38]. 
Given the size, this cohort is expected to be a representative 
sample of the HIV-infected population receiving HIV treat-
ment in Ontario. MSM represent the largest proportion of all 
the HIV-infected people in Canada [4]; similarly, in our 
study, 481 (58.5%) participants were MSM. We recognize 
that participants voluntarily participated in this study and 
thus may be different from the rest of HIV-infected people in 
Ontario. Hence the study may have recruitment bias [38]. 
Another concern regarding our data is the lack of infor-
mation regarding comorbidity. As such, were not able to 
adjust the effects of those covariates in the model. 

We applied joint modeling with competing risks in this 
study. If we would consider simply one event (AIDS) instead 
of two competing events (cancer AIDS, non-cancer AIDS), 
we would not be able to study the fact that MSM has oppo-
site effects on these two events. In addition, we incorporated 
time-varying biomarker CD4+counts into the CSH models 
using joint modeling. CD4+counts were highly associated 
with both events. If time-varying biomarkers and survival 
outcomes are associated, we should consider this association 
to estimate parameters correctly as well as to draw proper 
statistical inference about the covariates. After incorporating 
CD4+counts in the CSH models using joint modeling, statis-
tical inferences for MSM were changed for both cancer 
AIDS and non-cancer AIDS. The extended/time-dependent 
Cox model is also used to include the effect of time-varying 
biomarker in the survival model [51]. However, this model 
has some limitations. The time-dependent Cox model as-
sumes that time-dependent covariates can be predicted and 
they do not have any measurement error [24]. This model 
also assumes that the covariates change value at follow-up 
visits and are unchanged in between the visits [24]. For these 
reasons, we preferred to use joint modeling in this study ra-
ther than the time-dependent Cox model. 

CONCLUSION 

In this study, based on joint modeling, it appeared that 
MSM had higher risk for cancer AIDS (KS or NHL) than the 
other risk group. However, for non-cancer AIDS, risks were 
not significantly different between MSM and the other risk 

group in the joint model. Higher viral load could possibly 
make MSM vulnerable to cancer AIDS. Thus, our findings 
suggest earlier ARV initiation and regular monitoring of 
HIV viral load and CD4+ count should be high priority for 
the MSM HIV risk group. Regular screening for cancer is 
also important in individuals with lower CD4+ counts (≤ 500 
cells/mm

3
) in the MSM group. Routine HIV testing in indi-

viduals within this HIV risk group is also vital, as untreated 
HIV infection represents a significant risk for cancer AIDS. 
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