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Abstract
The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented
system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic
resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate
delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and
normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different
b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model.
Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In
parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities.
Finally, those prostate-specific antigen–based probabilities are integrated with the initial diagnostic probabilities obtained using
stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient–cumulative distribution func-
tions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets
achieved 94.4% diagnosis accuracy (sensitivity ¼ 88.9% and specificity ¼ 100%), which indicate the promising results of the
presented computer-aided diagnostic system.
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Introduction

Prostate cancer is one of the most frequent cancers identified

among the male population in the United States and accounts

for the highest mortality rate due to cancer second only to lung

cancer. According to statistics published by the American

Cancer Society in 2016, around 180 890 new patients were

diagnosed and around 26 120 patients passed away due to

prostate cancer.1 The incidence of prostate cancer increases

as age progresses. By 2030, it is estimated there will be up to
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1 700 000 prostate cancer incidences worldwide, and the

related number of annual deaths will be around 500 000.2 For-

tunately, the sooner prostate cancer is detected, the more likely

it is treated, and the mortality rate is minimized.

Current screening techniques of prostate cancer include

digital rectal examination (DRE),3 prostate-specific antigen

(PSA) blood test,4 and needle biopsy.5 Each of these techniques

have their own shortcomings. In the DRE test, a doctor exam-

ines the prostate manually to identify anomalies in volume or

hardness. The DRE cost is relatively low, but it is highly inva-

sive. Some peripheral zone tumors can be identified using the

DRE. However, most of the central zone and transitional zone

tumors, as well as tumors too small to be palpated, cannot be

detected through the DRE. As a result, the positive predictive

value, sensitivity, and specificity of the DRE are low.3 The

most prevailing prostate examination measures the PSA

enzyme concentration in the blood. An increased PSA level

higher than 4 ng/mL (nanograms per milliliter) might likely

indicate prostate cancer. However, the elevated levels may also

be due to other reasons, such as prostatitis or hyperplasia. In

general, the positive predictive value, sensitivity, and specifi-

city of the PSA screening are better than the DRE test.3 How-

ever, both DRE and PSA are indicators of prostate cancer and

are not conclusive diagnosis techniques.

If either the DRE or PSA test raises suspicion, patients

undergo further testing, such as needle biopsy, to confirm the

existence or nonexistence of the cancer. Transrectal ultrasound

(TRUS)-guided biopsy acquires small tissue specimens from

the prostate gland for evaluation by a pathologist. The Gleason

grading system is the standard method used by pathologists for

visual assessment of acquired specimens. The Gleason grading

system is based on evaluating the 2 most predominant tumor

patterns in the acquired specimen. A pathologist evaluates each

pattern on a scale from 1 to 5, where 5 represents the most

aggressive tumor. The Gleason score is the result of summing

the scores of these 2 patterns. A score of 6 or more indicates the

presence of prostate cancer. However, there is a possibility of

missing a cancer tumor due to the small number of biopsy

specimens, random nature of sampling, and poor resolution

of TRUS. Magnetic resonance imaging (MRI)/US-guided

biopsy has been demonstrated to perform better than TRUS-

guided biopsy. Even though biopsy is the most precise tech-

nique for detecting cancer, it is highly invasive, expensive, and

a painful tool for detecting prostate cancer and determining its

aggressiveness. Because of these shortcomings, accurate, sen-

sitive, specific, and noninvasive diagnostic techniques are in a

high demand.

Today’s computer-aided diagnostic (CAD) systems analyze

images from various modalities, such as, ultrasound and MRI,

to detect and localize prostate cancer, as well as evaluate its

size and extent. In clinical applications, each of these modal-

ities have pros and cons. The most prevalent prostate imaging

modality is TRUS as it is used to guide the needle biopsy and

estimate the prostate volume.6 In comparison to other imaging

modalities, the TRUS is portable, inexpensive, and generates

real-time images. The negative aspects of TRUS imagery are

low contrast, noisy due to small signal-to-noise ratio, the exis-

tence of speckles, and shadow artifacts.7 The interpretation of

the TRUS images is highly affected by the subjective nature of

the examination and the experience of the clinician. Therefore,

it is hard to precisely detect tumors and/or identify the cancer

stage with the TRUS images.

Various MRI modalities have been used in CAD systems

for prostate cancer diagnosis. Diffusion-weighted magnetic

resonance imaging (DW-MRI) is the most recent MRI mod-

ality for diagnosing prostate cancer. Diffusion-weighted mag-

netic resonance imaging employs the diffusion of water

molecules to indirectly identify cellularity of tissues. Cancer-

ous prostate regions are characterized by increased cell den-

sities, which result in more constrained diffusion compared to

healthy tissues. Even though the contrast of DW-MR images

is not as good as the contrast of dynamic contrast-enhanced

MRI (DCE-MRI), the acquisition time of DW-MRI data is

much shorter, and it does not involve the use of any contrast

agents.8,9 In general, using DW-MRI for diagnosing prostate

cancer results in higher accuracy than using DCE-MRI or

T2-weighted MRI.10

Viswanath et al11 introduced a CAD system for detecting

prostate cancer in both the central gland (CG) and the

peripheral zone (PZ) from T2-weighted MRI. In their system,

110 textural features were extracted. Then, a feature selection

approach was performed to choose the minimum number of

features with the best accuracy, in terms of the area under the

curve (AUC), using a quadratic discriminant analysis classifier

for both the CG and the PZ. Their experiments on a data set of

22 participants showed that applying feature selection resulted

in a better accuracy than using the whole set of textural feature.

The resulting AUC under the receiver operating characteristic

(ROC) curve were 0.86 and 0.73 for CG cancer and PZ cancer,

respectively. Hambrock et al12 presented a CAD system to help

radiologists in differentiating malignant lesions from benign

ones in both the TZ and the PZ. Two linear discriminant anal-

ysis classifiers, one for the PZ and the other for the TZ, were

used to estimate malignancy likelihood using apparent diffu-

sion coefficient (ADC) maps and DCE-based features extracted

from regions of interest. The experimental results on a data set

of 34 patients showed that the use of their CAD system raises

the accuracy of the diagnosis for less-experienced radiologists

in terms of AUC from 0.81 to 0.91, which is equal to the

accuracy for experienced radiologists. Litjens et al13 proposed

a multiparametric CAD system for prostate cancer diagnosis

from DW-MRI, T2-weighted MRI, DCE-MRI, and proton

density-weighted MRI. The diagnosis is performed in 2 steps:

first, initial candidate regions are detected. Then, those regions

are classified to generate cancer likelihood maps. For classifi-

cation, the random forest (RF) classifier was used and an AUC

of 0.91 was achieved. Kwak et al14 used DW-MRI at a high

b value with T2-weighted MRI in their proposed CAD system.

They utilized a textural feature selection approach of 3 stages

to obtain the features with the best discriminative capabilities.

The resulting AUC was 0.89. Peng et al15 evaluated the corre-

lation between a number of features extracted from
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multiparametric MRI and the aggressiveness of the cancer.

Their experiments demonstrated a correlation between ADC

values and Gleason score. This correlation was confirmed in

a recent study.16

There are 2 main limitations of the developed CAD systems

for prostate cancer diagnosis from DW-MRI. First, according

to the literature, most of these CAD systems use only images

acquired at a certain b value. The used b values are not con-

sistent and differ from a system to another. Therefore, there is

no agreement on which b value will provide the best diagnosis.

Second, most investigators have just used imaging markers and

they have not integrated them with the current clinical biomar-

kers which affect the final accuracy. To overcome these limita-

tions, we are the first group who investigate the integration of

imaging markers with clinical biomarkers to develop an accu-

rate and robust system for early diagnosis of prostate cancer.

Moreover, our presented CAD system uses DW-MRI data col-

lected at multiple b values. Therefore, it is not sensitive to the

selection of a b value. One of the state-of-the-art deep learning

technique is used to make a fusion between these images,

which are acquired at multiple b values, and the clinical bio-

markers for accurate diagnosis of prostate cancer. The main

motivation behind submitting the current manuscript to the

“Special Collection on Deep Learning in Medical Imaging”

is that the application of deep learning techniques in prostate

cancer diagnosis is one of the main areas of this special issue,

which is the case of the current submitted manuscript.

Methodology

The basic processing steps of the presented system are sum-

marized in Figure 1. The CAD system begins with delineating

the prostate region using a level set–based model. In this

model, the evolution of the level set is guided by a nondeter-

ministic speed function that employs nonnegative matrix fac-

torization (NMF). The NMF fuses the DW-MRI intensity

information, the probabilistic shape prior, and the spatial

voxels interactions. The resulting segmentation accuracy of the

developed segmentation model in terms of Dice similarity

coefficient and average Hausdorff distance is 86.89% and

5.72 mm, respectively. More information about that segmenta-

tion model and comparisons with other segmentation models

can be found in our previous work.17 Then, DW-MRI intensity-

based features, such as ADCs are extracted, normalized,

smoothed using a generalized Gaussian Markov random field

(GGMRF) model, and globally described using the cumulative

distribution function (CDF). Those DW-MRI features are inte-

grated with the PSA screening results for better accuracy of

diagnosis. Finally, both the PSA-based probabilities and CDFs

of the estimated ADCs are fed into a stacked nonnegatively

constrained sparse autoencoder (SNCSAE) to predict the diag-

nosis of the input prostate volume as either benign or malignant

through a 2-stage classification.

Imaging Features and Clinical Biomarkers

Key discriminating features are estimated from the delineated

prostate region to differentiate between cancerous and benign

prostates, as shown in Figure 2. In this work, a DW-MRI

intensity-based feature, ADC, is calculated by measuring the

difference between 2 DW-MRI data images: one is used as the

baseline (b0) and the other is acquired at a higher b value. The

ADC map is the set of ADC values at every voxel and is

calculated using the following equation:

ADCðx; y; zÞ ¼
ln S0ðx;y;zÞ

S1ðx;y;zÞ
b1 � b0

; ð1Þ

where S0 and S1 are the intensities obtained, respectively, at the

b0 and b1 values. It has been demonstrated that the ADC maps

are effective in distinguishing between cancerous and benign

cases, as benign prostates have a higher average ADC than

cancerous ones.18 The whole ADC maps for all cases at a given

b value are then normalized and refined using a GGMRF model

Figure 1. Framework of the presented computer-aided diagnostic (CAD) system for prostate cancer diagnosis.
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with a 26-voxel vicinity to eliminate any discrepancy and

maintain continuity. To globally describe the entire ADC vol-

ume, the CDFs of the processed ADC maps for each case are

calculated. Like ADC maps, these constructed CDFs have the

same characteristic of being able to distinguish between can-

cerous and benign prostates. There are 2 main advantages of

using these constructed CDFs as inputs to the SNCSAE-based

classifiers instead of the prostate volumes. First, these con-

structed CDFs have a unified size. Therefore, their use over-

comes the challenge related to the variable sizes of different

prostate volumes. Second, due to the small size of these CDFs,

they speed up the time required for training the SNCSAE-based

classifiers as well as the time required for classification. In

parallel, the PSA screening results for each case is transformed

into a diagnostic probability using a K-nearest neighbor (KNN)

classifier. The KNN classifier is considered a good choice for

low-dimensional data, which is the case of the PSA screening

results. Subsequently, the initial diagnostic probabilities at

7 different b values estimated using SNCSAEs that employ

ADC-CDFs are integrated with the PSA-based probabilities

to increase the diagnostic accuracy of prostate cancer.

Stacked Nonnegativity Constraint Sparse Autoencoders–
Based Classification

In the presented CAD system, the classification of prostates

into malignant or benign is obtained by integrating the PSA

screening results with a 2-phase structure of SNCSAE. In the

first phase, 7 SNCSAE-based classifiers, one for each of the 7 b

values (100-700 s/mm2), are employed to determine an initial

classification probability of the prostate case. In the second

phase, the resulting initial classification probabilities of the

7 first phase classifiers, in addition to the PSA-based classifi-

cation probabilities, are then concatenated to form an initial

classification probability vector. This vector is fed into another

SNCSAE-based classifier to determine the final classification

of the prostate case. Each SNCSAE compresses the CDFs, of

size 100, at a certain b value inputted into it to grasp the most

noticeable variations and is constructed by linking the final

hidden layer with a softmax classifier. The SNCSAE is the first

pretrained one layer at a time using greedy unsupervised pre-

training.19 Then, a supervised fine-tuning of all SNCSAE

layers is performed using error backpropagation to minimize

the total loss for the given training data. In the subsequent

paragraphs, autoencoder (AE), the basic unsupervised feature

learning algorithm, is first introduced. Then, NCSAE, which

imposes nonnegativity and sparsity constraints for learning

robust feature representations is explained. Finally, SNCSAE,

the deep network architecture that is constructed by layer-wise

stacking of multiple NCSAE is explained.

Autoencoder, the basic learning component of SNCSAE,

consists of 3 layers, which are the input layer, the hidden layer,

and the output layer. Each layer has a number of nodes, and a

node in a given layer is fully connected to all nodes in the

successive layer. The objective of AE is to learn a precise

compressed representation of input data that could be used at

a later stage to reconstruct the input data. In general, AE has

2 steps, which are encoding and decoding. The encoding layers

Figure 2. Schematic diagram of both the imaging features and the biomarkers used in the presented system.
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hierarchically decrease the dimension of their inputs into codes

to capture the most essential representations, while the decod-

ing layers try to restore the original input from the codes in the

hidden layers.

Given an n-dimensional column vector x ¼ [x1, . . . , xn]T of

input data, AE first encodes it into an m-dimensional column

vector h ¼ [h1, . . . , hm]T of hidden feature representations by

the nonlinear activation function s( . . . ) defined as:

hj ¼ s
��

�e
j

�T
x
�
� s

Xn
i¼1

yej:ixi

 !
; ð2Þ

where �¼ {�e
j,�

d
i: j¼ 1, . . . , s; i¼ 1, . . . , n} denotes a set of

vectors of trainable coefficients for the layers of encoding (e)

and decoding (d) of a given AE, as shown in Figure 3A, T

denotes vector transposition, and s(f) ¼ 1/(1 þ exp(f)) is a

sigmoid function whose outputs are in the interval [0,1]. Then,

AE tries to reconstruct an approximation of the original input

from the hidden feature representation. To learn a compressed

representation that helps find out concealed structures of high-

dimensional data, and to avoid trivial solution of the

minimization of the loss function of Equation 3, such as iden-

tity transformation, it is required that the hidden layer dimen-

sion be less than the input dimension, that is, m � n. Given a

training set of K samples, AE is trained to find the optimal

coefficients of all connections by minimizing the loss function

that describes the discrepancy between each input vector

xk; k ¼ 1, . . . , K, and its reconstruction vector, b (3) x̂Y: k over

the entire training set:

JAEð�Þ ¼
1

2K

XK
k¼1
kx̂�:k � xkk2: ð3Þ

Here, the average sum of squares of differences represents

the reconstruction error. The minimization of that reconstruc-

tion error indicates that the learned features preserve a signif-

icant amount of information about the input which is a required

criterion of precise representation of the original input.20

Inspired by NMF and by the proofs that neural activity in

the human brain is sparse.20 The NCSAE imposes 2 addi-

tional constraints on the basic AE, namely, nonnegativity

and sparsity constraints. The nonnegativity constraint

Figure 3. Schematic diagrams of (A) stacked nonnegativity constraint sparse autoencoders (SNCSAE) and (B) the 2-stage classification.
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enforces the AE to learn additive part–based representation

of its input data, while the sparsity constraint enforces the

average activation of each hidden unit over the entire train-

ing data set to be infinitesimal to improve the probability

of linear separability.21 As suggested by Hosseini-Asl

et al,22 imposing the nonnegativity constraint on AE

results in more precise data codes during the greedy

layer-wise unsupervised training and improved accuracy

after the supervised fine-tuning. Mathematically, the loss

function of Equation 3 is extended by the addition of

2 penalty terms to lower the number of negative coeffi-

cients and compel sparsity of the NCSAE. Those 2 terms

are quadratic negative coefficient penalty, f(yi) ¼ (min

{0,yi})2; i ¼ 1, . . . , n, and Kullback-Leibler (KL) diver-

gence, JKL(hY
e;r), between the hidden codes, hY

e,

achieved using the encoding coefficients �e of the training

data set, and a small positive constant value, r, close to

0 representing the target average activation. The value of

r is chosen to be small as small r leads to complete and

nonredundant features be learned23:

JNCSAEð�Þ ¼ JAEð�Þ þ a
Xs
j¼1

Xn
i¼1

f ðyj:iÞ þ b JKLðh�e ;rÞ :

ð4Þ

The parameters a � 0 and b � 0 control the amount of

contributions of the nonnegativity and the sparsity terms to the

total loss function, JNCSAE(�), and

JKLðh�e ; rÞ ¼
Xs
j¼1

h�e:jlog

�
h�e:j

r

�
þ ð1� h�e:jÞlog

�
1� h�e:j

1� r

�
:

ð5Þ

Recent studies have demonstrated that a deep architecture

has the capability of learning complex and highly nonlinear

features from data.23,24 In order to learn high-level features

from data, NCSAE is used as a building block to construct a

multilayer architecture of NCSAEs (Figure 3A). In this

architecture, the output vector from a low-level NCSAE is

used as input to a high-level NCSAE. In addition, the output

of the final NCSAE is inputted to a softmax regression

classifier. A good technique to train such deep architectures,

that does not have the limitations associated with full super-

vised training, is to first pretrain the network one layer at a

time using the unsupervised greedy algorithm. In our sys-

tem, the first and second NCSAEs, which are the first and

second layers of SNCSAE, are pretrained separately to

minimize the total loss function of Equation 4. This results

not only in decreasing the reconstruction error but also in

increasing the number of nonnegative coefficients and the

sparsity of the hidden representations. The outputs of the

second NCSAE, h½2� ¼ sð�e
½2�

Th½1�Þ, are inputted to the soft-

max classifier, as demonstrated in Figure 3A, to estimate the

classification of the prostate case at a certain b value as a

probability of each output class, c ¼ 1,2:

pðc; ��:cÞ ¼
exp �T

�:ch
½2�� �

exp �T
�:1h

½2�� �
þ exp �T

�:2h
½2�� � ;

c ¼ 1; 2;
X2
c¼1

p c; ��:c;h
½2�

� �
¼ 1:

This unsupervised layer-wise training aims to minimize the

negative log-likelihood J0(�0) of the training classes,

appended with the penalization of negative coefficients:

J�ð�oÞ ¼ � 1

K

XK
k¼1

logpðck ; ��:cÞ þ n
X2
c¼1

Xs2
j¼1

y�:c:j: ð6Þ

Then, a supervised fine-tuning of all SNCSAE layers fol-

lows the unsupervised pretraining to ensure that the learned

representations are discriminative.25 This supervised fine-

tuning is performed on the training data using error backpro-

pagation through the layers and with the penalization of the

negative coefficients of the softmax classifier only. The para-

meters a¼ 0.003, b¼ 5, and r¼ 0.5 were selected empirically

based on comparative experiments.

In the first phase of the 2-phase structure of SNCSAE, the

initial input data to each of the 7 SNCSAE is composed of the

CDFs of size 100 at a certain b value (100-700 s/mm2). The size

of the input vector is decreased by the first layer of SNCSAE to

s1¼ 50, that is, decreased by the following layer of SNCSAE to

s2 ¼ 5, that is, reduced by the final softmax classifier to s0 ¼ 2

probabilities.

In the second phase of the classification, both the PSA-based

probabilities and the output probabilities of each of the 7

SNCSAEs of the first stage are concatenated to form an initial

probability vector g ¼ [g1, . . . , g16], as sketched in Figure 3B.

This probability vector (g) is used as an input to a new

SNCSAE to determine the ultimate classification of the pros-

tate case as a probability for each output class, c, using the

following formula:

ptðc; �t
�:cÞ ¼

exp ð�t
�:cÞ

Tgt
� �

PC
c¼1

exp ð�t
�:cÞ

Tgt
� � ; c ¼ 1; 2: ð7Þ

Experimental Results

Analyses were conducted on DW-MRI data sets acquired from

18 patients (9 benign and 9 malignant). These patients were

diagnosed using biopsy. Biopsy was carried out using a sys-

tematic approach with 11 cores taken from the whole prostate.

The PSA blood samples were extracted from all 18 patients,

1 week before the participants were scanned by a DW-MRI

scanner, using the conventional venous blood draw procedure

to get 3 mL from each participant. Figure 4 shows DW-MR

images from 2 participants at different b values.

To highlight the benefit of combining clinical biomarkers

with DW-MRI features, several experiments that used clinical
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biomarkers only, DW-MRI features only, or a combination of

both clinical biomarkers and DW-MRI features, have been

conducted. For the DW-MRI experiment, the discriminating

characteristics of benign and cancerous cases are captured from

the DW-MRI data sets by training 7 different SNCSAEs, one

SNCSAE for each of the 7 different b values (100, 200, . . . , 700

s/mm2). The features adopted for the diagnosis are the CDFs of

the processed ADC volumes, of the delineated prostates, esti-

mated at 7 different b values, as discussed previously. A com-

bination of lower b values and higher b values is utilized

because lower b values show perfusion while higher b values

show diffusion. According to the literature, both perfusion

and diffusion can be used to discriminate malignant tumors

from benign ones. The middle in-between b values are mix,

that is, they do not represent clear perfusion and do not rep-

resent clear diffusion. This highlights why a combination of

lower and higher b values shows good results for early diag-

nosis of prostate cancer. This is why we start to acquire data at

multiple b values to capture both perfusion and diffusion to

lead to more accurate results. An illustration of the ADC color

maps of 2 participants at different b values is illustrated in

Figure 5. In order to test the effect of each feature (CDFs of

each b value), each SNCSAE of the first-stage of the

classification is first trained and tested for each feature

individually. To evaluate the accuracy of this experiment, a

leave-one-subject-out (LOSO) cross-validation is performed

for each SNCSAE with all 18 DW-MRI data sets. The diag-

nostic accuracy for each SNCSAE is reported in Table 1. In

order to get a global classification decision based only on

DW-MRI, all diffusion-based probabilities from the 7

SNCSAEs are concatenated to form an input vector that is

fed into a new SNCSAE. The resulting accuracy after this

fusion is 88.89% (sensitivity ¼ 88.89% and specificity ¼
88.89%). Moreover, a 3-fold cross-validation is performed

using the DW-MRI data sets at each b value. The diagnostic

accuracy at each b value is reported in Table 2.

Figure 4. An illustration of diffusion-weighted magnetic resonance imaging (DW-MRI) digital imaging and communications in medicine

(DICOM) images for 2 different cases (1 benign and 1 malignant) at different b values.

Reda et al 7



Figure 5. An illustration of the corresponding apparent diffusion coefficient (ADC) color maps for 2 cases (1 benign and 1 malignant) at

different b values.

Table 1. Performance Results of SNCSAE-Based Classifiers at the 7 b

Values Using a LOSO Cross-Validation.

SNCSAE

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

SNCSAE 1 (b value ¼ 100) 77.8 77.8 77.8

SNCSAE 2 (b value ¼ 200) 66.6 77.8 55.6

SNCSAE 3 (b value ¼ 300) 72.2 77.8 66.7

SNCSAE 4 (b value ¼ 400) 72.2 77.8 66.7

SNCSAE 5 (b value ¼ 500) 72.2 77.8 66.7

SNCSAE 6 (b value ¼ 600) 83.3 88.9 77.8

SNCSAE 7 (b value ¼ 700) 83.3 88.9 77.8

Abbreviations: LOSO, leave-one-subject-out; SNCSAE, stacked nonnegativity

constraint sparse autoencoders.

Table 2. Diagnostic Accuracy Using 3-Fold Cross-Validation at the

7 b Values.

SNCSAE

First Fold

(%)

Second Fold

(%)

Third Fold

(%)

Average

(%)

SNCSAE 1 66.7 83.3 66.7 72.2

SNCSAE 2 66.7 83.3 50 66.7

SNCSAE 3 66.7 50 83.3 66.7

SNCSAE 4 66.7 50 83.3 66.7

SNCSAE 5 83.3 50 66.7 66.7

SNCSAE 6 66.7 50 100 72.2

SNCSAE 7 66.7 100 66.7 77.8

Abbreviation: SNCSAE, stacked nonnegativity constraint sparse autoencoders.
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For the PSA screening experiment, the PSA screening result

of each case is transformed into a diagnostic probability using a

KNN-based classifier. To apply a KNN classifier that identifies

the prostate status, again we use an LOSO cross-validation for

each participant. The resulting accuracy reported in Table 3

emphasizes the need to combine other features with the PSA

screening results to improve the system accuracy.

Finally, the results from both the DW-MRI and PSA experi-

ments are fed into the fusion SNCSAE to determine the final

diagnosis of the input prostate as benign or malignant through a

2-stage classification network. The overall classification accu-

racy, sensitivity, and specificity are 94.4%, 88.9%, and 100%,

respectively, for the LOSO cross-validation. The overall clas-

sification accuracy, sensitivity, and specificity are 88.9%,

77.8%, and 100%, respectively, for the 3-fold cross-

validation. These results emphasize the advantage of integrat-

ing DW-MRI with PSA results for prostate cancer diagnosis.

The LOSO cross-validation after fusing the clinical biomarkers

with the imaging makers at the different b values resulted in

one misclassified case. Although the 3-fold cross-validation

resulted in one more misclassified case. These 2 misclassified

cases will need more investigation. Their PSA values are in the

range of benign cases whereas their biopsy shows that they are

malignant. We asked the physician to pay more attention to

these cases, especially the case that is misclassified by both the

LOSO and the 3-fold. After radical prostatectomy, more inves-

tigation can be done on the histology level. Recently, many

researchers began to utilize convolutional neural network

(CNN) for prostate cancer detection.26-30 To overcome the

limitation of the dependence of the diagnostic accuracy on the

segmentation accuracy, our next step will be feeding the ima-

ging markers into a CNN instead of SNCSAE.

To manifest the advantage of using an SNCSAE-based clas-

sifier, we have also conducted a comparison between the pre-

sented classifier and 2 state-of-the-art classifiers, RF and

random tree (RT).31 The resulting accuracy, sensitivity, speci-

ficity, and AUC of these classifiers are provided in Table 4.

According to the results of that table, the performance of the

SNCSAE-based classifier is better than the performance of

both the RF and the RT, indicating the promising diagnostic

capabilities of the presented CAD system. The corresponding

ROC curve of the presented SNCSAE-based classifier and the

other 2 classifiers are illustrated in Figure 6. The 95%

Table 3. Performance Results of the KNN Classifier Using PSA

Screening Results.

Classifier Accuracy Sensitivity Specificity

KNN 77.78% 55.56% 100%

Abbreviations: KNN, K-nearest neighbor; PSA, prostate-specific antigen.

Table 4. Performance Results of the Presented CAD System and 2

Classifiers (RF and RT).

Classifier Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

SNCSAE 94.4 88.9 100 0.98

RF 88.9 88.9 88.9 0.97

RT 88.9 100 77.8 0.88

Abbreviations: AUC, area under the curve; CAD, computer-aided diagnostic;

RF, random forest; RT, random tree; SNCSAE, stacked nonnegativity con-

straint sparse autoencoders.

Figure 6. The receiver operating characteristic (ROC) curve of the presented stacked nonnegativity constraint sparse autoencoders (SNCSAE)-

based classifier, random forest (RF), and random tree (RT).
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confidence interval (CI) is computed using the bootstrapping

technique.32 A random sample of 18 participants is selected

with replacement and the corresponding AUC is computed.

This operation is repeated 100 times. The effect of the

replacement aspect on the results is that if the misclassified

participants are selected more than 1 time, then the resulting

performance in terms of the AUC will be reduced. The result-

ing 95% CI ranges from 0.79 to 1. In our case, the number of

the used participants is limited. However, the upper bound of

95% CI equals one, which indicates that the accuracy of the

presented method, in terms of sensitivity and specificity, can

reach 100%, in case of increasing the number of participants.

It is important to mention that the presented system has been

tested using all currently available data with our group. The

number of participants of the used data set is limited. The

focus of our future work will be on collecting more partici-

pants to validate our system with a larger data set to highlight

the pros and cons of the presented approach. Figure 7 shows

the pipeline processing steps for 2 different prostate cases

(1 benign and 1 malignant).

Conclusions

In summary, this article presents a noninvasive CAD system

that integrates PSA screening results in addition to DW-MRI-

based features in order to diagnose prostate cancer. The

presented CAD system uses a hybrid approach to effectively

integrate level sets and NMF for prostate segmentation, con-

structs global features using the ADC-CDFs of the delineated

prostate regions to differentiate between benign and malignant

cases, and utilizes a 2-phase SNCSAEs on both the ADC-CDFs

and PSA-based classification probabilities to create a more

robust diagnosis platform for prostate cancer. The presented

CAD system successfully yields an accurate (94.4%) diagnosis

platform using a DW-MRI data set collected at 7 different b

values (100, 200, . . . , 700 s/mm2) from 18 participants. The

focus of the future work will be on augmenting the number of

participants used in both the learning and the evaluation of the

presented CAD system to enhance and confirm the robustness

of the results obtained in this study. Another future work is to

acquire DW-MRI data sets at higher b values in order to exam-

ine their effect on the accuracy of the system.
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