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Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT)

represents a central determinant of the clinical post-transplant course, since the majority

of transplant-related outcome parameters such as graft-vs.-host disease (GvHD),

infectious complications, and relapse are related to the velocity, quantity and quality

of immune cell recovery. Younger age at transplant has been identified as the most

important positive prognostic factor for favourable IR post-transplant and, indeed,

accelerated immune cell recovery in children is most likely the pivotal contributing factor

to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT.

Although our knowledge about the mechanisms of IR has significantly increased over the

recent years, strategies to influence IR are just evolving. In this review, we will discuss

different patterns of IR during various time points post-transplant and their impact on

outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific

immune cells, for example virus-specific T cells, has recently gained increasing interest,

as certain threshold levels of antigen-specific T cells seem to confer protection against

severe viral disease courses. In contrast, the association between IR and a possible

graft-vs. leukaemia effect is less well-understood. Finally, wewill present current concepts

of how to improve IR and how this could change transplant procedures in the near future.

Keywords: immune reconstitution, thymic function, peripheral expansion, T-cell receptor repertoire diversity,

graft-vs.-host disease, graft-vs.-leukaemia effect, infectious complications

INTRODUCTION

Allogeneic haematopoietic cell transplantation (HCT) establishes a new lymphohaematopoietic
system in patients who suffer from severe abnormalities of normal haematopoiesis or immune
dysfunction. In the case of malignant disorders of haematopoiesis such as acute lymphoblastic
leukaemia (ALL) or acute myeloid leukaemia (AML), the success of HCT critically depends on a
graft-vs.-leukaemia (GvL) effect, an immunological reaction in which donor T cells track down and
eliminate minimal residual leukaemic cells. HCT creates one of the deepest immunosuppressive
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states in medicine, sharing many features with naturally
occurring states like congenital immune deficiency or human
immunodeficiency (HIV) infection. For long it has been known
that immune reconstitution (IR) after HCT has to recapitulate
immune ontogeny but follows different pathways than nature (1–
3). In normal ontogeny, lymphopoiesis begins under protected
circumstances in utero, is equipped with a perfectly broad
repertoire of naïve T cells at delivery, and continues to mature
in early childhood when thymic tissue is most active. In
contrast, lymphopoiesis post HCT is happening in an aberrant
environment, where the thymus is only partially active, organs
are damaged from chemotherapy and inflammation, and the
body is strongly exposed to internal and external antigens.
Furthermore, immune function has to be suppressed around
HCT by serotherapy or immunosuppressive drugs to prevent
or treat graft-vs.-host disease (GvHD)—an immune-mediated
iatrogenic disorder that is caused by the artificial encounter of
two immune systems in one organism. Still, the capacity to
reconstitute the immune system through the generation and
proliferation of immune effector cells is immense (3), and, if
guided and supported by targeted interventions, immunity can
be restored within months.

IR is a multidimensional process that is unique and
variable among different patients (4). It may depend on
the graft source, cell dose, human leukocyte antigen (HLA)
barriers, conditioning of the patient prior to HCT and post-
transplantation interventions, including those to prevent or treat
HCT complications. The multitude of variables that influence
IR post HCT have been reviewed before (5, 6) and levels of
innate and adaptive immune cell reconstitution in transplanted
children over time have been reported (7). The transfused graft,
in addition to being a source of haematopoietic stem cells
for restoration of haematopoiesis, acts as reservoir of immune
cells and initiates the complex process of IR. This process is
achieved by two different but complementary waves of immune
cell regeneration which are closely interlocked and hard to
segregate (illustrated in Figure 1). The first wave is mediated
by donor lymphocytes present in the graft. Upon transfusion
into a lymphodepleted host, these mature lymphocytes have the
capability to expand and proliferate in response to antigenic or
cytokine-mediated stimulation in a process termed homeostatic
peripheral expansion (HPE), providing an early but incomplete
immune defence against invading pathogens. More complete IR
relies on de novo lymphopoiesis from donor-derived stem cells in
the bone marrow and/or thymus, a process which can take up to
several months.

DISTINCT IMPORTANCE OF NAÏVE AND
MEMORY T CELLS AND SIGNIFICANCE OF
T-CELL RECEPTOR DIVERSITY

Allogeneic HCT grafts include naïve and memory T-cell subsets
of which the ratio may differ tremendously between cord blood
(mostly naïve cells) and bone marrow or peripheral blood (which
have more memory subsets). T memory stem cells (TSCM) are
of special interest as they show superior reconstitution capacity

in preclinical models and contribute to peripheral reconstitution
by differentiating into effectors in the early days following
haploidentical HCT with post-transplant cyclophosphamide (8,
9). The abundance of naïve T cells in the graft may influence
the outcome of patients after allogeneic HCT as long as thymic
function has not been restored. Although total numbers of CD4+

T cells have been shown to directly correlate with survival post
GvHD (10, 11), levels of naïve T cells have been identified as
the most potent drivers of alloreactivity (12). In agreement, high
levels of CD4+ naïve T cells (but not of CD8+ T cells) in allografts
have been observed to correlate with an increased incidence of
acute GvHD (aGvHD) post transplantation (13). These findings
led to the initiation of clinical trials using peripheral blood stem
cell (PBSC) grafts depleted of naïve T cells, which showed lower
rates of aGvHD and chronic GvHD (cGvHD) in HLA-matched
HCT, with no apparent increase in relapse rates (14). On the
other hand, cord blood grafts (in which almost all T cells are
naïve) show great anti-leukaemic potential with reduced relapse
risk but a similar likelihood of developing GvHDwhen compared
to bone marrow grafts (15), indicating that T-cell intrinsic factors
are contributing to the risk of GvHD development and anti-
leukemic efficacy as well. Most significant associations between
IR and clinical events were described for CD4+ rather than for
CD8+ T cells, maybe because CD8+ T cell numbers fluctuate
more swiftly in response to infections (e.g., CMV) or other
events post-transplant (16). Still, CD8+ T cells numbers have
been positively associated with the likelihood to develop GvHD
(17, 18), lower relapse rates as well as better overall survival (19).
Furthermore, IR of CD8+ T cells is highly dependent on the
graft type used for transplantation (20): Unmanipulated BM- or
PBSC-grafts generally show a more rapid CD8+ than CD4+ T-
cell reconstitution, due to faster homeostatic or antigen-driven
expansion of memory-type CD8+ T cells. In contrast, after T-
cell replete CBT frequently a rapid reappearance of thymus-
derived CD4+ T cells can be observed (21, 22). However, as
IR is influenced by many patient-specific and transplant-related
factors, the impact of these patterns on individual outcome is
hardly predictable.

Naïve CD4+ T cells in particular have been found to undergo
HPE and rapidly shift toward a central memory phenotype
(22). Although no side-by-side comparisons were made with
other graft sources, some authors hypothesised that this CD4+

phenotype shift may be a particular characteristic of cord
blood T cells (21). In a follow-up study, they showed that
the transcription profile of the naïve CD4+ T cells from the
cord blood grafts overlapped with the profile of foetal CD4+

T cells. Likewise, reconstituting cells that were induced in the
lymphopenic environment shortly after transplant maintained
these overlapping features with foetal CD4+ T cells. Interestingly,
it was suggested that enhanced T-cell receptor (TCR) signalling
via the transcription factor AP-1 after ligation of the TCR with
self-major histocompatibility complex molecules was responsible
for the rapid T-cell reconstitution (23). As expansion of T cells
in lymphopenic situations is affected by the strength of TCR
activation (24, 25), a skewing toward cells expressing high-affinity
TCRs against host and microbiome-associated antigens during
HPE may be observed. Thus, beyond monitoring numbers and
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FIGURE 1 | Schematic illustration of the different phases of immune reconstitution following HCT. The first phase peripheral expansion (orange) of IR after aplasia is

dominated by homeostatic or antigen-driven peripheral expansion of graft-derived T cells. The ratio of naïve T cells to memory T cells is dependent on donor age. The

quantity of regenerating T-cell numbers depends on graft size (bone marrow vs. PBSC) and in vivo (serotherapy) or in vitro T-cell depletion. Diversity of the TCR

repertoire during this phase is usually dominated by expansion of singular clonotypes. The duration of this period is strictly influenced by patient age. The second phase

T- and B-cell neogenesis (green) of IR is characterised by the onset of T- and B-cell neogenesis in the thymus and bone marrow. Thymic and bone marrow niches are

more resilient against external stressors and more productive in infants and children than in adults. Other contributing factors are thymic tissue status, application of

immunosuppression, and aGvHD or cGvHD. The risk of viral reactivation dramatically reduces as T- and B-cell neogenesis advances. The same probably applies to de

novo GvHD. In this phase, immunisation with non-live vaccines is feasible. The third and final phase equilibrium (purple) of IR is a balanced and stable immune system,

which is, to the best of our knowledge, maintained lifelong. Components of innate as well as adaptive immunity reach a level that is relative to patient age. Diversity of

the TCR repertoire is polyclonal at this phase. Live, attenuated vaccines can be applied since positive T-cell and B-cell interactions are granted. Autoantibodies tend to

disappear and risk of cGvHD is minimal. B, B cell; CLP, common lymphoid progenitor; NK, natural killer cell; TCR, T-cell receptor; Tm, memory T cell; Tn, naïve T cell.

phenotypes of T cells after HCT, the epigenetic programming and
functional status of reconstituting naïve cells should be studies in
more detail.

After an age-dependent recovery period in which HPE
prevails, the thymus starts to replenish the naïve T-cell pool with
new thymic emigrants. Up to this point, the diversity of the TCR
repertoire is limited as new TCR recombination events do not
take place in donor T cells undergoing HPE. During the first
year after T-cell depleted CD34+ haploidentical HCT in children,

early reconstituting T cells display a predominantly primed,
activated phenotype with a severely skewed TCR repertoire
(26). Nevertheless, rapidly expanding cells can differentiate
into virus-specific T cells that are able to clear an infection
within 2 months, as was shown in patients receiving umbilical
cord blood (21). Thymopoiesis includes TCR recombination
events and positive and negative selection thereby increasing
TCR diversity tremendously (27). Ex vivo evaluation of thymic
function is generally performed by molecular analyses of signal
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joint TCR excision circles (sjTRECs), which strongly correlate
with flow cytometric measurements of recent thymic emigrants
(CD45RA+CD27+CD31+ T cells) (28). T-cell diversity analysis
can be evaluated by spectratyping the size of the β-chain
complementarity determining region 3 (CDR3) (29). Nowadays,
next-generation sequencing methods allow high-resolution
clonotyping providing quantitative TCR assessments that can be
applied to better understand clonotype dynamics during viral
infections or GvHD (30) and to identify pathogenic or protective
T-cell clones following HCT. In addition, screening the TCR
repertoire for absence of sequences with annotated specificity for
cytomegalovirus (CMV) (the public CMV repertoire) may also
help to identify patients at risk for CMV reactivation and disease
who may benefit from prophylactic antiviral strategies (31).

An increase in TCR diversity has been related to a better
clinical outcome in multiple studies (30, 32–35). Talvensaari
et al. studied TCRs in patients who underwent cord blood
transplantation (harbouring an intrinsic, broad, polyclonal TCR
repertoire) or bone marrow transplantation (36); they showed
abnormal TCR repertoires and low TREC values during the first
year after transplantation in both groups. After 2 years, TCR
diversity was higher in recipients of cord blood vs. bone marrow
HCT (34), suggesting a more efficient thymic regeneration
pathway from cord blood lymphoid progenitors despite the
lower numbers of CD34+ cells in the graft. In turn, recipients
of unmanipulated bone marrow from matched sibling donors
showed increased TCR diversity and faster T-cell reconstitution
compared with children receiving selected CD34+ PBSCs from
unrelated donors (37). In patients receiving T-cell depleted
PBSCs from a matched donor or T-cell depleted haploidentical
PBSCs in combination with an independent cord blood product,
both GvHD and relapse were independently correlated with
lower TCR repertoire diversity (35). In addition, within 6
months, adult cord blood recipients had approximately the same
TCR diversity as healthy individuals, whereas recipients of T-
cell-depleted PBSC grafts had much lower diversities of CD4+

and CD8+ T cells. Interestingly, these deficiencies improved 12
months post-transplant for the CD4+ but not for CD8+ T cell
compartment (38). Both TCR repertoire diversity and sjTREC
levels can decline during GvHD or infections as a reflection of
decreased thymic output under these conditions (39, 40).

Analyses of the diversity of the TCR repertoire were mostly
based on the TCR Vβ repertoire in TCRαβ+ T cells so far.
However, it has been demonstrated that reconstitution of the
TCRγδ repertoire is an important marker post HCT as well
(41, 42). γ/δ T cells constitute up to ∼10% of all T cells in blood;
they are effective against virus reactivation and their presence
is associated with lower relapse rates after HCT (43, 44). In
line with this, Vδ2neg γδ cells isolated from CMV-reactivating
patients specifically reacted with both CMV-infected cells as
well as leukemic cell lines and primary myeloid leukemic and
myeloma cells (45). The interplay between CMV and γδ cell
subsets and the result on clinical outcome measures has not been
fully elucidated yet (46). In future studies, it would be interesting
to assess the predictive value of TCR diversity in specific T-
cell subsets with regard to clinical outcomes in more detail, in
particular regulatory T (Treg) cells. The latter subset is of special
interest as in a murine model adoptively transferred Tregs at the

time of HCT accelerated broadening of the TCR Vβ repertoire
diversity by preventing GvHD-induced damage in the thymus
and secondary lymphoid microenvironment (47).

Given the decisive impact of T-cell IR on survival chances,
this issues has to be considered in the design of conditioning
regimens. For instance, serotherapy (e.g., with anti-thymocyte
globulin; ATG) may reduce the risk of developing GvHD and
graft rejection, but dosing should be individualised (based on
graft source, absolute lymphocyte count and weight) to prevent
dramatically reduced T-cell IR in patients after high ATG
exposure (48–51), in particular when given in combination with
filgrastim (52).

DIFFERENCES IN IMMUNE
RECONSTITUTION BETWEEN ADULTS
AND CHILDREN

Factors affecting IR have been actively investigated for almost
30 years now. Besides other contributing factors such as stem
cell dose (53), donor age (54, 55), and mixed chimerism
(56), patient age at transplantation has been recognised as
a prime determinant of the speed and quality of IR from
the start of this research (57). The T-cell compartment (both
CD4+ and CD8+) reconstitutes slower in adults than in
children, which translates into a higher rate of life-threatening
opportunistic infections in older patients. Storek et al. already
reported in 1995 that T-cell phenotypes in adult HCT recipients
were strikingly different from neonatal T cells and that these
changes were more pronounced in the CD4+ compartment (58).
Numerous later studies confirmed this finding and supported
the notion that the second, thymus-dependent wave of T-
cell reconstitution is enhanced in children (59). Prediction
models of thymic output based on TRECmeasurements revealed
that thymic reconstitution can start as early as 83 days post-
transplant in infants and that each additional year of patient
age adds 2 weeks to that starting point (60). Interestingly,
this advantage of children with regard to improved naïve
T-cell regeneration seems to confer protection against viral
infections (57), non-relapse mortality and cGvHD (61) but
not aGvHD and leukemic relapse, because relapse incidences
in paediatric and adult ALL patients after allogeneic HCT
are not strikingly different (62, 63). Whether the increased
thymic output contributes to a better GvL effect is unknown.
However, regeneration of functional Tregs, probably derived
from thymic Treg precursors, is a prerequisite for resolution of
cGvHD in children (64). Therefore, it is conceivable that the
addition of new, potentially leukaemia-reactive clonotypes to
the TCR repertoire is counterbalanced by the regeneration of
tolerizing Tregs. Mechanistic studies addressing this issue are
lacking so far. Furthermore, the precise mechanisms underlying
improved thymic reconstitution (increased thymic cellularity,
higher susceptibility of thymic precursors to cytokines, or
enhanced influx of committed lymphoid progenitors) have
not been elucidated so far. Nevertheless, enhancing thymic
reconstitution in adults to achieve the same level as that observed
in children is a pivotal strategy to boost IR (see below).
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Another, less-examined difference between children and
adults may be the better preservation of the B-cell bone
marrow niche in children. Children show faster reconstitution
of total numbers of B cells (56), have more B-cell precursors
in regenerating bone marrow (65), and exhibit more B-
cell neogenesis as measured by kappa-deleting recombination
excision circles than do adults (66). Moreover, cGvHD has been
demonstrated to have little impact on B-cell neogenesis and
bone marrow precursor composition in children (67), which is
in stark contrast to observations in adults (68, 69). Therefore,
the microenvironment of the thymus as well as the bone
marrow seems to be more resilient to noxious influences such as
conditioning regimens and alloreactivity in children compared to
in adults. These complex interactions (e.g., regenerating CD4+ T
cells providing help to transitional and naïve B cells), contribute
to facilitate new humoral immune responses (56) and lower
production of autoantibodies (67).

In contrast to the aberrant pathways of adaptive immunity
regeneration after allogeneic HCT, natural killer (NK)-cell
reconstitution after HCT seems to resemble NK-cell ontogeny
in early childhood, with a preponderance of immature NK
cells in the early post-transplant phase (70). Type of graft
manipulation (NK-replete vs. NK-depleted grafts) seems to
have a greater impact on NK reconstitution than patient age,
although no comparative studies directly addressing this question
are available. In a heterogenous cohort of paediatric ALL
patients who underwent haploidentical HCT, T-cell depletion
techniques that also depleted graft-derived NK cells (i.e., CD34+

selection) resulted in faster NK-cell recovery post-transplant than
techniques like CD3/CD19-depletion, which keep NK cells in
the graft (71), underlining the importance of cytokine sinks
such as interleukin (IL)-7 and−15 for NK-cell development (72).
Especially in the haploidentical transplant setting, potential NK
cell alloreactivity has gained a lot of attention. Differences in
the killer-cell immunoglobuline-like (KIR) gene haplotype could
lead to a donor NK cell activation caused by the lack of an
inhibitory receptor on host leukemic cells. The clinical relevance
of this scenario remains controversial. One study analysing 85
children with ALL transplanted with ex vivo T-cell depleted
haploidentical PBSCs showed a benefit if the donor had a KIR
B content score (5-year event-free survival of 51 vs. 30% in KIR
B vs. KIR A haplotype, respectively) (73). However, this was
not confirmed in a subsequent study of 80 children with acute
leukaemias receiving TCRab/CD19-depleted haplo grafts. Here,
KIR-KIR-L mismatching was not associated with any difference
in leukaemia-free survival (74). For more details on that issue we
refer to one of the excellent reviews published recently (75).

IMMUNE RECONSTITUTION AND VIRUSES

The Complex Relationship Between
Antigen Exposure and Immune
Reconstitution
Exposure to infectious agents in the early post-HCT period
puts the patient at increased risk for morbidity and also alters
the process of IR, increasing risks of further infections and

immune-mediated diseases. In order to prevent such exposure,
patients are usually instructed to keep socially distanced or
isolate from others, restrict their diet and take other behavioural
measures in the post-HCT period to minimise their risk of
encountering exogenous infections. However, as patients have
already encountered infections prior to HCT, any viruses that
remain latent in their body (and that are usually under tight
control of the normal immune system) might become reactivated
post HCT and cause significant morbidity and mortality. The
best studied viral reactivation post allogeneic HCT is CMV
reactivation; however, other viruses such as Epstein-Barr virus
(EBV), human herpesvirus 6 (HHV-6), adenovirus and BK
polyomavirus are also of clinical importance. Each virus causes
a distinct pattern of disease and can appear at different levels of
immunosuppression (76).

Cytomegalovirus
CMV has been considered for many decades to be the leading
cause of infectious complications in recipients of bone marrow
transplants (77) and, as such, serves as the prototype for the
study of viral reactivation and IR post HCT. Since CMV is
ubiquitous worldwide, infection usually occurs in childhood and
most patients are seropositive at the time of HCT. The standard
of care is to monitor CMV levels by weekly polymerase chain
reaction (PCR) testing and to treat any emerging reactivation
pre-emptively before clinical disease emerges. Many studies
have investigated the kinetics, risk factors and clinical outcome
of CMV reactivation (78). Seropositive recipients receiving a
graft from a seronegative donor are at highest risk for CMV
reactivation (79), reflecting the central role of specific memory
T cells from the graft in controlling CMV reactivation in the
early post-HCT period. Aubert et al. have shown that healthy
seropositive individuals have a significant percentage (median
1.3%; range 0.29–5%) of memory CD8+ cells which are specific
for the E42 epitope of the CMV pp65 protein, and that these
cells are capable of mediating immune protection against CMV
(80). In the context of HCT, a clear inverse correlation was
found between low numbers of these cells and CMV reactivation.
Interestingly, following viral reactivation, the number of E42-
epitope-positive CD8+ cells increased dramatically, reflecting the
ability of these cells to proliferate and expand in response to
antigenic stimuli regardless of the presence of CD4+ helper cells,
resulting in viral clearance.

The presence of these memory CD8+ cells immediately after
HCT varies among individuals according to graft composition
and the degree of T-cell depletion. In a large series published
recently (81), the authors showed that patients with high
peak CMV titres (>20,000 copies/mL) had significantly lower
numbers of T cells (both CD4+ and CD8+) at both 1 and
3 months post HCT but these numbers increased later on,
becoming high at around 6 months. Interestingly, patients
who did not have reactivation of CMV (<500 copies/mL) did
not show this elevation in T cells and had significantly lower
numbers of T cells at 1 year post HCT. These findings are
in accordance with another trial studying general IR patterns
post HCT using 25 lymphocytes subsets (82). Using multivariate
methods, those researchers showed that CMV reactivation and
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cGvHD are the major determinants of IR patterns at 1 year post
HCT. Lymphocyte subsets from seropositive patients clustered
differently to those from CMV seronegative patients, with
increased proportions of activated, late memory effector CD8+ T
cells and reduced B-cell subsets observed in seropositive patients.
Due to the persistence of CMV antigens during viral latency, the
long-term memory T-cell pool accumulates T cells with CMV
specificity, a phenomenon called memory inflation.

Furthermore, few studies have demonstrated a bidirectional
relationship between CMV reactivation and the occurrence
of GvHD. While the observation that CMV reactivation is a
consequence of GvHD treatment is intuitively understandable,
these studies have demonstrated the converse, showing increased
occurrence of GvHD following CMV reactivation (83, 84). Few
hypotheses regarding this etiological relationship have been
tested including induction of HLA class II expression following
CMV reactivation (85), or sequence homology between CMV
and human tissue peptides (86). Regardless of the biological
explanation, this association as well as the above-mentioned
studies regarding the impact of CMV reactivation on T-cell
subpopulations, highlight the importance of CMV reactivation
post HCT not only as the leading infectious agent but also as a
key player in shaping the IR post HCT.

The recent introduction of Letermovir as a very efficient
agent in preventing CMV reactivation post HCT, allowed us
for the first time to assess IR patterns in the absence of CMV
reactivation. Several groups have collected data regarding this
question: Sperotto et al. have shown that patients who received
prophylactic letermovir, had significantly lower CD4 and CD8
counts at 2 and 3 months post HCT, compared to patients who
were treated by a standard preemptive approach (87). From a
functional perspective, Zamora et al. have recently demonstrated
that patients who received letermovir have significant lower levels
of functional CMV-specific T cells (88). Albeit further data is
definitely needed, these studies again emphasise the crucial role
of CMV reactivation in shaping IR patterns post HCT.

Epstein-Barr Virus
In contrast to CMV, EBV reactivation post HCT originates
usually from graft-derived donor B cells that under strong
immunosuppression loose the tight control of EBV-specific T
cells, resulting in a spectrum of disorders called post-transplant
lymphoproliferative disease (PTLD). EBV reactivation is less
common than CMV, tends to appear slightly later after HCT, and
seems to require a deeper immune suppression (89). Standards
for diagnosis of PTLD and treatment of EBV reactivation are less
stringent than that for CMV as there is no consensus on the level
of EBV copy numbers that puts the patient at high risk for PTLD.
Since EBV is not targetable by antiviral drugs, a CD20 mAbs and
EBV-specific T-cells remain the only available treatments so far.

D’aveni et al. profiled the immune response to EBV using
the ELISpot assay at 60, 100, 180, and 360 days post HCT
in 28 patients transplanted for both malignant and non-
malignant indications (90). Not surprisingly, they found a
correlation between general T-cell reconstitution and EBV-
specific reconstitution, as well as significantly earlier and higher
reconstitution in paediatric vs. adult patients. In this small

series, patients with an ELISpot result of more than 1,000 spot-
forming cells (SFC)/106 mononuclear cells still had the ability
to clear the virus spontaneously without treatment. Similarly
to the picture with CMV immunity, EBV antigenic stimulation
was the strongest driver of proliferation of these cells, but this
effect disappeared 1 year post HCT, suggesting that, unlike
CMV, EBV reactivation has no effect on long-term IR. In a
relatively large series published by Stocker et al., treatment of
EBV reactivation with anti-CD20 monoclonal antibodies did not
result in a different IR pattern than that observed in patients
without anti CD20 treatment with the exception of delayed B-
cell recovery, which normalised after 1 year post HCT (91). This
delayed B-cell recovery was mirrored clinically by a higher need
for immunoglobulin (Ig) G replacement in the anti-CD20 group
than in the non-anti-CD20 group. Frequency of infections and
clinical outcome did not differ between treatment groups.

Adenovirus
Adenovirus reactivations are of particular interest in the
paediatric population (92). As no highly effective antiviral
treatment against adenovirus exists, reactivation has emerged in
the recent years as a major cause of morbidity and mortality
after HCT in children. Admiraal et al. found that CD4+ T-
cell reconstitution was the only immunological predictor of
adenovirus reactivation (16). The chance of reactivation was
reduced by 5% with every 10 cells/µL increase in CD4+ T cells.
Furthermore, patients with early CD4+ T cell reconstitution
(defined as CD4+ T cells >50 cells/µL in two consecutive
samples before day +100) had a shorter duration of viraemia
and, on survival analysis, had the same favourable outcome
as patients without adenovirus reactivation. This is in contrast
to the dismal prognosis observed in patients with adenovirus
reactivation without CD4+ T-cell reconstitution.

Human Herpesvirus 6
HHV-6 is the most common virus to reactivate post HCT, but
cases with clinical disease (i.e., encephalitis) are rare (93). De
Koning et al. found that the only predictor of HHV-6 reactivation
was CD4+ IR (94). Interestingly, HHV-6 reactivation was found
to be a strong predictor of grade II–IV GvHD, and this effect
vanished if CD4+ IR had occurred. Furthermore, in subsequent
work, HHV-6 had a significantly negative impact on numbers of
CD4+ T cells 1 year post HCT, possibly caused by the cytopathic
effect of HHV-6 on thymopoiesis (95). This effect was reversed if
antivirals were used.

Other Viruses
Other viral reactivations (e.g., BK polyomavirus, varicella
zoster virus, and herpes simplex virus) have been less studied
systematically in terms of IR, but case reports point toward a
central role of T-cell immunity in controlling these reactivations
following HCT (76).

Section Conclusion
To conclude this section, viral reactivations mirror the status
of T-cell reconstitution. CD8+ memory T-cell populations seem
to mediate protection against or clearance of CMV and EBV,
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whereas for other Herpesviridae such as adenovirus or HHV-6,
CD4+ T cell counts are the main predictor for both reactivation
and outcome. CD4+ T-cell counts are also the main predictor
for long-term anti-CMV immunity. CMV reactivation is a strong
stimulator of global T-cell reconstitution, with the highest effect
observed 6 months post HCT. HHV-6 reactivation might have
the opposite effect, with patients who experience reactivation
tending to have lower T-cell counts at 6 months and 1 year post
HCT. Adoptive transfer of antigen-specific T cells will probably
gain widespread use in the near future, as this therapy directly
targets the mechanisms behind viral reactivation.

IMMUNE RECONSTITUTION AND ACUTE
GVHD: THE “CHICKEN AND EGG”
DILEMMA

GvHD is a frequent complication of HCT. Although the
incidence is lower in paediatric compared to in adult patients,
GvHD significantly contributes to transplant-associated
morbidity and mortality. It is broadly accepted that aGvHD and
cGvHD involve different effectors and targets and have different
pathologic pathways, therefore being seen as two different
diseases. Nevertheless, aGVHD remains the major risk factor for
development of cGvHD in the paediatric population (96, 97).
This review focuses on parameters and kinetics of early IR of
mainly the adaptive immune system, and therefore this chapter
will cover primarily aGVHD.

In general, aGVHD is mediated by alloreactive donor T cells
activated by host antigen-presenting cells followed by donor cell
reactivity against a variety of target tissues of the host. aGVHD is
associated with significantly impaired IR, but which is the cause
and which is the effect? This question applies to a number of
interacting aspects: (1) the T- and the B-cell compartment, as
the antigen-presenting cells involved in aGvHD could be B cells;
(2) the number and function of subpopulations of the adaptive
immune system (quantity and quality); (3) HPE vs. impaired
thymic production; (4) the composition of the graft and the
microenvironment of the host; and (5) the effects of aGvHD itself
and the administration of immunosuppressive agents for GvHD
prophylaxis and treatment.

Immune cell function does not equate to cell number:
it is important to distinguish between quantitative immune
cell reconstitution and qualitative IR. For instance, T cells
often remain dysfunctional after HCT, with a skewed TCR
repertoire even after recovery to normal number (98). Hence,
the normalisation of B- and T-cell numbers does not necessarily
indicate reconstitution of their function and it has been suggested
to differentiate between “immune reconstitution” and “immune
recovery” rather than using IR alone (99).

Data regarding the influence of aGVHD on IR profiles and
vice versa lack detailed information on reconstituting cell subsets
and on effector functionality. Moreover, as IR is age dependent,
this and other reviews are hampered by the lack of data from
a primarily paediatric setting (7). Table 1 provides published
data on immune cell subsets in adaptive IR and their relation to

aGvHD after HCT in paediatric and adult patients (10, 11, 17–19,
49, 98, 100–110).

CD4+ T Cells
Perturbations of both HPE and thymic output contribute to
impaired CD4+ T-cell reconstitution in patients with aGVHD.
In this regard, patient and transplant associated aspects such age,
sex, underlying disease, genetic differences between donor and
host, stem cell source, and type of conditioning are influencing
factors for the IR of CD4+ T cells.

In general, aGvHD is characterised by the predominance of
effector CD4+ cells that are capable of secreting inflammatory
cytokines and that mediate tissue damage (111). Additionally, in
aGVHD allo-reactive T cells directly target both the lymphoid
and the epithelial components of thymic architecture. Allo-
reactive T cells further limit renewal of thymic cellularity after
conditioning therapy, thereby preventing negative selection of
alloreactive T cells which subsequently promote GvHD (112).
Thus, IR is stuck in a vicious circle of arrested thymus
regeneration and impaired de novo production of diverse T
cells (113). This results in the compromised production of
naïve T cells together with a shortened survival and higher
susceptibility to apoptotic cell death of T cells due to the
overexpression of death receptors and the under-expression
of pro-survival proteins (114–116). This is accompanied by a
reduced production of cytokines indispensible for thymopoiesis,
which in turn leads to lower TREC levels and a distorted TCR
repertoire (40, 117–119).

In pre-clinical models, it has been demonstrated that T
cells from animals with GvHD were capable of significant
expansion, molecular diversity and repertoire regeneration after
their transfer into secondary hosts, indicating that deficits in
the T-cell repertoire are not necessarily fixed but may have
the capacity for normalisation once they are removed from the
GvHD milieu. Therefore, the GvHD microenvironment of the
host seems to be responsible for quantitative and qualitative
failure of effective CD4+ T-cell reconstitution during GvHD
(111, 118, 119).

In clinical studies, aGvHD correlates with aggravated skewing
of the TCR repertoires of both CD4+ and CD8+ T cells as well
as antigen-specific T cells. Both T- and B-cell lymphopenia and
an inadequate repertoire of CD4+ and CD8+ T cells for at least 1
year after transplant increase the risk of recurrent reactivation of
latent viruses, which may further contribute to a higher risk for
development of aGvHD (120).

Koning et al. reported a retrospective dual-centre study of
CD4+ T-cell reconstitution in paediatric patients following HCT
with an aim to identify predictors of survival outcomes after
aGvHD (10). Achieving CD4+ T-cell IR within 100 days after
HCT did not decrease the risk of developing aGvHD but was
strongly predictive for better survival outcomes (non-relapse
mortality and overall survival) after moderate-to-severe aGvHD.
Generally, conventional HCT grafts are associated with a higher
proportion and an earlier recovery of Tregs together with greater
TCR diversity when compared with T-cell-depleted grafts. Of
note, de Koning et al. reported that for both cohorts (the
conventional HCT and the T-cell-depleted HCT group), early
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TABLE 1 | Immune reconstitution parameters and reported association with acute GvHD.

Immune cell
subset

Interaction with acute GVH Age group References Comments

CD4+ Th cells Higher numbers attenuate aGvHD Paediatric (98) Often, CD4+ T cells not only include

Th but also Treg (98)

CD4+ IR had no impact on aGvHD (49)

Increased CD4+ at day +28 associated with increased risk of aGvHD Paediatric/adolescent (100)

Early CD4+ IR predictive for better outcome after aGvHD Paediatric (10)

No impact of CD4+ IR on aGvHD (11)

TREC level High sjTREC levels correlate with lower incidence of aGvHD grade II–IV Adult/adolescent (101) Ratio of sjTREC to βTREC may mark

thymic proliferation

Sj and βTRECs levels lower in aGvHD at >6 months

Recovery of thymic output in resolved aGvHD at >12 months in

adolescents (<25 years old)

(102)

CD8+ T cells Early recovery associated with increased risk of aGvHD Adult (100)

Increased CD4+ T cells at day +28 associated with increased risk of

aGvHD

High numbers of TEM (CD38brightCD8+ effector memory T cells) predict

aGvHD

Paediatric/adult (17)

Increase of TEM in median 8 days before aGvHD onset

CD4+ Treg cells Higher numbers associated with less aGvHD Paediatric/adult (98) Tregs can be subdivided into naturally

occurring and induced cells

Inverse correlation between Treg numbers and grade of aGvHD Paediatric/adolescent (103)

Low CD4+FoxP3 Tregs at day +30 are associated with increased risk of

grade II–IV aGvHD

(104)

B cells Early recovery associated with decreased risk of aGvHD Paediatric (105) Most paediatric data on B-cell IR

and aGVHD cover CD19+ cells only

(5). Most studies on B-cell IR and

aGVHD report on cGVHD (105)

Low numbers of B cells and naïve B cells at day +56 associated with

increased risk of grade II–IV aGvHD

Adult (100)

Lower B cells numbers in patients with a history of grade II–IV aGvHD (18)

iNKT cells Early recovery associated with lower risk of aGvHD Paediatric (105)

Paediatric/adult (98)

Lower levels independent risk factor for aGvHD Adult (106)

γδ T cells No association with aGvHD Paediatric/adult (107)

Lower numbers of γδ T cells associated with history of grade II–IV

aGvHD

Adult (18)

Lower numbers of γδ T cells in aGvHD (108)

Risk of aGvHD lower with higher numbers of γδ T cells at day +28 (19)

MAIT cells Low numbers are a risk factor for aGVHD Paediatric/adult (109)

Lower MAIT cell counts (peripheral blood) in aGVHD Adult (110)

In vitro MAIT cells suppress T cell proliferation, which may impact

aGVHD

aGvHD, acute graft-vs.-host disease; iNKT, invariant natural killer T; IR, immune reconstitution; MAIT, mucosal associated variant T; sjTREC, signal joint T-cell receptor rearrangement

excision; TEM, T effector memory; Th, T helper cell; TREC, T-cell receptor excision circle.

CD4+ T-cell IR correlated significantly with better outcomes
of aGvHD.

By means of sjTREC and beta-T-cell receptor excision circles
(βTREC) quantifications, a significant but transient reduction
in thymic output as well as in early thymocyte differentiation

in patients with aGvHD was shown by Clave et al. in a cohort
including adolescent patients after matched sibling donor HCT
performed mainly for malignancies (101). Interestingly, in these
patients who were <25 years old, thymic function recovered at
1 year, indicating that the impact of aGvHD on the adolescent
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thymus could be transient. Gabella et al. confirmed that sjTREC
levels were not affected by aGvHD during long-term follow-up
of adult and paediatric patients after HCT in mainly malignant
diseases with myeloablative conditioning (102).

The association between cGvHD and low TREC levels
indicative of poor thymic function was described by Olkinuora
et al. in a prospective paediatric study: in this cohort, low TREC
levels correlated with high mortality rates (121).

CD8+ T Cells
Early donor T-cell expansion is characterised by mainly CD8+

cells with a restricted repertoire and of memory cell type. The IR
pattern of CD8+ T cells differs to that of CD4+ T cells, e.g., in that
expanded CD8+CD28− effector memory T cells can dominate
for more than 2 years post HCT (111). Expanded oligoclonal
CD8+ cells are associated with an increased risk of aGvHD
(18, 122, 123).

Regulatory T Cells
Tregs (CD4+25+FoxP3+) are known to maintain immune
homeostasis and tolerance by inhibiting cytokine secretion and
proliferation of various effector cells. They can be subdivided into
naturally thymus-derived Tregs and induced Tregs differentiated
from non-regulatory CD4+25+ cells. Adoptive transfer of ex
vivo expanded Tregs has been shown to result in superior
immune reconstitution and less GvHD in preclinical murine
allotransplant models (124). Full Treg reconstitution prevents the
rapid oligoclonal proliferation that gives rise to pathogenic CD4+

effector T cells, while preserving the slow homeostatic form
of lymphopenia-induced peripheral expansion that repopulates
a diverse peripheral T-cell pool (125). This effect is mediated
through CTLA4-dependent downregulation of CD80 and CD86
on dendritic cells by Tregs.

Regarding clinical data, an association between Treg numbers
and incidence of aGvHD has been established: A higher Treg

content in the graft confers lower non-relapse mortality and
improved overall survival (126). Magenau et al. reported that in
adult and paediatric patients with aGvHD after a matched sibling
ormatched unrelated donorHCT, Treg frequencies were inversely
correlated with aGvHD grading. Treg frequencies were measured

at disease onset as the percentage of CD4+CD25brightFoxp3+ T
cells out of total nucleated cells (103). Rezvani et al. were able
to show that a low CD4+FOXP3+ T-cell count early after HCT
(day +30) was associated with an increased risk of grade II–IV
aGvHD in adult and adolescent patients who underwent HCT
(104). Clinical trials with adoptive transfer of Treg are described
in more detail in section Cellular Therapies. Cellular Therapies
(see below).

Noteworthy, Tregs may also play a role in the graft-vs.-
leukaemia reaction. In a series of 85 patients with leukemic
relapses after HCT, a higher content of Helios+ Treg at day
+30 within the CD4 compartment was accompanied by a
higher incidence and earlier occurrence of leukemic relapse
(127). In contrast, checkpoint blockade which is applied to
increase antitumor immunity both in the autologous and the
allogeneic setting is known to inhibit Tregs. Patients with
advanced/metastatic solid tumours receiving aPD-1 and aCCR4

checkpoint inhibitor infusions had a reduced effector Treg

population (128). Patients who received aCTLA4 infusions for
the treatment of leukemic relapses after allo HCT showed
diminished counts and less activated Tregs but exhibited a
35% likelihood of developing immune-related adverse events
or GvHD. These data show that Tregs are key players in the
regulation of autoimmunity and may tip the balance between
GvH and GvL.

B Cells
The first B cells to emerge into the periphery following
HCT are CD19+CD21lowCD38high transitional B cells; the
percentage of these cells subsequently decreases while mature
CD19+CD21highCD27neg naïve B cells are replenished (120).
However, most paediatric studies provide information on CD19+

B cells alone (7). Generally, GvHD is correlated with impaired IR
of the B-cell compartment, with regards to both numbers and
function, yet most reported data are in the context of cGvHD
(105). Abdel-Azim et al. observed in paediatric HCT recipients
the normalisation of numbers of naïve B cells by 6 months
together with a deficiency of IgM+ memory B cells and switched
memory B cells (129). While the latter normalised within the first
year after HCT, the deficiency of IgM memory B cells persisted
for up to 2 years. They concluded that paediatric HCT recipients
have impaired humoral IR, predominantly owing to a blockade
of IgM memory B-cell maturation compared with earlier T cell-
dependent switched memory cell IR.

Profiles of Immune Reconstitution
Associated With Acute GvHD
Bae et al. reported no significant impact of aGvHD on lymphoid
IR in paediatric patients who underwent HCT for malignant
diseases (20). In recent research by Schultz et al. evaluating
immune profiles at day +100 after HCT in correlation with
National Institutes for Health (NIH)-defined GvHD, the authors
described distorted patterns of IR after resolved aGvHD and
late aGvHD at day +100. They then compared theses immune
profiles to an immunological fingerprint of patients without any
history of GvHD (immune-tolerant patients). They identified
a number of different associations per group and found a
progression of immune abnormalities from no cGvHD to
late aGvHD, and further to the most complex pattern in
cGvHD (130).

Models of immune function have been published that aim
to reflect various subpopulations of immune cells and also to
consider different patterns of IR (70, 131). A three-component
multivariate model with a reference domain of ellipsoidal shape
based on normal leukocyte subtype values from healthy children
and adolescents has been created by Koenig et al. This model
was used to classify paediatric patients as having high or low
risk for a post-HCT events based on their IR status; significantly
higher number of HCT survivors mainly after malignant diseases
and various conditioning regimens fell into the low-risk vs.
high-risk group during follow-up (day +200 and day +300)
(132). Mellgren et al. used a principal component analysis to
better analyse the process of IR after paediatric HCT. They
were able to show that dysfunctional IR patterns precede
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severe complications such as cGvHD, relapse, and death (133).
Although these reports do not provide conclusive data regarding
the interaction of aGvHD and IR, they aid understanding of the
interactions between variables after HCT and support a more
differentiated and meaningful viewpoint on IR and transplant-
related complications such as GvHD.

Haematopoietic Niche and Acute GVHD
von Bonin et al. outlined in a comprehensive review
that both haematopoietic cells and cells forming the
haematopoietic/progenitor niche of the bone marrow have
been identified as targets in GvHD. Haematopoiesis in general
and B-cell neogenesis in particular are affected by the toxic
environment of GvHD, leading to a shift toward myelopoiesis
(134). In terms of the in vitro composition and function of the
haematopoietic microenvironment, Martinez-Jaramillo et al.
found decreased numbers of myeloid, erythroid and multipotent
progenitor cells in recipients of bone marrow transplants in
comparison with healthy controls. Of note, progenitor levels
were significantly lower in patients with GvHD (7% of normal
marrow levels in patients with GvHD vs. 44% of normal marrow
levels in patients without GvHD). These findings corresponded
with the severely reduced numbers of fibroblastic progenitors
and adherent stromal cells observed in long-term marrow
culture in patients with GvHD vs. those without (135).

IMMUNE RECONSTITUTION AND
GRAFT-VS.-LEUKAEMIA EFFECT

Immune attack of donor T cells against residual host leukaemic
cells is a major pathway by which allogeneic HCT combats
haematological malignancies. In general, a higher number of T
cells in the graft is associated with lower relapse rates but at the
cost of a higher incidence of GvHD (136). Patients with early
recovery of antiviral T-cell responses have a higher probability
of relapse-free survival (137), and high numbers of interferon
gamma (IFNg)-reactive T cells during early IR have been shown
to be associated with improved overall survival (138). However,
certainly not all donor T cells contribute to the supposed GvL
effect and the involved specific T-cell subpopulations are not
known so far.

Since the first reports of the contribution of an immunological
GvL effect on the success of HCT in the 1980s (139), the
segregation of the GvL effect from GvHD has been considered
the “holy grail” of HCT. In the quest to enhance the GvL effect
without increasing the risk for GvHD, two general approaches
have been studied. The first approach aims to discriminate
subpopulations of T cells that can mediate GvL from those that
mediate GvHD, thereby enabling a safer and more effective T-
cell composition by graft engineering. The second approach tries
to define minor histocompatibility antigens that are restricted to
the haematopoietic lineage and to elicit specific T-cell responses
against these antigens post HCT. Though both approaches
have not yet been translated into clinical routine, progress
has been achieved and some modalities are currently tested in
clinical trials.

Zheng et al. have shown in a murine model of chronic
myeloid leukaemia that donor memory CD4+ T cells
(CD4+CD62L−CD44+CD25−) can kill leukaemic cells without
causing GvHD, as opposed to the action of naïve cells that cause
GvHD (140). The authors speculated that the reason for this
difference is that memory T cells can generate only a limited
immune response that is sufficient for GvL but not sufficient
to cause GvHD (which requires a high-magnitude response
and high systemic levels of cytokines to cause tissue invasion
and systemic inflammation). The same group has also shown
that adoptive transfer of CD8+ memory T cells from donors
vaccinated against the recipient minor histocompatibility antigen
H60 augmented the GvL effect without increasing GvHD (141).

Given these pre-clinical data about the central role of memory
T cells in GvL, Triplett et al., conducted a clinical trial (142) in
17 paediatric patients with relapsed/refractory acute leukaemia,
performing reduced intensity HCT from haploidentical donors
after naïve (CD45RA+) T-cell depletion of the graft. At a median
follow-up of 223 days, aGvHD rate was acceptable, and there
were only two cases of relapse: both of these were in patients
with advanced AML in whom primary induction had failed.
Interestingly, nine patients had detectable disease at time of
transplant, yet relapse rates were still low, highlighting the
potential of memory T cells to mediate GvL effect. A second trial
using transfer of CD45RA-depleted T cells in 35 patients with
high-risk acute leukaemia confirmed low rates of cGvHD (9%
with a follow-up of 932 days). aGvHD rates were similar to T-
replete HCTs (66%; 95% CI 41–74%) but all cases of aGvHDwere
steroid responsive and no patient required second line treatment.
Overall survival was 78% at 2 years, which is encouraging in
this high-risk population (14). These data suggest that CD45RA−

memory T cells are not devoid of any GvHD potential; however,
GvHD seems more controllable for this type of HCT. The
combination of CD45RA with other surface antigens such as
CD276 as a depletion marker can confer superior protection
against GvHD initiation (143).

Potential targets for donor T cells in the HCT setting are
any polymorphic proteins of the host against which donor T
cells have not been tolerized during their education in the host
thymus. Recent molecular analyses have revealed that 12% of
the human exome is polymorphic but only 0.5% of all single
nucleotide variants (SNVs) are finally presented as HLA class
I peptides (144). From this huge number of possible antigens,
about 50 candidates have been biologically validated as bona
fide minor histocompatibility antigens with relevance for HCT
(145). Early mechanistic studies revealed that T-cell responses
against minor histocompatibility antigens are oligoclonal in
nature and CD4+ dominated (146, 147); one or a few minor
histocompatibility antigen mismatches can be sufficient to cause
GvHD and massive thymic infiltration (148). Disappointingly,
a closer look at donor–host minor histocompatibility antigen
disparities has not allowed clear separation between GvL and
GvHD so far. The UGT2B17 truncating gene deletion has been
shown to lead to increased incidence of aGvHD and reduced
survival in HCT recipients (149), while HA-8 and ACC-1 SNVs
in the recipient have been associated with an increased incidence
of cGvHD (150). In a large retrospective analysis, Spierings
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et al. (151) investigated in 849 HLA-matched HCTs the impact
of 10 autosomal and 10 HY-encoded minor histocompatibility
antigens on GvHD and relapse incidence. Their most striking
observation was a lower relapse rate and higher overall survival
in patients mismatched for haematopoiesis-restricted minor
histocompatibility antigens compared to patients who were
matched in these antigens. Notably, this association was only
given in the context of GvHD (not without).

The introduction of immune checkpoint inhibitors as an
efficient method of immune-based anti-cancer therapy made its
use in the context of allo HCT an intriguing way to augment
the GvL effect. Pilot reports about patients with Hodgkin disease
who relapsed post allo HCT have shown that this modality
can be effective, though carrying the risk of occurrence of de
novo GVHD (152). Davids et al. have prospectively treated
28 adult patients with relapsed haematological malignancies
post HCT with aCTLA4 blockade and other 28 adult patients
with aPD-1 blockade (153, 154). While some responses were
noted (more in lymphoid diseases and some complete responses
in extramedullary myeloid leukaemia), severe GvHD and
other serious immune-mediated adverse events occurred in
a significant proportion of patients. Of note only a single
ALL patient was included in these studies. Further and more
homogenous studies are required to better characterise patients
in whom the potential benefit of immune checkpoint blockade
overrides its risks. Noteworthy, in a study of 85 patients after allo
HCT for various haematologic malignancies, LAG-3 and TIM-
3 rather than PD-1 were overexpressed on T-cells of relapsing
patients, indicating that other exhaustion markers beyond the
PD-1-PD-L1 axis might be interesting and druggable targets to
enhance GvL after allo HCT (127).

In summary, these data indicate that natural IR will
most likely not distinguish between GvHD and GvL effects.
However, adoptive transfer of minor-antigen-directed T cells, the
generation of which is challenging but feasible (155, 156), in a
T-cell depleted setting should be the subject of further research.
Another approach to skew IR toward preferred regeneration of
minor-antigen-specific T cells is the vaccination of the recipient
with minor-peptide-loaded dendritic cells in combination with
donor lymphocyte infusions (DLIs) (157). Given the very tight
association between GvL and GvHD, a clearer separation of these
two effects will only be possible by controlling IR through tailored
grafts and targeted add-back of TCR specificities, e.g., antiviral T
cells in the first 2–3 months to avoid or control viral reactivations
followed by adoptive transfer of donor T cells reactive against
leukaemic epitopes.

The Problem of Slow Immune
Reconstitution
As outlined above, delayed IR—and in particular T-cell
reconstitution—is associated with clinical complications
following HCT. The delay of IR may be the reason or the result
of these complications—probably the interaction works both
ways in most instances. To optimise the outcome of HCT, slow
IR should be prevented or treated. This can be performed either

by avoiding factors that impede reconstitution or by using
procedures that improve the reconstitution.

Avoiding Factors That Impede Immune

Reconstitution
Serotherapy, total body irradiation and prophylactic
immunosuppression are known inhibitors of prompt IR;
however, they are indispensable elements of many conditioning
regimens. Viral reactivations can impede or skew IR, as
extensively discussed above. Prophylactic or pre-emptive
strategies aim at avoiding viral reactivations and disease. Also
mentioned above is the impact of aGvHD on IR. Prevention and
treatment of aGvHD should focus on methods (e.g., selective
allodepletion or extracorpeal photopheresis) that preserve T-cell
function against viruses or other non-GvHD targets. Because
avoidance of these detrimental factors is not always possible
in clinical practise, substantial efforts have been undertaken to
establish new techniques for improvement of IR (see below).

Procedures That Improve Immune Reconstitution
According to the two stages of T-cell reconstitution, efforts
to improve IR in the clinical setting are based on two
principles: (1) optimization of the peripheral (memory) T-cell
compartment; and (2) enhancing of thymus-dependent (naïve)
T-cell production. Cellular therapies are primarily based on
modifications of graft composition aiming to optimise the
peripheral T-cell compartment. Interventions including soluble
factors and new concepts of tissue engineering may result in a
better and/or faster thymic-dependent immunity. Findings from
pre-clinical and clinical research in this area are summarised
in Tables 2, 3, respectively, and described in more detail below
(4, 14, 116, 158–194, 199–215, 220–222). Figure 2 graphically
illustrates attempts to improve IR which are currently evaluated
in clinical trials.

Cellular Therapies
Regarding cellular therapies, manipulation of the stem cell
graft as well as use of DLIs are established modes to engineer
T-cell immunity including anti-leukaemic effects (Figure 2A).
The administration of unmanipulated donor lymphocytes is,
however, complicated by a high risk of GvHD, which is even
more relevant in an HLA-mismatched setting. Because of the
adverse effects of GvHD on the thymus, unselected DLIs are not
suitable to improve IR. Conversely, non-specific T-cell depletion
of the graft, which is used particularly in HLA-mismatched
HCT to avoid excessive GvHD, is complicated by delayed IR
resulting in severe infectious complications and higher rates of
graft rejection and relapse in patients with malignant diseases
(223, 224). Advances in graft manipulation in vivo and in vitro
aim to protect preferred T-cell subsets in order to maintain
GvL and antiviral effects while reducing the risk of GvHD. The
selective depletion of TCR-α/β lymphocytes spares the innate-
like TCR-γ/δ population, thus possibly confering an improved
anti-infective and antitumor response (74, 225). However, the
anti-infective efficacy of TCR-γ/δ T cells is limited, and thymic-
dependent IR is not improved by this procedure. Another
approach using cyclophosphamide post HCT to prevent GvHD
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TABLE 2 | Preclinical studies exploring soluble factors and cellular therapies to enhance T-cell function after HCT.

Factor/method Target Selected recent references

Soluble factors

Interleukin-7* Haematopoietic progenitor cells, thymocytes, peripheral T lymphocytes (24, 158–161)

Interleukin-12 Thymocytes (162, 163)

Interleukin-15 NK/NKT cells, CD8+ T cells (164, 165)

Interleukin-21 Thymocytes, haematopoietic progenitor cells (166)

Interleukin-22 Thymic epithelial cells (167, 168)

FMS-like tyrosine kinase 3 (FLT3) ligand Hematopoietic progenitor cells (169–171)

Insulin-like growth factor 1 Thymic epithelial cells, myeloid cells (172, 173)

Keratinocyte growth factor* Thymic epithelial cells (116, 174–177)

Receptor activator of NF-κB ligand (RANKL) Thymic epithelial cells (178), Montero-(179)

Stem cell factor Thymocytes (180)

Thymosin alpha 1* Thymic epithelial cells, thymocytes (181), (182)

Sex hormone ablation* Thymic epithelial cells, thymocytes, haematopoietic progenitor cells (183–186)

Growth hormone* Thymic epithelial cells, thymocytes (187)

Cellular therapies

Precursor T cells (ex vivo generated by Notch-1 ligand

delta-like-1 or Notch ligand delta-like-4 containing cocktails

from HSC)*

Thymic epithelial cells, thymocytes (188, 189)

Thymic epithelial cells (ex vivo generated by Foxn1 containing

cocktail from fibroblasts, embryonic stem cells or iPSCs)

Thymic epithelial cells, thymocytes (190–192)

Mesenchymal stromal cells (ex vivo expanded)* Haematopoietic progenitor cells, thymic epithelial cells, T cells (193, 194)

Anti-Viral Central Memory CD8 Veto Cells* Donor-specific host T cells, host leukemic cells, virally infected cells (195, 196)

Regulatory T cells Alloreactive conventional donor T cells (197, 198)

Endothelial cells (ex vivo expanded) Thymic epithelial cells (199)

Injectable thymus organoids Common lymphoid precursors, peripheral T cells (200, 201)

Table adapted from Velardi et al. (6). *Principles already investigated or being investigated in ongoing clinical studies. HSC, haemopoietic stem cell; iPSC, induced pluripotent stem cells.

was pioneered by the Johns Hopkins group. This approach is
widely used in adult patients with malignant and non-malignant
diseases mainly but not exclusively in the HLA-mismatched
setting (226, 227). A comparison of in vitro T-cell depleted
allogeneic HCTs with post-transplant cyclophosphamide HCTs,
including consideration of IR, is the topic of a separate review in
this issue.

Several methods have been explored in the clinical setting
to manipulate lymphocytes so that their anti-infectious activity
is retained yet the risk of GvHD is reduced. The option of
adoptive transfer of virus-specific T cells has already been
mentioned above. Modern strategies allow rapid manufacturing
of T cells against several viruses including EBV, CMV, adenovirus,
HHV-6 and BK polyomavirus and are the subject of two
previous reviews (203, 204). By magnetic enrichment of IFN-
γ-secreting cells after short-term stimulation with viral peptide
antigens, HLA-unrestricted viral-specific T cells can be produced
within 1 day (205, 206). Virus-specific T cells from third-
party donors are also in clinical use (228). They are usually
readily available and are effective inmediating antiviral immunity
without increasing the risk of GvHD (229). Another innovative
approach is the generation of veto T cells with antiviral activity.
This technique was developed by Reisner and colleagues and
is based on the finding that T cells cultured with antigenic
stimulation but under cytokine starvation are endowed with veto

activity, i.e., the potential to eliminate host-vs.-graft-directed host
T-cell clones, thereby facilitating donor engraftment even after
reduced intensity conditioning (195) together with the preserved
potential to kill host leukemic cells (196). If viral peptides are used
for antigenic stimulation during in vitro culture of these cells, the
veto T cells will confer graft facilitation together with improved
antiviral IR in the early post-transplant phase (230). The first
clinical results using the intended conditioning regimen (reduced
intensity with post-transplant cyclophosphamide) followed by
CD3/CD19-depleted haploidentical PBSCs were encouraging
(231), and the utility of this approach in combination with veto
T cell infusion is currently being investigated in a Phase I/II trial
(ClinicalTrials.gov identifier: NCT03622788).

As outlined above (chapter 5.3) regulatory T cells are
key regulators of alloreactivity and fast and sustained Treg

reconstitution is associated with lower incidences of GvHD and
lower transplant-related mortality. Thus, several investigators
have established approaches for adoptive transfer of these cells.
Although Treg products from third party cord blood units
have been used as well, the majority of groups have relied
on donor PMNCs as source of Treg. In a first feasibility trial,
28 adult patients grafted with CD34+ selected haploidentical
PBSCs received on day −4 freshly isolated Tregs in a 2:1 ratio
together with conventional T cells (216). Although only 2 out
of 26 evaluable patients developed GvHD ≥ grade 2 and no
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TABLE 3 | Clinical studies investigating approaches to enhance immune reconstitution after HCT and in patients with HIV.

Factor/method Description Age group Clinical trials in the HCT setting References

Donor lymphocyte infusions (DLIs)

Unselected CD3+ T

cells

Unseparated donor T cells Paediatrics/adolescents/

adults

Treatment and prevention of relapse in malignant

haematological diseases

(202)

Virus-specific CD3+ T

cells

Enrichment of

IFN-γ-secreting

virus-specific T cells or by

binding to viral peptide HLA

tetramers after short

stimulation in vitro

Pre-emptive treatment or therapy of infection by several

viruses (EBV, CMV, adenovirus, HHV-6, BK polyomavirus)

(203–206)

DLIs armed with a

suicide gene

Herpes simplex virus

thymidine kinase suicide

gene (HSV-TK cells);

inducible caspase 9 suicide

gene (iC9 T cells)

• Haploidentical HCT: HSV-TK cells (28 pts., Phase I/II)

• iC9 T cells in malignant diseases, FHL, and XLP (15

pts., Phase I, active, not recruiting, NCT01494103), in

malignant and non-malignant diseases (∼200

paediatric pts., Phase II study, active, not

recruiting, NCT02065869)

(207, 208)

CD45RA+-depleted

CD3+ T cells

In vitro depletion of naïve T

cells following MNC

apheresis

• Allogeneic HCT, prophylactic and pre-emptive

infusions (6 pts., pilot study)

• High risk leukaemia, CD34-selected graft +

CD45RA+-depleted DLI (35 pts., pilot study)

• HLA-mismatched HCT in CID, chronic viral infections

(5 paediatric pts., pilot study)

• Treatment of CMV disease (1 pt.)

(14, 209–211)

Allo-depleted CD3+ T

cells

In vitro depletion of

allo-reactive T cells following

MNC apheresis—via

immunotoxins, reagents

reacting with activation

markers (CD25) or

photodepletion

• Congenital haematological disorders (15 paediatric

pts., Phase I/II)

• Haploidentical HCT (15 pts., Phase I)

• CD25/71 allo-depleted donor T cells vs. standard

practise in adult malignancies (37 pts., randomised

Phase I/II, completed 2020, NCT01827579)

• Haploidentical HCT, allo-depleted vs. PTCy in adult

malignancies (250 pts., randomised Phase III, active,

not recruiting, NCT02999854)

Andre-(212–

215)

Donor Treg Ex vivo positively selected

Treg without expansion

• Haploidentical HCT, patients aged 18–65 years with

high-risk acute leukaemias lacking a matched donor.

• Haplo Treg (2 × 106/kg) day −4 combined with haplo

Tcon (1 × 106/kg) day 0

(216, 217)

Anti-viral central

memory CD8 veto cells

Central memory donor

CD8+ T cells cultivated ex

vivo under cytokine

starvation in the presence of

viral peptides.

• Haploidentical HCT after reduced intensity

conditioning, Phase I/II, actively recruiting,

NCT03622788.

• Patients aged 12–75 years with haematologic

malignancies, aplastic anaemia, severe immune

deficiency or non-malignant bone marrow failure.

(218)

Soluble factors

Interleukin-7 Target: HSPCs, thymocytes,

peripheral T lymphocytes

Adults/adolescents • T-cell-depleted HCT: expansion of effector memory

cells, enhanced TCR diversity (8 pts. >15 years old,

Phase I, published)

• Non-HCT: treatment of HIV-1 pts. (Phase I;

NCT00477321; NCT01190111, NCT01241643)

• Idiopathic CD4 lymphocytopenia (21 pts.; Phase I/II,

completed, NCT00839436, published)

(161, 219)

Keratinocyte growth

factor (palifermin)

Target: thymic epithelial cells Adults • Allogeneic HCT in malignancies (6 adult pts.;

randomised Phase I; completed, NCT01233921)

• Autologous transplant in NHL (17 adult pts.; Phase I,

completed; NCT03042585)

• Haploidentical HCT in haematological malignancies (9

adult pts., randomised phase II, terminated

NCT00593554)

• Allogeneic HCT in malignancies (50 adult pts., phase

I/II, recruiting; NCT02356159)

(Continued)
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TABLE 3 | Continued

Factor/method Description Age group Clinical trials in the HCT setting References

Thymosin alpha 1 Target: thymocytes Adults HCT in malignant diseases (6 adult pts., randomised

phase I/II study, completed, NCT00580450)

(181)

LHRH antagonist

(degarelix)

Sex steroid ablation, target:

thymic epithelial cells, bone

marrow hematopoietic stem

and progenitor cells,

thymocyts

Paediatrics/adolescents/

adults

HCT in malignant diseases (76 paediatric and adult pts.,

randomised pilot study, completed; NCT01338987)

(185)

GnRH analogue

(leuprolide)

Adults T-cell-depleted HCT in malignant diseases: palifermin +

leuprolide (82 adult pts., single-arm phase II, recruiting;

NCT01746849)

Growth Hormone Target: thymic epithelial cells

and thymocytes

Adults • HIV patients (NCT00071240, NCT00287677,

NCT00119769, NCT00050921)

• No clinical trial in HCT setting

(220, 221)

Stem cell engineering

TBX-1400

(Tat-MYC-transfusion

protein)

Culture system with fusion

proteins of the protein

transduction domain of the

HIV-1 transactivation protein

(Tat) and MYC using HSC

Paediatrics Allogeneic HCT in SCID pts. (8 paediatric pts., single

arm, Phase I, not yet recruiting; NCT02860559)

(222)

Precursor T cells Feeder-cell-free culture

system based on the

immobilised Notch ligand

delta-like 4 using

CD34+-selected HSC

Paediatrics Haploidentical HCT in SCID pts. (12 paediatric pts.,

single arm, phase I/II, recruiting; NCT03879876)

(189)

MSCs Ex vivo expanded

mesenchymal stromal cells

Adults Autologous transplantation in malignant lymphoma and

multiple myeloma (pilot study)

(194)

CID, combined immunodeficiency; CMV, cytomegalovirus; EBV, Epstein-Barr virus; FHL, Follicular Hodgkin lymphoma; GnRH, gonadotropin releasing hormone; HHV, human

herpesvirus; HIV, human immunodeficiency virus; HCT, haematopoietic stem cell transplantation; HSPC, haematopoietic stem and progenitor cells; MSC, mesenchymal stroma

cells; NHL, non, Hodgkin lymphoma; PTCy, post-transplant cyclophosphamide; SCID, severe combined immunodeficiency; TCR, T-cell receptor; Treg, regulatory T cell; XLP, X-linked

lymphoproliferative disease.

FIGURE 2 | Current approaches to improve IR which are under clinical evaluation. This graph illustrates strategies with cellular therapies (A) or solubles factors (B)
which are discussed above in sections Cellular Therapies, Soluble Factors, and Tissue Engineering. Red colour highlights the names, red arrows indicate the targets

of the novel approaches. B, B cell; CLP, common lymphoid progenitor; DLL4, delta-like ligand 4; DLI, donor lymphocyte infusion; GH, growth hormone; GnRH,

gonadotropine releasing hormone; HSC, haematopoietic stem cell; IL, interleukin; KGF, keratinocyte growth factor; LHRH, luteinizing hormone-releasing hormone;

MSC, mesenchymal stem cell; NK, natural killer cell; TCM, central memory T cell; Tcon, conventional CD3
+ T cell; Tm, memory T cell; Tn, naïve T cell; Treg, regulatory T

cell; TK/iC9, thymidine kinase/inducible Caspase 9.
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SAEs were reported in association with the Treg infusion, TRM
was 50%, making efficacy assessment difficult. In a follow-up
report of the same group, 43 adult patients with AML/ALL were
transplanted using the same approach (217). After switching to
a less toxic preparative regimen, TRM could be reduced to 21%.
Albeit patients received a mean of 1.1± 0.6× 106 haploidentical
CD3+/kg BW, GvHD incidences were comparable to a historical
control group with fully T-cell depleted grafts. In order to
increase transplantable cell numbers and to be compliant with
current regulation, a GMP-compatible manufacturing process
was developed, in which isolated Treg were expanded with IL-
2 and rapamycin (232). After 14 days of expansion, a 9.6 fold
expansion was achieved with good suppressive function of the
final Treg product. This product now awaits testing in a tolerance
induction protocol after haploidentical HCT.

A very intriguing yet easy to realise technique to reduce
the alloreactivity of donor lymphocytes is the enrichment of
memory T cells by CD45RA depletion. This technique and
the first clinical results have been described in detail in the
former sections of this review. An alternative and even more
selective approach is selective allodepletion. Application of
allodepleted T cells in vitro seems an attractive way to transfer
antitumour and anti-infectious immunity from the donor to the
recipient while avoiding the risk of GvHD. Reagents reacting
with activation markers such as CD25, immunotoxins or a
photodepletion procedure (using Kiadis Pharma technology) are
methods to reduce alloreactive T cells for DLI (212–214). In
two prospective randomised trials (Clinicaltrials.gov identifier:
NCT02999854 and NCT01827579), such modified DLIs are
currently being assessed vs. “standard” methods of haploidentical
HCT, including the use of post-transplant cyclophosphamide
(which was mentioned above).

Another approach for safer DLI administration involves
T cells being armed with an inducible suicide gene. In a
phase I-II, multicentre, non-randomised trial (ClinicalTrials.gov
identifier: NCT00423124) in adult patients with high-risk
haematological malignancies after haploidentical HCT, herpes-
simplex thymidine kinase suicide gene expressing donor
lymphocytes (HSV-TK) were infused after transplantation (207).
Of the 28 patients receiving these HSV-TK cells after HCT,
22 obtained IR (i.e., CD3+ > 100/µl) at a median of 75
days (range 34–127 days) from transplantation and 23 days
(range 13–42 days) from infusion. Ten patients developed
aGVHD (grade I–IV) and one developed cGVHD, which was
controlled by induction of the suicide gene. In another pilot
study (Clinicaltrials.gov identifier: NCT01494103), 12 recipients
of haploidentical HCT for different diseases including ALL,MDS,
JMML, and HLH (medium age 10 years, range 2–50 years) were
infused with increasing numbers of alloreplete haploidentical
T cells expressing the inducible caspase 9 suicide gene (iC9-T
cells) (208). All patients receiving >104/kg of alloreplete iC9-T
lymphocytes achieved rapid reconstitution of immune responses
toward five major pathogenic viruses and concomitant control
of active infections. By administration of a chemical inducer
of dimerization (AP1903/rimiducid), 86–96% of circulating
CD3+CD19+ T cells were eliminated within 30min, with no
recurrence of GvHD within 90 days (208). Another Phase II

trial using this approach after haploidentical HCT with CD3+

TCRα/β-depleted grafts in about 250 paediatric patients with
malignant and non-malignant diseases is ongoing in Italy and the
UK (Clinicaltrials.gov identifier: NCT02065869). In an interim
analysis, 10.9 and 2.1% of patients developed grade II–IV and
grade III–IV aGvHD, respectively. 4.6% of patients [95% CoI:
1.3–7.8] developed cGvHD (233). Of 21 patients developing
GvHD, 86% responded to rimiducid, with a median time to
response of 2 days. Of initial responders, 77% were still in either
complete (n = 8) or partial response (n = 6) at the time of
interim analysis.

Soluble Factors
Although the above methods for graft manipulation and DLI
engineering show promising results in host defence, they all
carry the major disadvantage of expansion of memory-type T
cells in the absence of a polyclonal naïve T-cell compartment.
Since dysfunction of the thymus represents the limiting factor
for full T-cell recovery, strategies to accelerate naïve, polyclonal,
de novo T-cell reconstitution are warranted. Strategies proposed
in recent years include the stimulation of T-cell development
and expansion using (1) cytokines such as IL-7, IL-12 and IL-
21; (2) the administration of cytokines alongside growth factors
such as stem cell factor (also known as KIT ligand), keratinocyte
growth factor (KGF encoded by the fibroblast growth factor 7
gene), IL-22 and FMS-like tyrosine kinase 3 ligand; and (3) the
modulation of hormone levels by suppression of sex steroids
or by administration of thymosin-α1. For a recent review see
Velardi et al. (6). Some of these factors have recently been
explored or are currently being explored in clinical trials in the
context of HCT (Figure 2B and Table 3).

Members of the common gamma-chain cytokine family
IL-7 and IL-15 are involved in homeostatic expansion of T
cells in the peripheral blood (234). In mice and non-human
primates, administration of IL-7 seems to have a positive effect
on functional T-cell recovery after HCT, with a predominant
effect on naïve CD8+ cells (24, 158, 159). However, this positive
effect on thymus regeneration could not be confirmed in another
animal study (160). In a phase I/II clinical trial treatment of
21 adult patients with idiopathic CD4+ lymphytopenia with
recombinant IL-7 (without HCT) led to an increase in the
number of circulating CD4+ and CD8+ T cells and tissue-
resident CD3+ T cells in the gut mucosa and bone marrow;
however, enhanced thymospoiesis, measured by TRECs, was
only observed in the youngest patients, aged 23 and 34 years
(NCT00839436) (219). In a phase I trial, 12 patients more than
15 years of age were treated with recombinant IL-7 after TCD
allo-HCT from an 8 of 8 HLA-matched donor for treatment of
non-lymphoid haematologic malignancy. After a short course of
IL-7, a quantitative increase of CD4+ and CD8+ effector memory
T cells as well as an increase inmitogen-reactive T cells was found
(NCT00684008) (161). However, there was only a limited effect
on thymic output in this study as shown by minimal changes in
the number of recent thymic emigrants and the levels of TRECs.
An extended duration of IL-7 administration may have a greater
effect on thymic function particularly in younger patients. IL-7
is currently under investigation in multiple randomised clinical
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trials for oncologic and infectious disorders (including human
immunodeficiency virus and severe acute respiratory syndrome
coronavirus 2 infection), but there are no further studies in the
allogeneic HCT setting to our knowledge. Taken together, the
direct impact of IL-7 on the human thymus is still unclear, but
most of the effects on T-cell IR after IL-7 treatment seem to be
primarily related to the expansion of peripheral T cell subsets and
to the improvement of T-cell functionality. A possible impact on
thymic function seems to be restricted to younger patients with
more residual thymic capacity.

IL-15 has been shown to increase the number of CD8+ T cells
and NK cells after transplantation in mice (164). Similarly to
IL-7, IL-15 can improve lymphocyte reconstitution after T-cell-
depleted HCT, but it can also worsen GvHD, which limits its use
in HCT (235). For a review see Moutuou et al. (236).

Factors that stimulate the thymic niche and increase
the output of recent thymic emigrants, including KGF and
the luteinizing-hormone–releasing hormone (LHRH) agonist
leuprolide have been identified in mouse models (237, 238).
Two trials are evaluating the effects of leuprolide and the LHRH
antagonist degarelix on IR following HCT (ClinicalTrials.gov
identifiers: NCT01746849 and NCT01338987), but results have
not yet been reported.

Human recombinant KGF (palifermin) is approved by
the US Food and Drug Administration for the prevention
of mucositis in patients receiving high-dose chemotherapy
including conditioning for HCT. In several mouse models KGF
enhanced recovery of thymic cellularity and peripheral T cell
numbers after HCT, reversed thymic involution and restored
thympopoiesis (116, 174). Several trials are exploring its effects
on T-cell reconstitution, but results have not been reported so
far (ClinicalTrials.gov identifiers: NCT01233921, NCT03042585,
NCT02356159, and NCT00593554).

Thymosin-alpha1 is a low molecular weight peptide produced
by thymus epithelial cells, which can increase thymocyte
maturation and boost T cell function as shown in several
preclinical studies. In a phase I/II clinical trial the safety
and efficacy of Thymosin-alpha1 was evaluated in 6 adult
recipients of haploidentical HCTs for haematologic malignancies
(ClinicalTrials.gov identifiers: NCT00580450) (181). An increase
of peripheral T-cell numbers, an earlier appearance of pathogen-
specific T cell responses as well as a significant improvement
in phagocytosis and dendritic cell function was observed (181).
However, to the best of our knowledge, there are no further trials
ongoing exploring Thymosin-alpha 1 in the HCT setting.

Tissue Engineering
De novo T-cell generation is dependent on the continuous
seeding of the thymus by T-lymphoid precursors. These T-
lymphoid precursors must differentiate from donor-derived
haematopoietic stem cells in the recipient bone marrow before
they can home to the thymus via the peripheral blood. Since
this process is compromised after HCT by damage to the thymus
caused by total body irradiation, chemotherapy, infections and
predominantly GvHD prophylaxis and treatment, it may take
up to 2 years before T-cell neogenesis is re-established (3, 239,
240). Adoptive transfer of in vitro generated human T-lymphoid

precursors is therefore a promising approach to shortcut this
pathway by targeted injection of T-lymphoid progenitors.

An US group has developed a novel approach to expand a
cytokine-dependent, haematopoietic progenitor cell population
ex vivo by culturing primary haematopoietic stem and progenitor
cells with fusion proteins comprising the transduction domain
of the HIV-1 transactivation (Tat) protein and either MYC or
B-cell lymphoma 2 (BCL-2) proteins (222). In both humans
and mice, the ex vivo expanded cells gave rise to a self-
renewing cell population following initial transplantation in
vivo; serial transplantations of this cell population were able
to support haematopoiesis. Based on these laboratory studies,
a clinical trial has been initiated in Israel to assess the
application of TBX-1400 in patients with severe combined
immunodeficiency (human donor haematopoietic stem and
progenitor cells that have been treated ex vivo with the protein
transduction domain of the Tat fused to MYC, ClinicalTrials.gov
identifier: NCT02860559).

Several other groups have developed systems to pre-
differentiate T-lymphoid progenitors out of CD34+

haematopoietic stem cells, e.g., by using the canonical Notch
ligand Delta-like (DL)-1, or more recently a French group using
immobilised DL-4 (241). These techniques allow the in vitro
generation of large amounts of T-cell progenitor cells with high
T-lymphopoietic potential. When co-transplanted together with
CD34+ haematopoietic stem cells, these committed precursors
led to rapid T-cell engraftment within 28 days in a humanised
mouse model (242). This protocol was improved in recent years
to expand CD34+ cells from granulocyte colony-stimulating
factor (G-CSF)-mobilised peripheral blood as well (189). After
7 days of in vitro culture, these cells expressed T-lineage-
related, thymus homing and crosstalk genes as well as markers
of early lymphoid commitment but do not show any TCR
rearrangement. Remarkably, in a humanised mouse model,
thymic engraftment occurred 4 weeks after intrahepatic injection
of such precursors in comparison to 12 weeks after injection
of uncultured, CD34+-selected haematopoietic progenitor cells
(189, 243). Thus, T-lymphoid progenitors seems to allow thymic
engraftment just 4 weeks after transfer, a result which has to be
confirmed in the human setting. Since the injected precursors
do not harbour any TCR rearrangement, they should allow the
generation of a polyclonal and self-tolerant T-cell repertoire
without increasing the risk of GvHD. A Phase I/II clinical trial
was initiated recently to evaluate the safety and efficacy of human
T lymphoid progenitor transfusion after haploidentical HCT in
patients with severe combined immunodeficiency (Clinical trial
identifier: NCT03879876).

In the case of an entirely a functional thymus, transplantation
of postnatal allogeneic thymic tissue may be another option. This
procedure improved thymic output in patients with complete
DiGeorge syndrome (244, 245). Although this approach has
not been tested so far after HCT, it has been investigated
in patients with acquired immunodeficiency syndrome (246).
However, in these patients, residual host T cells led to a high rate
of thymic tissue rejection. Therefore, complete T-cell depletion
prior to thymus transplantation is a potential requirement if this
approach is to be trialled post HCT.
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In summary, several strategies to accelerate recovery of T-
cell immunity after allogeneic HCT are currently under clinical
evaluation. Patients with prolonged immune dysfunction caused
by chemotherapy, irradiation, infection and GvHD may benefit
from a multifactorial approach. The combined use of optimised
graft composition, soluble factors (IL-7, KGF, Thymosin-alpha-
1), T-lymphoid progenitors or, in case of complete thymic
involution, thymus tissue transplantation may be able to
accelerate restoration of the T-cell compartment.

FINAL REMARKS

Studies about the reconstitution kinetics of different cellular
subsets after HCT have revealed important insights about
the basic principles of this treatment. They helped us to
understand the artificial immune ontology after HCT as well
as the pathophysiology of GvHD, viral reactivation and other
transplant-related complications. By continuous efforts to dissect
the phenomenon of alloreactivity, IR studies have opened the
door to understand the GvL effect, at least in part. In recent
years, research on IR has evolved frommerely descriptive studies
into a highly dynamic and innovative field which actively shapes
the future design of HCT. Novel insights have fostered the
continuous evolution of T-cell-depletion techniques to a level
by which HCTs employing this method now yield comparable
results to T-replete HCTs. Clinical trials over the coming years
will show whether adoptive transfer of memory DLI, veto TCM

cells or selective allodepletion approaches will give superior
results. Strategies of restoring thymic cellularity by soluble
factors, targeted influx of committed lymphoid progenitors or
tissue engineering not only intend to lift IR kinetics of adult
patients to that of an infant but will beyond that impact on
ageing research since thymic involution is considered a major
contributor of immune senescence.

Future studies on IR will aim to develop more precise
prediction models for complications such as GvHD, viral
disease or relapse. To this end, multifactorial models of
IR will have to take the complex interactions around HCT
into account and include not only lymphocyte subset
numbers but also other factors such as graft type, graft
manipulation, HLA disparity and minor histocompatibility
differences. The first examples of such multidimensional
IR analyses have already been published (71, 82, 132).
Control over IR with targeted interventions in a timely
orchestrated fashion will help to reduce transplant-
related morbidity and mortality and improve GvHD-free,
relapse-free survival.
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