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INTRODUCTION
Dupuytren’s disease (DD) is a fibro-proliferative disor-

der characterized by progressive palmar fascia fibrosis1–3 
with a variable prevalence among racial groups and an in-
creased incidence in males of Northern European ances-
try.1,2 Despite known risk factors, the pathogenesis of DD 
remains unclear.

Palmer fascia fibrosis in DD causes progressive fixed 
flexion contracture of the digits, resulting in functional 
impairment. Management options of DD include fasci-
ectomy as the mainstay of treatment, and more recently, 
collagenase injections.3 Fasciectomy is associated with a 
risk of injury to the neurovascular bundle and recurrence 
rates of up to 70%.4

Previous studies of DD have implicated an aberrant 
myofibroblast proliferation suggesting a mesenchymal 
origin.5,6 We have recently demonstrated a primitive pop-
ulation of cells expressing embryonic stem cell (ESC) 

 markers, localized to the endothelium of the microvessels 
in DD nodules and cords.7 We have also demonstrated 
that these ESC-like cells express components of the renin-
angiotensin system (RAS), namely pro-renin receptor, 
angiotensin-converting enzyme (ACE), and angiotensin II 
receptor 1 and angiotensin II receptor 2.8 We infer that 
this primitive population putatively gives rise to an MSC 
intermediate, which in turn, produce the downstream 
myofibroblasts characteristic of DD7 (Fig. 1).

This review presents current evidence of the role of 
stem cells in the pathogenesis of DD.

MYOFIBROBLASTS
The development of nodules and cords in DD has 

been attributed to an aberrant proliferation of myofibro-
blasts, the dominant cell type within DD.9 Myofibroblasts 
expresses types I and III collagen but are distinct from 
fibroblasts by their expression of α-SMA.10 It has been 
proposed that myofibroblasts normally differentiate from 
fibroblasts through a proto-myofibroblast intermediate, 
regulated by transforming growth factor-β1 (TGF-β1) and 
platelet-derived growth factor.9,10 There is also increasing 
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evidence showing MSCs as the potential origin of aberrant 
myofibroblasts observed in DD.6

MESENCHYMAL STEM CELLS
Mesenchymal stem cells (MSCs) are fibroblast-like 

cells that are multipotent and express mesenchymal mark-
ers CD73, CD90, and CD105.11 These MSCs are devoid of 
hematopoetic stem cell markers CD45, CD34, or CD19 
and are derived from the bone marrow,12 adipose tissue,13 
and peripheral or umbilical cord blood.14 The multipo-
tency of MSCs are defined by their ability to differentiate 
into multiple cell lineages such as adipocytes, osteocytes, 
chondrocytes, and fibroblasts.11–13

A recent study has demonstrated the presence of a 
MSC population that expresses surface markers CD73, 
CD90, CD105, but not CD34, within DD tissue.6 These 
MSCS are localized to the surrounding fat and overlying 
skin and are proposed to be a potential source of aberrant 
myofibroblasts observed in DD (Fig. 1).5,6 The proposed 
role of this MSC population within the surrounding tissue 
in DD is further supported by reduced recurrence rates 
following dermofasciectomy in which the skin overlying 
the cords and nodules is also excised.15

The terminology proposed by the International Soci-
ety for Cellular Therapy does not differentiate MSCs from 
fibroblasts. Fibroblasts, like MSCs, also express cell mark-
ers CD73 and CD105, and whether these 2 populations 
are homogenous or distinct cell populations, remains to 
be investigated in DD.11,16

EMBRYONIC STEM CELL–LIKE CELLS
We have demonstrated an ESC-like population local-

ized to the endothelium of the microvessels in DD cords 
and nodules that express ESC markers NANOG, pSTAT3, 
SALL4, and OCT4.8

NANOG is a homeoprotein linked to self-renewal and 
pluripotency.17–19 Intrinsic to the function of ESCs, the ab-
sence of NANOG leads to a loss in pluripotency and re-
sults in differentiation.18,19 STAT3 is a transcription factor 
and plays a role in cellular regulation pathways. Unlike 
NANOG, STAT3 is an independent mediator of pluripo-
tency in stem cells.20,21 SALL4 is a regulator of NANOG 
and is also required for maintaining stem cell pluripo-
tency.22,23 The transcription factor SALL4 binds to the 
NANOG gene and upregulates NANOG expression.22,23 
In addition, SALL4 regulates OCT4, a POU transcription 
factor required for the maintenance of the pluripotent 
potential in ESCs.19,24,25

Through the process of endothelial-to-mesenchymal 
transition (EndoMT) the primitive population on the en-
dothelium of the microvessels in DD that expresses ESC 
markers are proposed to give rise to an MSC intermediate, 
which in turn, gives rise to the downstream myofibroblasts 
(Fig. 1). Additionally, these ESC-like cells express compo-
nents of the RAS, namely pro-renin receptor, ACE, and 
ATIIR1 and ATIIR2, implicating RAS dysfunction in the 
ultimate development of aberrant myofibroblasts.8 This is 
supported by similar findings in keloid scar.26 Although a 
causal relationship has yet to be established, the improve-

ment of fibrotic conditions such as keloid scar following 
administration of low-dose enalapril, an ACE inhibitor, 
supports a role for the RAS in this condition.27,28

CIRCULATING FIBROCYTES AND 
CIRCULATING MSCS

The role of circulating cancer stem cells (CSCs) in 
cancer has also recently been reported.29–31 These circulat-
ing CSCs express the surface marker CD34 and undergo 
an epithelial to mesenchymal transition, attributed to 
the ability of cancer to metastasize.32,33 Circulating CSCs, 
like hematopoetic stem cells, are found in the peripheral 
blood, and they have the ability to migrate to target or-
gans.34,35

The role of circulating fibrocytes in fibrosis has also 
been reported recently.35 Circulating fibrocytes are fibro-
blast progenitors that migrate to distant tissue sites where 
they contribute to inflammation and fibrosis.35 The origin 
of these circulating fibrocytes remains unclear and may 
include the bone marrow or peripheral blood cells.34,35 
It is exciting to speculate that these circulating fibrocytes 
that express CD34, migrate from the peripheral circula-
tion to target organs, leading to fibroblast proliferation 
and fibrosis in DD35,36 (Fig. 1). These CD34+ circulating fi-
brocytes have also been implicated in tissue repair, wound 
healing, and contributes to keloid scar and hypertrophic 
scar.37–42 The ability of these circulating fibrocytes to dif-
ferentiate into myofibroblasts, further supports their role 
in fibrosis in DD.43–45

Circulating MSCs have also been reported to play a 
potential role in fibrosis.38,48 Circulating MSCs, are a sub-
set of MSCs, that exist in the peripheral circulation, and 
like circulating fibrocytes, they increase in number and 
migrate to target organs during tissue injury and inflam-
mation.46–48 The similarity in function and structure be-
tween the circulating CD34+ fibrocytes and the circulating 
MSCs suggests that these cell types may act as additional 
reservoirs that give rise to the aberrant myofibroblasts 
observed in DD.44,45 Whether these circulating fibrocytes 
and circulating MSCs are the same population, potential-
ly originating from the DD-associated primitive endothe-
lium and/or from other sites, such as the bone marrow 
through an EndoMT process, and subsequently migrate 
to the site of DD (Fig. 1), remains the topic of future re-
search.

ENDOTHELIAL-TO-MESENCHYMAL 
TRANSITION

Endothelial-mesenchymal transition is characterized 
by the loss of expression of endothelial surface markers 
CD31 and VE-cadherin, and the expression of mesen-
chymal components α-SMA and type I collagen.43,44,49,50 
In early human development, the cardiac valves and sep-
tum have been proposed to arise from endoMT, whereby 
the surrounding endothelium gives rise to endocardial 
cushions through a mesenchymal intermediate.48 Simi-
lar findings have also been shown in the development of 
hematopoietic cells from a hemogenic endothelial phe-
notype.52
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In addition to its aforementioned role in embryologi-
cal development, endoMT has also been shown to con-
tribute to the development of pulmonary,44 cardiac,49 and 
renal fibrosis.53

EndoMT is initiated by cytokines such as TGF-β.54–56 Al-
though the exact mechanism is yet to be elicited, TGF-β 
has been shown to upregulate transcription factors Snail,52 
Slug,54 and Twist,54 which leads to the downstream regres-
sion of endothelial cell surface markers, and the expres-
sion of mesenchymal markers.55–58

We postulate that cyotkines, such as TGF-β, ex-
pressed by the tissues surrounding the putative primi-
tive phenotypic endothelium, induces differentiation 
of the ESC-like cells to form a MSC intermediate via an 
endoMT, which ultimately give rise to aberrant myofi-
broblasts (Fig. 1). Currently, there remains no consen-
sus on whether MSCs and fibroblasts are phenotypically 
distinguishable populations within DD.16 Furthermore, 
the mechanism by which MSCs differentiate into 

 myofibroblasts in DD remains unclear, and may result 
from direct differentiation of MSCs into myofibroblasts, 
or via a fibroblast intermediate.59

DISCUSSION
There is increasing evidence supporting the role of 

DD tissue-associated ESC-like cells and MSCs, and circu-
lating fibrocytes and circulating MSCs, in DD. We have 
described the characteristics and potential source and 
the role of each of these cell populations and how they 
may relate to one another. We propose that dysfunction 
of the ESC-like cells on the endothelium of the microves-
sels gives rise to the downstream aberrant myofibroblasts, 
through an MSC intermediate.7 This ESC-like population 
expresses components of the RAS,8 and therefore may be 
a novel therapeutic target through modulation of the RAS 
using existing medications. We also propose that circulat-
ing CD34+ fibrocytes and circulating MSCs may serve as 
additional extra-palmar reservoirs that migrate to target 

Fig. 1. a proposed model demonstrating the potential sources of stem cells that give rise to the myofibroblasts observed 
in Dupuytren’s disease: (1) DD tissue-associated embryonic stem cell (eSc)-like cells localized to the endothelium of the 
microvessels that undergo endothelial-mesenchymal transition (endoMT) induced by cytokines such as TGF-β1, giving 
rise to myofibroblasts through a MSc intermediate; or (2) circulating fibrocytes and circulating MScs that originate from 
the bone marrow or the peripheral blood cells or from the primitive endothelium of the microvessels in DD-associated 
tissue, and migrate to DD sites and differentiate into myofibroblasts, via an endo-MT.
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organs and differentiate into aberrant myofibroblasts 
through EndoMT.

The key cell types in DD and their characteristics are 
presented in Table 1. A better understanding of the role of 
stem cells in DD may potentially lead to the development 
of targeted therapy for this enigmatic condition.
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