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Open reading frame dominance indicates
protein-coding potential of RNAs
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Abstract

Recent studies have identified numerous RNAs with both coding
and noncoding functions. However, the sequence characteristics
that determine this bifunctionality remain largely unknown. In the
present study, we develop and test the open reading frame (ORF)
dominance score, which we define as the fraction of the longest
ORF in the sum of all putative ORF lengths. This score correlates
with translation efficiency in coding transcripts and with transla-
tion of noncoding RNAs. In bacteria and archaea, coding and non-
coding transcripts have narrow distributions of high and low ORF
dominance, respectively, whereas those of eukaryotes show rela-
tively broader ORF dominance distributions, with considerable
overlap between coding and noncoding transcripts. The extent of
overlap positively and negatively correlates with the mutation rate
of genomes and the effective population size of species, respec-
tively. Tissue-specific transcripts show higher ORF dominance than
ubiquitously expressed transcripts, and the majority of tissue-
specific transcripts are expressed in mature testes. These data sug-
gest that the decrease in population size and the emergence of
testes in eukaryotic organisms allowed for the evolution of poten-
tially bifunctional RNAs.
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Introduction

Recent advances in RNA-sequencing technology have revealed that

most of the eukaryotic genome is transcribed, primarily producing

noncoding RNAs (Okazaki et al, 2002; Djebali et al, 2012; Ulitsky

& Bartel, 2013; Kopp & Mendell, 2018). Noncoding RNAs longer

than 200 nucleotides are long noncoding RNAs (lncRNAs) and are

not translated into proteins (Ulitsky & Bartel, 2013; Kopp &

Mendell, 2018). lncRNAs have been reported to participate in mul-

tiple biological phenomena, including the regulation of transcrip-

tion, modulation of protein or RNA functions, and nuclear

organization (Ulitsky & Bartel, 2013; Kopp & Mendell, 2018). How-

ever, paradoxically, a large fraction of lncRNAs is associated with

ribosomes and translated into peptides (Frith et al, 2011; Ingolia

et al, 2011; Bazzini et al, 2014; Ingolia, 2014; Ruiz-Orera et al,

2014). Peptides translated from transcripts annotated as lncRNAs

have multiple biological functions in several eukaryotes (Li & Liu,

2019; Huang et al, 2021), and some of these translations are spe-

cific to the cellular context (Douka et al, 2021). Conversely, known

protein-coding genes, such as TP53, can also function as RNAs

(Candeias, 2011; Kloc et al, 2011; Huang et al, 2021). The discov-

ery of these RNAs with binary functions has blurred the distinction

between coding and noncoding RNAs, so the characteristics of

RNA sequences that explain the continuum between noncoding

and coding transcripts remain unclear.

During evolution, new genes originate from preexisting genes

via gene duplication or from nongenic regions via the generation

of new open reading frames (ORFs) (Ohno, 1970; Chen et al,

2013; Zhang & Long, 2014; McLysaght & Guerzoni, 2015;

McLysaght & Hurst, 2016; Holland et al, 2017). The latter are de

novo genes (Begun et al, 2006, 2007; Levine et al, 2006; Knowles

& McLysaght, 2009; Toll-Riera et al, 2009; Li et al, 2009, 2010a),

which have been shown to regulate biological processes and dis-

eases (Chen et al, 2013; Zhang & Long, 2014; McLysaght &

Guerzoni, 2015), including brain function and carcinogenesis in

humans (Li et al, 2010b; Suenaga et al, 2014). lncRNAs can serve

as sources of de novo genes (Ruiz-Orera et al, 2014), some of

which evolve to encode proteins. In addition to ORFs exposed to

natural selection, neutrally evolving ORFs are also translated from

lncRNAs that stably express peptides (Ruiz-Orera et al, 2018),

providing a basis for the development of new functional peptides/

proteins. High levels of lncRNA expression (Ruiz-Orera et al,
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2018), hexamer frequencies of ORFs (Sun et al, 2013; Wang et al,

2013; Ruiz-Orera et al, 2014), and intrinsic disorder protein prod-

ucts (Heames et al, 2020) have been proposed as determinants of

coding potential; however, the molecular mechanisms by which

lncRNAs evolve into new coding transcripts remain unclear (Van

Oss & Carvunis, 2019).

In the present study, we sought to identify a new indicator for

determining RNA protein-coding potential. First, we defined primary

ORF as the longest of all ORFs of a given RNA and the indicator

using the fraction of the primary ORF length constitutes the sum of

all putative ORF lengths. We subsequently examined the associa-

tions between this indicator and protein-coding potential. More than

3.4 million transcripts in 100 organisms belonging to all three

domains of life were analyzed to investigate the relationship

between this indicator and protein-coding potential over evolution-

ary history.

Results

Coding transcripts show higher ORF dominance in humans
and mice

We previously identified a de novo gene, NCYM, and revealed its

biochemical function (Suenaga et al, 2014, 2020; Kaneko et al,

2015; Shoji et al, 2015; Matsuo et al, 2021). However, NCYM was

previously registered as a noncoding RNA in the National Center

for Biotechnology Information (NCBI) nucleotide database, and the

coding potential assessment tool (CPAT), which is the established

predictor for protein-coding potential (Wang et al, 2013), showed

NCYM had a coding probability of 0.022, labeling it as a noncoding

RNA (Appendix Fig S1). Therefore, we sought to identify a new

indicator for coding potential by comparing NCYM with a small

subset of coding and noncoding RNAs to determine whether its

sequence features would allow NCYM to be registered as a coding

transcript. We found that predicted ORFs, other than major ORFs,

were short in coding RNAs. In addition, it has been reported that

upstream ORFs inhibit the translation of major ORFs (Calvo et al,

2009). Therefore, we hypothesized that the predicted ORFs may

reduce the translation of major ORFs, thereby becoming short in

the coding transcripts, including NCYM, during evolution. Major

ORFs are often the longest ORFs (hereafter primary ORFs or

pORFs) in coding transcripts. Thus, to investigate the importance

of pORFs relative to other ORFs (hereafter secondary ORFs or

secORFs) for the evolution of coding genes, we defined ORF domi-

nance as the occupancy of the pORF length relative to the total

ORF length (Fig 1A and B) and assumed that ORF dominance was

high in coding transcripts. To examine this hypothesis, we first cal-

culated ORF dominance for all human transcripts. We analyzed the

human transcripts in the NCBI nucleotide database, including both

coding and noncoding (RefSeq accession numbers starting with NM

and NR, respectively) transcripts. The data were downloaded using

the Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables)

after setting the track tab as “RefSeq Genes”. A total of 50,052 cod-

ing (NM) and 13,550 noncoding (NR) RNAs were registered in the

database in 2018 (Dataset EV1). To analyze putative lncRNAs with

protein-coding potential, we excluded small RNAs (shorter than

200 nucleotides) or RNAs with a short pORF (less than 20 amino

acids) from the NR transcripts, as reported previously (Bazzini et

al, 2014; Ruiz-Orera et al, 2014; Schmitz et al, 2018), focusing on

the remaining 12,827 transcripts.

We analyzed the relative frequencies of NM and NR transcripts,

designated as f(x) and g(x), respectively (Fig 1C), where x indi-

cates ORF dominance. In human transcripts, g(x) showed a distri-

bution shifted to the left with an apex of 0.15; in contrast, the

distribution of f(x) shifted to the right with an apex of 0.55 (Fig 1C,

upper panel). We generated nucleic acid control sequences in

which A/T/G/C bases were randomly assigned with equal proba-

bilities. In these controls, the relative frequencies of ORF domi-

nance shifted to the left in both coding and noncoding transcripts

(Fig 1C, bottom panel). The controls that randomly shuffled the

original sequence without affecting the number of A/T/C/G bases

in each transcript also had relative frequencies of ORF dominance

shifted to the left in both coding and noncoding transcripts

(Appendix Fig S2A). Similar results were obtained using a dataset

from the Ensembl database (Appendix Fig S2B). We also calculated

the ORF dominance of mouse transcripts from RefSeq and Ensembl

and found that the distribution of f(x) was shifted to the right with

an apex of 0.55 (Appendix Fig S2C), similar to that of human

transcripts.

ORF dominance correlates with protein-coding potential in
human and mouse

Next, we examined the relationship between ORF dominance and

protein-coding potential. Based on the ORF dominance distributions

of coding and noncoding transcripts, protein-coding potential, F(x),

was defined as the probability of a transcript being a coding RNA

given an ORF dominance of x. A sample F(0.15) calculation for

human transcripts is shown in Fig 1D. This result indicates that any

given human RNA transcript with a calculated ORF dominance of

0.15 has a protein-coding potential F(x) of 0.183. F(x) was correlated

with ORF dominance ≤ 0.65 (Fig 1E and Appendix Fig S3A). The

protein-coding potentials of the sequences in the RefSeq database

slightly decreased after peaking at 0.65 (Fig 1E), whereas those of

sequences in the Ensembl database remained high (Appendix Fig

S3A). The F(x) of the human transcripts was estimated using the fol-

lowing linear regressions:

For Ensembl data,

FðxÞ ¼ 1:301xþ 0:0072ðx ≤ 0:65Þ; R2 ¼ 0:984;

For RefSeq data,

FðxÞ ¼ 1:313xþ 0:0189ðx ≤ 0:65Þ; R2 ¼ 0:990:

The intercepts were near zero, and the slopes were approxi-

mately 1.3 for both equations. Using these equations, the F(x) of

any given human transcript with an ORF dominance ≤ 0.65 can

be calculated. For example, the F(x) of NCYM was estimated to

be 0.746 or 0.765 based on Ensembl or RefSeq data, respectively

(Appendix Fig S1D). In contrast, the F(x) of the control

sequences was not correlated with ORF dominance (Fig 1E, bot-

tom panel, and Appendix Fig S3A). Similar results were obtained

for the mouse transcripts (Appendix Fig S3B). The F(x) of the

mouse transcripts (ORF dominance ≤ 0.65) was estimated as

follows:
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For Ensembl data,

FðxÞ ¼ 1:142xþ 0:067; R2 ¼ 0:982

For RefSeq data,

FðxÞ ¼ 1:482x� 0:061; R2 ¼ 0:990

For both human and mouse transcripts, ORF dominance corre-

lated linearly with the protein-coding potential at ORF dominance ≤
0.65. Moreover, when the ORF dominance limit approached 0, the

probability of the transcript being a coding RNA was 0 (Fig 1E and

Appendix Fig S3).

Characterization of high-scoring human lncRNAs

Next, we investigated whether ORF dominance is useful for identify-

ing coding RNAs among NR transcripts. From the 7,144 transcripts

registered as noncoding genes in 2015, we excluded small RNAs

(< 200 nucleotides) and those with short pORFs (< 20 amino acids).

Among the remaining 6,617 NR genes, 219 were reassigned as NM

over the past 3 years (Dataset EV2), including the previously identi-

fied de novo gene MYCNOS/NCYM (Suenaga et al, 2014). The per-

centage of reclassification increased for NR transcripts with high

ORF dominance (Fig 1F). Thus, high ORF dominance is a useful

indicator of coding transcripts. NR transcripts with high protein-

coding potential (0.6 ≤ ORF dominance < 0.8) were then extracted,

and the domain structure of each pORF amino acid sequence was

assessed using the basic local alignment search tool for protein

sequences (BLASTP). A total of 217 transcripts showed putative

domain structures in the pORF, whereas 310 did not (Dataset EV3).

Transcripts with domain structures often derive from transcript vari-

ants, pseudogenes, or readthrough of coding genes; those without

domain structures often derive from antisense or long intergenic

noncoding RNAs (lincRNAs) (Table 1).

We next examined the functions of the genes originating NR tran-

scripts with high coding potential (0.6 ≤ ORF dominance < 0.8).

We divided the NR transcripts into those with and without putative

domains to investigate novel coding gene candidates, originating

either from preexisting genes or from nongenic regions. Analysis

using the Database for Annotation, Visualization, and Integrated

Discovery (DAVID) functional annotation tool (Huang et al, 2009a,

2009b) showed that NR transcripts without domain structures were

derived from genes related to transcriptional regulation, multicel-

lular organismal processes, and developmental processes (Dataset

EV4). Among the target genes of transcription factors, NMYC

(MYCN), TGIF, and ZIC2 were ranked in the top three, and are all

necessary for forebrain development (Dataset EV4) (Brown et al,

1998; Gripp et al, 2000; van Bokhoven et al, 2005). NR transcripts

with domain structures originating from genes with alternative

splicing were related to organelle function and are expressed in mul-

tiple cancers, including respiratory tract tumors, gastrointestinal

tumors, retinoblastomas, and medulloblastomas (Dataset EV5). Sim-

ilar analyses were conducted for mouse (Datasets EV6–8) and

Caenorhabditis elegans (Datasets EV9–11). In mouse, original genes

related to protein dimerization activity (Dataset EV7) and nucleotide

binding or organelle function (Dataset EV8) were enriched and

showed high ORF dominance lncRNAs with and without conserved

domains, respectively. In C. elegans, original genes related to

embryo development (Dataset EV10) and chromosome V or single-

organism cellular processes (Dataset EV11) were enriched. There-

fore, the relationship between brain development and cancer in the

function of lncRNAs with high ORF dominance seems to be specific

to humans.

▸Figure 1. ORF dominance predicts the protein-coding potential of human transcripts.

A Conceptual schematic representation of ORFs in the three reading frames of an RNA and definition of ORF dominance. Black and white rectangles indicate primary
and secondary ORFs, respectively. The primary ORF is the longest ORF, while secondary ORFs are all others; l is ORF length.

B Schematic representation of ORF distributions in RNAs with low (0-0.5), medium (0.5), and high (1) ORF dominance.
C Relative frequencies of ORF dominance of coding, f(x), and noncoding, g(x), transcripts (upper) and of random controls (bottom).
D Explanation of F(x) for a ORF dominance of 0.15.
E ORF dominance correlations with protein-coding potential, F(x), at ORF dominance ≤ 0.65 (upper) and those in random controls (lower).
F Relationship between ORF dominance and percentages of NR transcripts reregistered as NM during the past 3 years. N.D., not detected.
G Relationship between ORF dominance and F(x) in human transcripts syntenic to chimpanzee (upper left) and mouse (bottom left). The relative frequency of

transcripts with negative selection, h(x), is plotted for each ORF dominance (upper and bottom right). The transcripts are syntenic to the genome of chimpanzee
(upper right) and mouse (bottom right). The open circles indicate NR transcripts, and the full circles indicate NM transcripts.

Table 1. Numbers of original transcripts that produced NR
transcripts with high coding frequency (0.6 ≤ ORF dominance < 0.8).

Transcript

Domain

Total
P-
valueWith Without

Antisense 4 61 65 7.79E-
08

lincRNA 3 65 68 7.60E-
09

Pseudogene 50 17 67 4.32E-
07

Readthrough 7 0 7 6.00E-
03

Transcript variant of coding
gene

146 35 181 1.05E-
19

Divergent 0 2 2 N.S.

Intronic 0 6 6 N.S.

Small nuclear RNA 0 3 3 N.S.

miRNA host gene 0 3 3 N.S.

Other lncRNA 7 118 125 1.12E-
13

Total 217 310 527

P-values were calculated using Yate’s continuity correction. N.S., not
significant.

◀
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ORF dominance affects the protein-coding potential predicted
by Ka/Ks

To examine the relationship between ORF dominance and natural

selection in the prediction of protein-coding potential, we calculated

the ratio of nonsynonymous (Ka) to synonymous (Ks) mutations by

comparing human transcripts with syntenic–genomic regions of

chimpanzee and mouse (Fig 1G). Transcripts were selected based

on syntenically conserved regions: 44,593 (vs. chimpanzee) and

14,016 (vs. mouse). We found a linear relationship between F(x)

and ORF dominance in the conserved transcripts (Fig 1G, left

panels). As predicted, coding transcripts exhibited Ka/Ks < 0.5 at a

higher frequency than noncoding transcripts, with large differences

observed for ORF dominance > 0.9 or < 0.1 and the smallest differ-

ence for ORF dominance between 0.35 and 0.45, approximately

(Fig 1G, right panels). These results indicated that for transcripts

with ORF dominance near the highest or lowest values, the conser-

vation of pORF sequences (negative selection, Ka/Ks < 0.5) deter-

mines the coding potential. Therefore, noncoding transcripts

showing both negative selection (Ka/Ks < 0.5) and the highest ORF

dominance may correspond to new coding transcript candidates.

We list 23 such transcripts in Dataset EV12, including four transcript

variants of a previously identified lncRNA that encodes a tumor-

suppressive small peptide, HOXB-AS3 (Huang et al, 2017).

Translation of small peptides shifts ORF dominance distributions

To investigate the effect of translation on ORF dominance, we calcu-

lated the ORF dominance of lincRNAs with translation registered in

two independent databases (SmProt and sORFs.org) and compared

them with that of lincRNAs without evidence of translation. Results

showed that lincRNAs with translation had higher ORF dominance

than those without translation evidence (Fig 2A, top left panel).

Transcript length and the coverage, and size (pORF length) of

ORFs have been used as indicators to predict the coding potential of

transcripts (Wang et al, 2013; Zeng & Hamada, 2018), including de

novo genes (Schmitz et al, 2018). We calculated these three values

for lincRNAs with translation products, and their distributions were

compared with those of lincRNAs without evidence of translation.

The comparison revealed a slight shift in the high values of ORF

coverage in the lincRNAs registered in SmProt, whereas negligible

changes were found in the distribution of lincRNAs registered in

sORF.org (Fig 2A, top center panel). In addition, there was no shift

in ORF size (Fig 2A, bottom left panel), and transcripts were rather

short in lincRNAs with translation (Fig 2A, top right panel), reduc-

ing the sum of secORFs length (Fig 2A, bottom right panel).

Therefore, the translated lincRNAs showed high ORF dominance, to

which contributed their shorter transcript lengths by reducing the

sum of secORFs.

Next, we examined whether ORF dominance was associated with

translation efficiency in coding RNAs. Transcript translation in sper-

matocytes and spermatids is strongly downregulated on average.

However, Wang et al (2020) identified gene sets (cluster I genes)

efficiently translated in the spermatocytes and spermatids of mouse

that therefore escaped the overall translational repression (Wang

et al, 2020). We found that cluster I genes had higher ORF domi-

nance than cluster III genes showing translational repression in

spermatocytes and spermatids (Fig 2B). Furthermore, coding tran-

scripts with translation from multiple ORFs showed significantly

low or high percentages of cluster I or cluster III genes, respectively,

compared with those without evidence of translation (Fig 2C).

These results supported the hypothesis that ORF dominance is asso-

ciated with translation efficiency in coding transcripts.

Relationship between ORF dominance and relative frequencies of
coding/noncoding transcripts in 100 organisms

To analyze the relationship between ORF dominance and protein-

coding potential in a broad lineage of 100 organisms, we selected

five bacteria, ten archaea, and 85 eukaryote species (Dataset EV1)

and calculated ORF dominance for more than 3.4 million transcripts

(Dataset EV1). Phylogenetic trees of the cellular organisms are

presented using a logarithmic timescale and display the number of

species in each lineage (Fig 3). To examine the evolutionary conser-

vation of the linear relationship between ORF dominance and

protein-coding potential in human being and mouse, we selected a

relatively large number of mammalian species (36). Species with

fewer than three lncRNAs were not used to calculate g(x) and were

not included in the histograms illustrating the relationship between

g(x) and ORF dominance (Figs 4 and 5). For all organisms, the rela-

tive frequency of coding transcripts, f(x), was shifted to the right

(higher ORF dominance) compared with random or random shuf-

fling controls (Figs 4 and 5A–C; Appendix Figs S4 and S5).

In bacteria and archaea, f(x) and g(x) exclusively exhibited high

and low ORF dominance, respectively, indicating a clear boundary

between coding transcripts and lncRNAs in terms of ORF dominance

(Fig 4 and Appendix Fig S4). In addition, the highest f(x), which

corresponded to high ORF dominance, was 0.75 in all examined

bacteria (Fig 4) and ≥ 0.75 in archaea (Appendix Fig S4). Among

eukaryotes, unicellular organisms and nonvertebrates showed the

highest frequencies of coding transcripts at 0.65 or 0.75 (Fig 4),

while for most vertebrates, the highest values were ≤ 0.65 (Figs 4

▸Figure 2. Effects of translation on the distributions of ORF dominance.

A The ORF dominance distribution for lincRNAs with translation registered in the SmProt database (http://bioinfo.ibp.ac.cn/SmProt/) (red line, n = 87) or sORF database
(http://www.sorfs.org/) (blue line, n = 594) shifted to higher scores relative to lincRNAs without evidence of translation (black line, n = 11,657, not registered in these
databases) (top left). The relative frequency of corresponding ORF coverage (top center), transcript length (top right), ORF size (bottom left), and sum of secORF length
(bottom right) are also shown.

B Cluster I genes (n = 1,149) show higher ORF dominance than cluster III genes (n = 2,918).Central bands, whiskers, and boxes are median values, ranges, and
interquartile ranges, respectively. P-values were calculated by the Mann–Whitney U-test. ***P < 10−9.

C Genes with translation of multiple ORFs (n = 7,961) show lower or higher percentage of cluster I or cluster III genes, respectively, than genes without evidence of
translation of multiple ORFs (n = 1,786, not registered in sORF databases). P-values were calculated using Yate’s continuity correction. ****P = 1.46E-68 and
***P = 4.86E-18.
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Figure 3. Phylogenetic tree.

Numbers of species are indicated in each lineage. The lineages of five species, including one archaea (Nitrososphaera viennensis EN76), two fungi (Puccinia graminis f. sp.
Tritici and Pyricularia oryzae), and two animals (Strongylocentrotus purpuratus and Lingula anatine) are unknown and therefore were excluded from the figure.
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Figure 4. Relationships between ORF dominance and the relative frequencies of coding and noncoding transcripts from bacteria to mammals.

Histograms of f(x) (white) or g(x) (black) in observed data (left) and in nucleic acid-scrambled controls (right) for each species analyzed. ORF dominance with the highest
f(x) is presented in the histograms. Odom was calculated using the ORF dominance distribution from observed data, and it is indicated in the left panels. LC, Least
Concern; NT, Near Threatened; CR, Critically Endangered; and EX, Extinct in International Union for Conservation of Nature (IUCN) Red List.
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Figure 5. Relationships between ORF dominance and the relative frequencies of coding and noncoding transcripts.

A–C Primates (A), Glires (B), and Laurasiatheria (C). LC, Least Concern; NT, Near Threatened; VU, Vulnerable; EN, Endangered; and CR, Critically Endangered in IUCN Red
List.

ª 2022 The Authors EMBO reports 23: e54321 | 2022 9 of 21

Yusuke Suenaga et al EMBO reports



and 5). In addition, the f(x) distribution in vertebrates was broad

and shifted to the left (low ORF dominance) relative to those of bac-

teria and archaea (Figs 4 and 5). In sharp contrast to f(x), the rela-

tive frequency of lncRNAs, g(x), was shifted to the right (high ORF

dominance) in eukaryotes, including Giardia lamblia, which

belongs to the earliest diverging eukaryotic lineage and lacks mito-

chondria (Fig 4). As the distribution of f(x) in the Excavata, includ-

ing G. lamblia, showed a similar pattern to that of bacteria, the right

shift of g(x) seems to have occurred earlier than the left shift of f(x)

in the evolution of eukaryotes. Collectively, the left and right shifts

of f(x) and g(x), respectively, seem to have contributed to blur the

boundary between coding and noncoding transcripts in eukaryotes.

The distribution overlap of ORF dominance is inversely
correlated with effective population size

In general, eukaryotes (particularly multicellular organisms) have

smaller effective population sizes than prokaryotes, with higher

mutation rates due to the effect of genetic drift (Lynch et al, 2016).

We defined an indicator of coding/noncoding boundary ambiguity

(the overlapping score, Odom) and examined the relationship

between Odom and the effective population size and mutation rate

using data from a previous study (Lynch et al, 2016). An overlap-

ping score based on ORF coverage, Ocov, was also defined for com-

parison (Appendix Fig S6). Of the 35 species used in the previous

study, 11 had no more than five lncRNAs with pORFs longer than

20 amino acids, and thus, the transcripts of the remaining 24 species

(Dataset EV13 and Appendix Fig S6) were used for further analysis.

Similar to a previous report (Lynch et al, 2016), the effective popula-

tion size was inversely proportional to the mutation rate of genomic

DNA in the 24 species selected (exponent = −1.126, R2 = 0.6842;

Fig 6A). Odom was positively and negatively correlated with muta-

tion rate and effective population size, with relationships that could

be approximately logarithmic (R2 = 0.7578) and exponential

(R² = 0.4667), respectively. In contrast, Ocov showed a weak

correlation with both mutation rate and effective population size

(Appendix Fig S7).

Substituting the maximum value of Odom (1) into the exponential

function (Fig 6A, right upper panel) yielded the minimum effective

population size, i.e., 1,001.28. This value was consistent with the

minimum effective population size observed in conservation biol-

ogy, which is approximately 1,000 (Frankham et al, 2014). This

finding led us to consider the possibility that Odom may be elevated

in endangered organisms. Therefore, we calculated Odom for 35 of

the vertebrate species on the International Union for Conservation

of Nature Red List (Fig 6B, left panel; Dataset EV1) and found that

species at risk of extinction had significantly higher Odom than spe-

cies with lower risk of extinction (Least Concern, LC). In addition,

among LC species, Odom was higher for species with decreasing

numbers than those with stable populations (Fig 6B, right panel;

Dataset EV1).

Relationship between ORF dominance and
protein-coding potential

The overlapping of relative frequencies in f(x) and g(x) led us to

examine the relationship between ORF dominance and protein-

coding potential, F(x), in eukaryotes. To avoid biases due to the

small sample size, we selected 32 species with more than 1,000

lncRNAs containing pORFs to calculate F(x) (Fig 7 and Appendix

Fig S8). In human being and mouse, the relationship between

ORF dominance and F(x) was approximately linear and passing

through the origin of ORF dominance ≤ 0.65. Therefore, we used

a linear function to estimate F(x) for the 32 species and found

that it was a good fit for 27 of the 32 species (indicated as a lin-

ear group, L, in Fig 7 and Appendix Fig S8). In Ursus ameri-

canus, Cornus canadensis, and Gorilla gorilla, fewer than five

lncRNAs exhibited ORF dominance of 0.05; thus, we eliminated

the F(0.05) in these species for the estimation of F(x) using the

linear function (indicated with asterisks in Fig 7). The F(x) of the

remaining five species, which showed Odom > 0.7, did not fit

the linear function (indicated as a constant group, C, in Fig 7),

and it was characterized by low slope values. These five species

belonged to plants (Zea mays), reptiles (Anolis carolinensis), and

mammals (Ornithorhynchus anatinu, Saimiri boliviensis, and

G. gorilla) (Fig 7). In these species, ORF dominance showed a

weaker association with the protein-coding potential. In addition,

these species may have small effective population sizes due to

the risk of extinction (O. anatinu and G. gorilla) or due to artifi-

cial selection as pets (A. carolinensis and S. boliviensis) or as

crops (Z. mays).

Characteristics of RNA viral genomes in human and
bacterial cells

In sharp contrast to the coding transcripts of bacteria and archaea,

the ORF dominance of coding transcripts in eukaryotes overlapped

with that of noncoding RNAs due to the broad distribution of low

ORF dominance. To investigate the molecular mechanism underly-

ing the distinct distribution of coding transcripts between bacteria

and eukaryotes, we analyzed the genome sequences of RNA viruses

that infect human or bacterial cells. Positive-sense single-stranded

RNAs, (+) ssRNAs, are parts of the viral genome that generate

mRNAs and are translated into viral proteins via the host translation

system. Therefore, efficient translation in host cells contributes to

the replication of (+) ssRNA viruses. We hypothesized that ORFs

other than bona fide ORFs affect the coding potential of the viral

genome in host cells. Multiple bona fide ORFs are present in viral

▸Figure 6. The overlap of ORF dominance distribution is negatively correlated with effective population size.

A Inversely proportional relationship between genome-wide mutation rates in protein-coding DNA per generation (Up) and effective population size (Ne) in 24 species
(left upper). Values are from Lynch et al (2016). Odom positively and negatively correlates with Up (left bottom panel) and Ne (right upper panel); these relationships
are approximately logarithmic and exponential, respectively. White, gray, and black dots indicate bacteria, unicellular eukaryotes, and multicellular eukaryotes,
respectively.

B Odom is increased in vertebrates at risk of extinction (left) and with decreasing population trends (right). LC, Least Concern (n = 20); NT, Near Threatened (n = 3); VU,
Vulnerable (n = 1); EN, Endangered (n = 5); CR, Critically Endangered (n = 5); and EX, Extinct (n = 1). P-values were calculated by the Mann–Whitney U-test.
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Figure 7. Relationship between ORF dominance and protein-coding potential, F(x), for 32 eukaryotes.

The phylogenetic tree includes the 32 species (left), dot plots, and the shape and formulas of approximate functions. L and C indicate linear (in black) and constant (in
red) functions. Fewer than five lncRNAs had a ORF dominance of 0.05 in U. americanus, C. canadensis, and G. gorilla; therefore, we eliminated the F(0.05) for these species
for linear function approximations (asterisks). Odom was calculated using the ORF dominance distributions of observed data.
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genomes. Thus, we extended the concept of ORF dominance to the

multiple ORFs in viral RNA genomes (Fig 8A) and set the viral ORF

(vORF) score.

Among the (+) ssRNA viruses registered in the NCBI database,

198 were human viruses and 13 were bacteriophages. We elimi-

nated the viruses that produced viral proteins by exceptional trans-

lation mechanisms such as ribosome frameshifting, alternative

initiation sites, ribosome slippage, and RNA editing, focusing on

the remaining 95 human viruses, including nine retroviruses

(Dataset EV14) and ten bacteriophages (Dataset EV15). The rela-

tive frequencies of human viruses and bacteriophages showed dis-

tinct peaks at the vORF scores of 0.65 and 0.75, respectively

(Fig 8B). These values correspond to the ORF dominance associ-

ated with the highest protein-coding potential in humans (Fig 1E

and Appendix Fig S3A) and the highest frequency of coding tran-

scripts in bacteria (Fig 4). In addition, the relative frequency of

human viruses showed a broader distribution of low ORF domi-

nance compared with bacteriophages, particularly in human retro-

viruses (Fig 8B). Therefore, RNA viral genomes appear to have

sequence characteristics that maximize their protein-coding poten-

tial in host cells.

Relationship between ORF dominance and
tissue-specific expression

The shift to the right observed in the distribution of ORF dominance

in noncoding RNAs is pronounced in eukaryotes, especially in multi-

cellular organisms (Figs 4 and 5). To examine the possibility that dif-

ferent tissues of multicellular organisms show different ORF

dominance distributions for noncoding RNAs, we analyzed transcrip-

tome data to calculate the ORF dominance of human noncoding tran-

scripts expressed in multiple tissues (Fig 8C). ORF dominance

distributions were similar for almost all tissues, except for mature tes-

tes where distribution was shifted to higher values (Fig 8C). Similar

results were obtained for opossum, rat, mouse, and macaque,

although shifts in the ORF dominance distribution were weaker in

these species than in humans (Appendix Fig S9). Furthermore, the

noncoding transcripts that were expressed in a tissue-specific manner

had higher ORF dominance than ubiquitously expressed noncoding

transcripts in humans (Fig 8D) and in opossum, rat, mouse, and

macaque (Appendix Fig S10). The relationship between the specificity

of expression and ORF dominance was also found for human coding

transcripts (Appendix Fig S11). These results suggested that the evolu-

tion of tissue-/cell type-specific expression in multicellular eukaryotes

contributed to increased ORF dominance for noncoding transcripts.

Since the majority of tissue-specific transcripts were expressed in

matured testes (7,573 of 8,523 transcripts (89%) in the highest speci-

ficity group for humans), the evolution of testicular tissues also seems

to have contributed to the existence of high ORF dominance noncod-

ing RNAs, thus contributing to the appearance of de novo coding

genes.

Discussion

Here, we showed that ORF dominance is associated with protein-

coding potential in cellular organisms. In bacteria and archaea, the

distributions of ORF dominance for noncoding and coding tran-

scripts were distinct (low and high scores), whereas they were

merged in eukaryotes.

In bacteria and archaea, newly transcribed RNAs are immedi-

ately bound by ribosomes (Miller et al, 1970; French et al, 2007)

and cannot escape translation. Thus, as expected, lncRNAs in bacte-

ria and archaea showed low ORF dominance (Fig 9A, top panel).

Alternatively, in eukaryotes, the nucleus prevents the immediate

binding of lncRNAs by ribosomes, and cytoplasmic translocation

from the nucleus is required for translation. Therefore, eukaryotic

lncRNAs may exist in the nucleus even with high ORF dominance,

and the subsequent evolution of cytosolic translocation for these

noncoding RNAs may contribute to the formation of new coding

genes (Fig 9A, middle panel). Thus, the pervasive transcription of

the genome seems to help eukaryotes to produce new noncoding/

coding RNAs, while being disadvantageous for bacteria and archaea

by increasing the risk of transcription of high ORF dominance tran-

scripts, leading to immediate translation of wasteful and/or toxic

proteins (Fig 9A, top and middle panels; Monsellier & Chiti, 2007).

In addition, multicellular organisms have a variety of intracellular

environments because of the large number of cell types, which may

increase the probability of an intracellular environment in which

newly originated proteins are not toxic (Fig 9A, bottom panel). As

the probability that a new protein will not be toxic in multiple intra-

cellular environments is lower than the probability that it will not

be toxic in a particular intracellular environment, noncoding RNAs

that are ubiquitously expressed need to have lower ORF dominance

than those with specific expression (Fig 9A, bottom panel).

Kaessmann proposed an “out-of-the-testis hypothesis”, arguing

that testes facilitate the birth and evolution of new genes in animals

(Kaessmann, 2010). His group has shown that germ cells (spermato-

cytes and spermatids) in the testes have an active chromatin state

and have widespread transcriptional activity, resulting in the tran-

scription of RNAs without immediate functional relevance

(Soumillon et al, 2013). They discussed that this pervasive tran-

scription increases the probability of generating new coding genes.

Consistent with this hypothesis, our results showed that the ORF

dominance distribution of noncoding RNAs shifted to higher values

only in mature testes with spermatocytes and spermatids, but not in

immature testes or other tissues. Wang et al (2020) recently identi-

fied cluster I genes that escape the global translation repression in

spermatocytes and spermatids instead showing high translational

efficiency (Wang et al, 2020), and we found that cluster I genes

showed high ORF dominance. Therefore, new coding genes seem to

be generated from transcripts with high ORF dominance that are

specifically expressed in spermatocytes and spermatids. In support

of this hypothesis, a recent study identified new functional de novo-

▸Figure 8. Molecular mechanisms affecting ORF dominance distributions.

A Schematic explanation of secORF length and bona fide viral ORFs in a (+) ssRNA viral genome and the definition of viral ORF (vORF) score. Black and white rectangles
indicate vORFs and secORFs, respectively. l is the length of the ORFs.

B Histograms of relative frequencies of human (+) ssRNA viruses (red) and bacteriophages (black).
C ORF dominance distributions of lncRNAs in human tissues. Distributions in mature testes and other tissues are indicated as black and gray lines, respectively.
D The relationship between tissue specificity and ORF dominance distribution in humans. Line intensity increases with increasing specificity of gene expression.
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Figure 9. Hypothesis: gene birth is a countermeasure to the decline in effective population size.

A Scheme explaining how nuclear evolution and multicellularity may contribute to the generation of noncoding RNAs with high ORF dominance in eukaryotes.
B Scheme illustrating new gene birth in response to the decline in effective population size caused by environmental changes.
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evolved proteins that regulate chromatin condensation in sperma-

tids (Rivard et al, 2021).

Functional annotation of high ORF dominance noncoding tran-

scripts was related to transcriptional regulation, and the target genes

of transcription factors, including MYCN, TGIF, and ZIC2, were

enriched. Notably, both NCYM and MYCN are expressed in germ

cells of the testes (Suenaga et al, 2014; Kanatsu-Shinohara et al,

2016), and MYCN has been shown to regulate the self-renewal of

spermatogonial stem cells (Kanatsu-Shinohara et al, 2016). Further-

more, a recent study showed that binding sites for transcription fac-

tors, including MYCN, are mutational hot spots in human

spermatogonia (Kaiser et al, 2021). Both TGIF and ZIC2 are mutated

in holoprosencephaly, a disorder caused by a failure in embryonic

forebrain development (Brown et al, 1998; Gripp et al, 2000),

whereas MYCN mutations cause Feingold and megalocephaly syn-

dromes, which are associated with reduced and increased brain

size, respectively (van Bokhoven et al, 2005; Kato et al, 2019).

Thus, the present study also provides a list of candidate human de

novo genes possibly involved in brain development and brain-

related diseases.

According to the drift-barrier hypothesis (Lynch, 2010; Lynch

et al, 2016), the performance of any molecular trait is expected to

become more refined in larger population sizes, because the effects

of selection relative to random drift are stronger than in small popu-

lations. Consistent with this hypothesis, we found that the molecu-

lar traits of coding or noncoding RNAs were prominent in bacteria/

archaea and weak in multicellular eukaryotes, allowing the exis-

tence of bifunctional or nonfunctional RNAs. The excessive overlap

of ORF dominance distributions (Odom > 0.7) diminished the corre-

lation between ORF dominance and protein-coding potential. This

indicates that both coding and noncoding transcripts lost their

molecular traits as coding and noncoding RNAs in terms of ORF

dominance, which became lethal or highly deleterious for the spe-

cies, probably because of the accumulation of nonfunctional RNAs.

Species with decreasing population sizes showed significantly

higher Odom than species with a stable population size, even those

classified as LC in the IUCN Red List. Combined with the results

discussed above, we propose a novel model for gene origin in which

new gene birth occurs in response to decreased effective population

sizes (Fig 9B). At stable population sizes, natural selection main-

tains the molecular traits of existing genes, and thus, the coding and

noncoding functions of RNA stably coexist with high and low ORF

dominance and low overlap of the ORF dominance distributions of

coding and noncoding transcripts. When new environments reduce

the effective population size of species, the driving force of fixation/

elimination of mutations changes from natural selection to random

drift. This increases the probability of fixation of neutral or slightly

deleterious mutations (Kimura, 1968, 1983; Ohta, 1973), resulting in

an increase in the overlap of ORF dominance distributions between

coding and noncoding transcripts. This overlap allows the existence

of nonfunctional or bifunctional RNAs as candidates for new coding

or noncoding transcripts. Driven by random drift, the emergence of

functions for these new transcripts is largely stochastic rather than

shaped by selection, as observed for the novel ORFs in human line-

ages (Dowling et al, 2020).

When the effective population size approaches 1,000 because of

rapid decline, the accumulation of deleterious mutations decreases

the long-term evolutionary potential of populations (Frankham et

al, 2014), leading to extinction. On the contrary, when the speed is

slow enough for the stochastically evolved new coding/noncoding

transcripts to contribute to an increase in the effective population

size, the species adapt to new environments. The increase in the

effective population size leads to an increase in the effect of natural

selection on the new functions of coding/noncoding genes and on

those of preexisting genes.

In conclusion, ORF dominance is an important indicator for inte-

grating the concept of gene birth into classical evolutionary theory,

thereby contributing to the elucidation of the molecular basis for the

evolution of complex species, including humans. In the future, it

will be necessary to calculate ORF dominance based on the tran-

scriptomes of additional species to test our hypothesis that positions

new gene birth as a countermeasure to the decline in effective popu-

lation size.

Materials and Methods

Primary and secondary ORFs

In this study, ORFs were defined as sequence segments beginning at

AUG and ending with any of the UAA, UAG, or UGA stop codons in

the 5ʹ to 3ʹ direction within an RNA sequence in all three possible

reading frames (Fig 1A). The ORFs in the human de novo gene

NCYM (Suenaga et al, 2014) were identified using its cDNA

sequence (Appendix Fig S1A) and are shown in bold characters

(Appendix Fig S1B). Sequences that begin at AUG and end at the

3ʹ-terminus of RNA without UAA, UAG, or UGA were not considered

ORFs. Hence, an RNA sequence lacking the AUG or the three base

sequences that constitute stop codons (UAA, UAG, or UGA) did not

contain ORFs. We did not use the reverse complement sequences of

RNA sequences registered in databases to define ORFs because ribo-

somes translate mRNAs in the 50 to 30 direction.

ORF length

Definition
The ORF length is defined as the length of the amino acid sequence,

excluding the stop codon, and it is represented by l (Fig 1A). In an

RNA sequence, the longest ORF is designated as the primary ORF

(pORF), whereas the others are termed secondary ORFs (secORFs).

The lengths of pORF and secORF are described as lpORF and lsecORF,

respectively (Fig 1A). We excluded lncRNAs with pORFs shorter

than 20 amino acids from our analyses because the existence or

physiological significance of such short peptides is not clear in most

of the species analyzed in the present study.

Example
The shortest possible ORF was “AUGUAA”, “AUGUAG”, or

“AUGUGA”, with a single methionine. For example, the NCYM tran-

script has a pORF with a length of 109 in frame 1, three secORFs

with lengths of 69, 8, and 6, respectively, in frame 2, and no ORFs

in frame 3 (Appendix Fig S1C and D).

Characteristics
Therefore, the lengths of pORF and secORF present the following

relationship:
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1 ≤ lsecORF ≤ lpORF (1)

ORF dominance

Definition
We defined ORF dominance (Fig 1A) according to Equations 2

and 3

∑n
i¼1lsecORFi ¼ lsecORF1 þ lsecORF2 þ⋯lsecORFk þ⋯þ lsecORFn (2)

ORF dominance ¼ lpORF
lpORF þ∑n

i¼1lsecORFi
; (3)

where lpORF þ∑n
i¼1lsecORFi represents the sum of all ORF lengths.

This definition derived from the hypothesis that the potential for

translation of a pORF is reduced by the translation of secORFs.

Example
For an RNA sequence with only one ORF, ORF dominance was 1

(Fig 1B). An RNA sequence with many secORFs tended to have a

score close to 0 (Fig 1B). If the sum of all secORF lengths was equal

to the pORF length, the ORF dominance was 0.5 (Fig 1B). The ORF

dominance of the NCYM transcript was 0.568 (Appendix Fig S1C).

In some transcripts, multiple ORFs have the longest length, causing

the definition of pORF and secORF to become unclear. However,

this was resolved by defining ORF dominance using only the sum of

all ORF lengths lpORF þ∑n
i¼1lsecORFi in the denominator, and the

length of the pORF to calculate ORF dominance. Therefore, ORF

dominance is uniquely calculated, even for transcripts for which the

pORF cannot be clearly defined. If an RNA sequence does not con-

tain an ORF, both the numerator and denominator are set to 0. In

such transcripts, there is no protein-coding potential, and ORF domi-

nance is not defined. Transcripts without ORFs were excluded from

the analyses.

Characteristics
Therefore, the range of the ORF dominance is as follows:

0<ORF dominance ≤ 1 (4)

Relative frequencies f(x) and g(x)

Definition
We defined f(x) and g(x) according to Equations 5 and 6, respec-

tively (Fig 1C):

fðxÞ ¼ NMðxÞ
TNM

(5)

gðxÞ ¼ NRðxÞ
TNR

; (6)

where TNM and TNR represent the total numbers of coding and

noncoding transcripts, respectively, excluding transcripts lacking

ORFs. NM(x) and NR(x) are the numbers of coding and noncoding

transcripts with an ORF dominance of x, respectively.

To define coding/noncoding transcripts with an ORF dominance

of x, we divided the histograms into ten classes and used the median

values of the classes to represent ORF dominance (Fig 1C).

Therefore, in Equations 5 and 6, ORF dominance x was restricted as

follows:

x ¼ 0:05; 0:15; 0:25; 0:35; 0:45; 0:55; 0:65; 0:75; 0:85; or 0:95 (7)

Characteristics
Thus, f(x) and g(x) follow Equations (8–11):

0 ≤ fðxÞ ≤ 1 (8)

0 ≤ gðxÞ ≤ 1 (9)

∑xf ðxÞ ¼ 1 (10)

∑xgðxÞ ¼ 1 (11)

Overlapping scores Odom and Ocov

Definition
O (x) was calculated according to Equation (12):

OðxÞ ¼ ∑xoðxÞ; (12)

where o (x) is the smaller value of the relative frequency of f(x) or

g(x). Odom is O (x) with ORF dominance = x, and Ocov is O (x)

with ORF coverage = x.

Protein-coding potential F(x)

Definition
F (x) was calculated according to Equation (13):

FðxÞ ¼ fðxÞ
fðxÞ þ gðxÞ (13)

Example
For example, F(0.15) in human transcripts is shown in Fig 1D. F

(0.15) was calculated using Equation (13), as follows:

fð0:15Þ ¼ 0:060

gð0:15Þ ¼ 0:268

Fð0:15Þ ¼ fð0:15Þ
fð0:15Þ þ gð0:15Þ ¼

0:060

0:060þ 0:268
¼ 0:18292 ¼ 0:183

Identification of noncoding transcripts with high
protein-coding potential

NR transcripts with high F(x) (0.6 ≤ x < 0.8) were identified from

the total NR transcripts from the NCBI nucleotide database. NR tran-

scripts shorter than 200 nucleotides or with pORFs encoding puta-

tive peptides with less than 20 amino acids were excluded. The

amino acid sequences of pORFs in these transcripts were subjected

to a BLASTP search to detect the presence of putative domain
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structures. In the BLASTP search, nonredundant protein sequences

(nr) were applied as the search set, and quick accelerated protein–
protein BLAST (BLASTP) was chosen as the algorithm. In the search

results, putative conserved domains or the message “No putative

conserved domains have been detected” were shown in the Graphi-

cal Summary tab. CDSEARCH/cdd was used to search for conserved

domain structures using the default settings: low-complexity filter,

no; composition-based adjustment, yes; E-value threshold, 0.01; and

maximum number of hits, 500. Based on these data, transcripts with

or without putative conserved domain structures were indicated as

+ or −, respectively.

Functional annotation of original genes

Original genes were defined as those noted in the official gene name

of NR transcripts, including sense genes for antisense transcripts,

homologous genes for pseudogenes, coding genes for noncoding

transcript variants, and readthrough, divergent, or intronic tran-

scripts. For lincRNAs, microRNA host genes, small nuclear RNAs,

and other lncRNAs, the official gene symbol was used for annota-

tion. This information was manually checked using the information

available in the nucleotide database. DAVID (https://www.david.

ncifcrf.gov) was used to identify the enriched molecular functions

and pathways related to the original genes. Q-values (P-values

adjusted for false discovery rate) were calculated using the

Benjamini–Hochberg method in DAVID.

Ka-to-Ks nucleotide substitution ratios

To identify orthologous regions between human transcripts and

chimpanzee/mouse genomes, the BLAST-like alignment tool (BLAT)

v. 36 (Kent, 2002) was used for querying human transcript

sequences with the estimated ORF dominance against chimpanzee

(PtRV2) and mouse (GRCm38.p6) genomic sequences in the NCBI

database. We defined the BLAT best-hit genomic regions of chim-

panzee/mouse as orthologs for each human transcript. The human–
chimpanzee (or human–mouse) sequences were aligned for each

exon region, and the sequences were combined for each transcript.

Only orthologous sequence pairs of more than 60 bp in length

(encoding > 20 amino acid residues) were extracted. Ka and Ks

nucleotide substitution rates were estimated as described by Yang

and Nielsen (2000) and implemented in PAML version 4.8a (Yang,

1997). Transcripts with high Ka (> 1) or high Ks (> 1) were

excluded from our dataset as outliers. We calculated Ka and Ks for

47,228 NM human–chimpanzee, 14,116 NM human–mouse, 8,810

NR human–chimpanzee, and 1,561 NR human–mouse pairs.

Relative frequencies of negatively selected genes

We defined the frequency of negatively selected genes, h(x), in both

coding and noncoding transcripts (Fig 1G), as shown in Equa-

tion (14):

hðxÞ ¼ NnsðxÞ
TNorðxÞ (14)

where TNor (x) represents the total number of coding or noncoding

transcripts with orthologous sequences at ORF dominance = x. Nns

(x) is the number of coding or noncoding transcripts with Ka/Ks <

0.5 at ORF dominance = x. The ORF dominance x was restricted as

shown in Equation 7.

Phylogenic trees

TimeTree (Hedges et al, 2006) was used to draw trees using official

species names.

Selection of viruses and identification of vORFs

The complete genomes of (+) ssRNA viruses infecting human or bac-

teria (Datasets EV14 and 15) were collected from the NCBI Virus data-

base (Hatcher et al, 2017). vORFs were identified, and the sums of the

vORF lengths ∑n
i¼1lvORFi were manually calculated. We eliminated

those viruses that translated viral proteins after splicing or using

exceptional translation mechanisms such as ribosome frameshifting,

alternative initiation sites, ribosome slippage, and RNA editing.

vORF score

Definition
The vORF score was calculated according to Equations (15–17):

∑n
i¼1lvORFi ¼ lvORF1 þ lvORF2 þ⋯þ lvORFk þ⋯þ lvORFn (15)

∑n
i¼1lsecORFi ¼ lsecORF1 þ lsecORF2 þ⋯þ l secORFk þ⋯þ l secORFn

(16)

vORF score ¼ ∑n
i¼1lvORFi

∑n
i¼1lvORFi þ∑n

i¼1lsecORFi
; (17)

where lvORFi represents the length of the bona fide ORFs, and

∑n
i¼1lsecORFi is the sum of secORF lengths. ∑n

i¼1lvORFi þ∑n
i¼1lsecORFi

represents the sum of the lengths of all ORFs.

ORF dominance calculations using transcriptome data

Transcriptome data of five species were obtained from a previous

study (Sarropoulos et al, 2019). Ensembl transcript IDs of cluster I

and cluster III genes were obtained from the authors of a previous

study (Wang et al, 2020). All transcripts expressed at detectable

levels (nonzero) in each tissue were used to calculate ORF domi-

nance for lncRNAs and to plot ORF dominance distributions. To

determine the correlation between tissue specificity and ORF domi-

nance, we divided the transcripts into the indicated groups

according to the number of tissues in which the transcript was

detected and described the ORF dominance distribution in each

group. Human transcriptome data for coding transcripts were

obtained from the Human Protein Atlas (http://www.proteinatlas.

org), including RNA isoform data from 131 cell lines and 281 tis-

sues. The ORF dominance for each transcript was calculated from

Ensembl data.

Statistical analyses

Statistical analyses were performed using Excel and R software

(R Project for Statistical Computing, Vienna, Austria).
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Data availability

The source data for statistical analyses and figures (10 example

datasets) are available on https://doi.org/10.6084/m9.figshare.

7269500. The code associated with generating and analyzing these

tables is available on https://doi.org/10.6084/m9.figshare.7269518.

Expanded View for this article is available online.
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