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Traceless enzymatic protein synthesis without ligation
sites constraint
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Yu'e Tian', Yinglu Cui', Timo Nuijens®* and Bian Wu @+

ABSTRACT

Protein synthesis and semisynthesis offer immense promise for life sciences and have impacted
pharmaceutical innovation. The absence of a generally applicable method for traceless peptide conjugation
with a flexible choice of junction sites remains a bottleneck for accessing many important synthetic targets,
however. Here we introduce the PALME (protein activation and ligation with multiple enzymes) platform
designed for sequence-unconstrained synthesis and modification of biomacromolecules. The upstream
activating modules accept and process easily accessible synthetic peptides and recombinant proteins,
avoiding the challenges associated with preparation and manipulation of activated peptide substrates.
Cooperatively, the downstream coupling module provides comprehensive solutions for sequential peptide
condensation, cyclization and protein N/C-terminal or internal functionalization. The practical utility of
this methodology is demonstrated by synthesizing a series of bioactive targets ranging from pharmaceutical
ingredients to synthetically challenging proteins. The modular PALME platform exhibits unprecedentedly
broad accessibility for traceless protein synthesis and functionalization, and holds enormous potential to
extend the scope of protein chemistry and synthetic biology.
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INTRODUCTION

Breaking away from the central dogma, protein total
synthesis and semisynthesis are powerful strategies
for generating and functionalizing naturally inacces-
sible proteins, which have enabled groundbreaking

two decades, the development of protein synthesis
methods has been focused on how to perform the
selective ligation of unprotected peptides in aqueous
phase in the presence of the full diversity of reactive
functionalities within peptide side chains [S]. In this
context, following the principle of tandem chemos-

applications driving life science advances and

. . ; . . elective capture and intramolecular rearrangement
impacted the industrial production of biomolecular P 8 ’

therapeutics [1-3]. Solid-phase peptide synthesis native chemical ligation (NCL) has been a trans-
(SPPS) [4] hasbeen developed as an effective means
of incorporating the full spectrum of chemical func-
tional groups at desired locations while assembling

amino acids into a peptide chain, but synthesizing

formative advance that has revolutionized protein
chemistry through its application in the synthesis
of thousands of proteins to date [6,7]. However,
the need for a relatively rare cysteine residue has
longer peptides and proteins has been considered an limited its utility for many synthe.tlc targets' To
. . extend the scope of protein synthesis, considerable
arduous task because of the exponential decrease in

. . ) fforts h i i i
the overall yield as the number of residues increases. efforts have been directed toward incorporating

desulfurization chemistry [8] or other ligation
strategies such as ketoacid-hydroxylamine ligation
(KAHA) [9], serine/threonine ligation (STL) [10]
and diselenide selenoester ligation (DSL) [11], as
well as automated fast-flow technology [12] forlong
peptide synthesis. In addition to chemical methods,

To acquire larger proteins, it is generally more
efficient to divide the whole polypeptide chain into
several fragments, then synthesize and couple them
sequentially or to ligate synthesized peptides to re-
combinant protein segments. Therefore, for the past
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Figure 1. Overview of the PALME platform. (a) Reported chemical and enzymatic methods for site-restricted peptide ligation.
Residues remaining at the ligation junction (scar) are colored grey. (b) Site-independent peptide ligation via an engineered
subtilisin-derived ligase termed peptiligase. (c) The challenges faced in peptiligase-catalyzed peptide ligation to date. (d) Our
solution as reported in the present study. (e) Flexible multi-input and multi-output options of the PALME platform.

biocatalytic strategies have received increasing
attention as they exhibit inherent properties such
as excellent regio- and chemoselectivity. Alongside
split intein tools [13,14], genomic mining and
protein engineering have led to the discovery and
refinement of sortase-A [15], butelase-1 [16] and
other transpeptidases with similar mechanisms.
These peptide ligation strategies have given rise to
a flourishing research field of protein synthesis and
functionalization. Nevertheless, possible retrosyn-
thetic disconnections are limited (Fig. la), and
demanding challenges remain in attempts to access
many biomacromolecules of interest.
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To release ligation site restrictions, subtilisin-
derived ligase-catalyzed peptide coupling is deemed
the most promising solution to date [17] be-
cause this class of enzymes enables traceless amide
bond formation with broad sequence compatibility
(Fig. 1b). In the 1990s, Wells and coworkers
created an enzyme called subtiligase by introduc-
ing $221C and P225A mutations into subtilisin
BPN’. Subtiligase was mechanistically altered to fa-
vor aminolysis over hydrolysis, laying the foundation
for development of this ligation technology [18].
Recently, we developed another exceptionally ro-
bust cation-independent subtilisin-derived ligase,
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termed peptiligase [19], to make this approach in-
dustrially viable. Peptiligase has remarkable catalytic
efficiency and offers significantly high average liga-
tion yields (up to 98% in <1 hour). Further engi-
neering efforts have resulted in a series of peptili-
gase variants with either broad specificity that would
maximize utility, or tight specificity that would al-
low selective ligation [20]. As demonstrated by the
hundred-gram-scale synthesis of an active pharma-
ceutical ingredient (API) in industrial settings, pep-
tiligase has proven to be applicable for practical man-
ufacture of therapeutic peptides in a cost-efficient
and environmentally sustainable manner [21].
However, the great potential of peptiligase
for further widespread applications in protein
chemistry was severely restricted by problems in the
preparation and manipulation of reactive handles
(Fig. 1c). First, the required acyl donors bearing
an active ester at the C-terminus are sometimes
challenging to prepare through SPPS. In addition,
sequential enzymatic ligations for large synthetic
targets are generally impractical because C-terminal
protection of the acyl acceptor is necessary to
prevent repeated condensation. More importantly,
although C-terminal functionalization
strategies that rely on inteins [22] or specific se-

several

quences [23-25] have been developed, convenient
activation of recombinant proteins for traceless
ligation with broad sequence compatibility re-
mains a longstanding challenge. Consequently, a
peptiligase-compatible method that enables regios-
elective C-terminal activation in the aqueous phase
using easily accessible peptides and proteins would
be highly desirable to overcome the constraints
on realizing extensively practicable and traceless
protein synthesis and functionalization.

Nature brings forth sophisticated biomolecule
systems for assembling free amino acids into
proteins. In the course of evolution, the elegant col-
laboration of aminoacyl-tRNA synthetases (amino
acid activation), tRNAs (intermediate ester forma-
tion) and ribosomes (amide-forming ligation) has
allowed precise assembly of diverse L-amino acids
with unmodified a-amino groups and side chains.
Revisiting the fascinating principles of nature and
possessing the peptiligase family for peptide ligation,
we envisioned that sequence-independent assembly
of native peptides might also be feasible through iter-
ative activation and ligation processes using multiple
enzymes that present both strict regioselectivity and
broad substrate specificity. To address this possibil-
ity, we sought to design a multienzyme cooperative
activation and ligation strategy (Fig. 1d) for trace-
less protein synthesis and functionalization, and we
now present this platform, termed PALME (protein
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activation and ligation with multiple enzymes). By
unifying acyl-shift chemistry from enzymatic and
chemical protein synthesis, the PALME platform
accepts SPPS products (i.e. peptide carboxylic acids,
amides or hydrazides) and recombinant proteins
as the input and presents proteins synthesized
via sequential condensation, cyclization, protein
N/C-terminal or internal functionalization as the
output (Fig. le). Our results highlight that enzymes
with diverse functions can be rationally harnessed
to offer traceless protein synthesis and function-
alization with remarkable flexibility in the choice
of ligation sites and peptide substrates, providing
unprecedentedly broad application potential.

RESULTS AND DISCUSSION

Establishing compatibility between
peptide-activating and peptide-coupling
enzymes

At the outset of our studies, we searched for a
broadly applicable enzyme for C-terminal peptide
esterification, to provide accessible reactive han-
dles for peptiligase. Accordingly, we explored the
peptide amidase (PAM) from Stenotrophomonas
maltophilia, which allows sequence-independent
C-terminal peptide modification with absolute re-
gioselectivity [26]. Using computational redesign,
we significantly improved the robustness and syn-
thetic utility of PAM [27,28]. However, after ex-
hausting different protein engineering strategies, our
surveys for a mutant that catalyzes direct esterifica-
tion reactions in aqueous solution were unfruitful,
leading to requirement for a bridge to join the two
biocatalysts. Thus, we began to consider hydrazide
chemistry, which was implemented by the Liu group
and has been one of the most widely used exten-
sions to NCL [29]. In this method, the thioester
functionality of the acyl donor is initially masked in
the form of a C-terminal hydrazide and is sequen-
tially retrieved via a combination of nitrite oxida-
tion and thiolysis. We envisioned that this strategy
might be adapted for peptiligase-catalyzed ligation,
although it was unclear if there is an appropriate al-
cohol reagent for peptide acyl shifting.

We initially explored the feasibility of using 2-
hydroxyacetamide, which would afford the peptide
carboxamidomethyl (Cam) ester (standard pep-
tiligase substrate) for intermediate ester formation.
The model peptide hydrazide Ac-DFSKL-N,H;
was oxidized using sodium nitrite in an acidic
buffer solution at —15°C, producing a peptide
azide. Subsequently,

2-hydroxyacetamide was

added to form the corresponding peptide Cam
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ester. Finally, the acyl acceptor ALKKA-NH,
(1.5 equiv.) and omniligase-1 (0.003 equiv., a
commercially available enzyme from the pep-
tiligase family [30]) were added to the reaction
mixture, and the ligation was allowed to proceed
for 30 minutes at pH 8.5 and room temperature.
To our delight, the desired ligation product Ac-
DFSKLALKKA-NH, was formed (20% yield). This
preliminary result demonstrated the possibility of
using peptide hydrazide in peptiligase-catalyzed
peptide ligation in a one-pot approach, albeit with
low ligation efficiency. A detailed analysis of the
intermediates in the cascade reactions revealed
that multiple side products were formed during the
esterification process, most likely because of Curtius
rearrangement of the peptide azide. Therefore, to
obtain a high ligation yield and a clean reaction, it is
crucial to rapidly convert the peptide azide into the
corresponding ester with a strong nucleophile. The
formed peptide ester is also expected to be stable in
a weakly alkaline solution and to fit the binding sites
of peptiligase. Besides, the alcohol should be a good
leaving group for enzymatic S-O exchange.

With these stipulations in mind, we inves-
tigated a panel of alcohols including aliphatic
alcohols, aromatic alcohols, fluoroalcohols and
2-hydroxyacetamide analogues, for their efliciency
in the model S + S reaction (Fig. 2). Most of
the tested alcohols were able to mediate peptide
ligation with moderate overall yields (10-50%).
In particular, in phenol-mediated reactions, the
peptide phenolic ester performed well in the
ligation step. Accordingly, we further examined a
series of phenol derivatives containing polar and
electron-withdrawing substituents on the aromatic
ring to improve their nucleophilicity and aqueous
solubility. Gratifyingly, the use of 4-hydroxybenzoic
acid (HBA, e6), 4-hydroxyphenylacetic acid (e7)
and 4-hydroxyphthalic acid (e8) resulted in almost
quantitative conversion of the peptide ester within
S minutes. The resulting peptide esters demon-
strated good chemical stability under ligation
conditions, and their ligation efficiencies (>90%)
were comparable to those of the standard peptide
Cam esters. Further experiments showed that the
racemization extents of the peptide HBA esters
were <4%, and the formed D-peptide ester was
not depleted after omniligase-catalyzed ligation
process. Considering its overall performance and
commercial availability at scale, HBA was selected
for further studies.

The scope of enzymatic peptide hydrazide lig-
ation was then investigated. To map the substrate
profile of six binding pockets of omniligase-1 in
HBA-mediated peptide hydrazide ligations, we per-
formed an extensive series of reactions with four
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acyl donor and two acyl acceptor site-saturation
peptide libraries under identical reaction conditions
(Fig. 3a). We were pleased to observe that the de-
sired ligation products were obtained in all tested re-
actions in this thorough substrate scan, and a ma-
jority of the ligations proceeded smoothly with high
coupling yields (>70%) within 1 hour. Remarkably,
using this activation-ligation approach, we were even
able to ligate peptides that usually serve as poor sub-
strates for omniligase-1, for example, P1 = Pro pep-
tide, with >80% coupling efliciency. These results
indicated that the broad sequence compatibility of
omniligase-1 was well maintained and even partially
improved in this newly devised HBA-mediated lig-
ation process. To accomplish the small portion of
less efficient ligations, the reaction conditions can be
specifically optimized by adopting approaches such
as raising the acyl acceptor peptide concentration
or using peptiligase variants with different substrate
profiles. In addition, a group of preliminary experi-
ments on the short peptides (e.g. a couple of pen-
tapeptides) could provide valuable reference for se-
lecting efficient ligation sites when formulating the
synthetic scheme of a bulky target.

Having demonstrated the utilization of peptide
hydrazides in peptiligase-catalyzed ligation, we con-
tinued to investigate whether the peptide-modifying
enzyme PAM is feasible for converting the most
basic SPPS products (peptide amides/carboxylic
acids) into the corresponding peptide hydrazides,
using computationally redesigned PAM12B [27].
Preliminary experiments showed that hydrazidation
of the model peptide Ac-DFSKL-NH, proceeded
smoothly in aqueous solution at room temperature
through kinetic control. In the presence of 0.5 M
hydrazine and 0.00001 equiv. PAM12B, the conver-
sion of the peptide amide was complete after 45 min-
utes, giving a hydrazidation product with 96% effi-
ciency. Based on the initial success, we next evalu-
ated the substrate sequence preference of the two
terminal residue binding pockets of PAM12B by
performing hydrazidation reactions with two site-
saturation peptide amide libraries. In most reactions,
hydrazidation products (except for P1 = Pro or Asn
peptides) could be obtained in >90% yield in 1 hour
(Fig. 3b), demonstrating the desired versatility of
the peptide-activating enzyme.

However, the PAM12B-catalyzed modification
of peptide carboxylic acids is practical only in or-
ganic environments (H,O < 10%) because of a
thermodynamic barrier that restricts direct activa-
tion of recombinant proteins. To overcome this se-
vere limitation, we sought to recruit an additional
biocatalytic module for the selective functionaliza-
tion of the peptide or protein carboxyl terminus.
In the animal kingdom, many secreted peptides are
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Figure 2. Screening of the alcohols for peptiligase-compatible esterification. The overall yield was calculated by the integra-
tion of the peak areas [19,20,31] of the ligation, hydrolysis and esterification products monitored by HPLC (220 nm). Gn-HCI:
guanidine hydrochloride. More details can be found in the Supplementary data (Methods and results 4.1).

processed by a peptidyl-glycine oxidation system
[32]. During transformation, peptidyl-glycine hy-
droxylating monooxygenase (PHM) catalyzes the
stereospecific hydroxylation of the cz-carbon of the
terminal glycine with oxygen and ascorbate, and one
molecule of glyoxylate is sequentially removed by
peptidyl-oe-hydroxyglycine amidating lyase (PAL)
to form the des-glycine peptide amide, which is the
ideal substrate for PAM. With the expectation that
the activating modules might work cooperatively,
we prepared PHM from Rattus norvegicus and PAL
from Exiguobacterium sp. by recombinant expres-
sion. Initially, we tested the activity of PHM and PAL
with the model peptide DLSYLG-OH under dena-
turing conditions as the ligation process (2 M guani-
dine); however, neither hydroxylated product nor
des-glycine peptide amide was detected. Then the
amidation reaction was performed in the absence of
guanidine, and the peptide DLSYLG-OH (1 mM)
was converted to the corresponding peptide amide
in 15 minutes, indicating that PHM and PAL ex-
hibit high activity under nondenaturing conditions.
We next evaluated the substrate spectrum of PHM
and PAL, and all 20 model peptides DLSYXG-OH
were quantitatively converted to the corresponding
peptide amides, which could be swiftly (<30 min-
utes) and efficiently (>90% yield) hydrazinolyzed
by PAMI2B in a one-pot reaction as expected
(Fig. 3c).

Having acquired all activating modules for
supplying appropriate substrates for the coupling
module, we finally tested the complete reaction
route utilizing all catalytic modules with the model
peptide Ac-DFSKVG-OH (1). Briefly, this native
peptide carboxylic acid was successively converted
to Ac-DFSKV-NH, (2) by PHM and PAL and
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to Ac-DFSKV-N,H; (3) by PAMI2B. Then,
excessive HNO, was utilized to remove residual
hydrazine and oxidize 3 at —15°C. Upon addition
of HBA, the corresponding peptide ester (4) was
obtained and subsequently conjugated with equiv-
alent ALKKA-NH, by omniligase-1 to produce
Ac-DFSKVALKKA-NH, (5, Fig. 3d). The whole
process was conducted in one pot in 3 hours with
only trace amounts of enzymes, exhibiting excellent
catalytic efficiency, chemoselectivity and regiose-
lectivity in the presence of a multitude of side-chain
reactive functionalities. These results demonstrated
that all catalytic modules exhibited a broad sub-
strate spectrum and functioned well in series and the
PALME platform was ready for further investigation.

Broad application scope of the PALME
platform for protein synthesis
and functionalization

We next examined the PALME's utility for practical
applications. Considering synthetic availability and
cost, we were poised to synthesize short peptide
hydrazides directly via SPPS and to prepare peptide
hydrazides longer than 10 residues using peptide-
activating enzymes on ten-milligram scale. Initially,
we tested the feasibility of enzymatic peptide N-to-C
sequential condensation and employed this strategy
to synthesize exenatide [33], the API of the antidi-
abetes drugs Byetta® and Bydureon®. We divided
exenatide into three segments, which were prepared
in the form of peptide hydrazide (N-part) or peptide
amide (middle part and C-part). The N-terminal
segment was transformed into its HBA ester and
ligated with the middle segment, generating the
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Figure 3. The scope and compatibility of activating and coupling modules (a) Six site-saturation peptide hydrazide and pep-
tide amide libraries (Ac-DXSKL-N;Hs, Ac-DFXKL-N;Hs, Ac-DFSXL-N,Hs, Ac-DFSKX-N,Hz, XLKKA-NH, and AXKKA-NH,) were
utilized to investigate omniligase-1 substrate profiles. Ligation efficiency (blue band) was calculated by the integration of the
peak areas [19,20,31] of the ligation and hydrolysis products monitored by HPLC (220 nm). (b) Two site-saturation peptide
amide libraries (Ac-DFSXL-NH, and Ac-DFSKX-NH,) were utilized to investigate PAM12B substrate profiles. The hydrazida-
tion yield (blue band) was calculated by the integration of the peak areas [27] of the hydrazidation and hydrolysis products
monitored by HPLC (220 nm) except for P1 = Pro or Asn. (c) Amidation and hydrazidation reactions were performed on one
site-saturation peptide glycine library (DLSYXG-OH). The amidation yield (blue band) was calculated by integration of the
peak areas of the amidation products and residual substrates monitored by HPLC (220 nm). The hydrazidation yield was de-
termined as described above. (d) One-pot activation and ligation of Ac-DFSKV-G and ALKKA-NH,. Analytical HPLC traces
(220 nm) of the reaction mixture (top to bottom): substrate, 90 minutes after the addition of PHM and PAL, 10 minutes after
the addition of PAM12B, before the addition of omniligase-1, 30 minutes after the addition of omniligase-1. More details
can be found in the Supplementary data (Methods and results 4.2, omniligase; 4.3 to 4.5, PAM12B, PHM and PAL; and 4.6,
one-pot conjugation of Ac-DFSKV-G and ALKKA-NH,).
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conjugation product with a 48% isolated yield. The
obtained peptide hydrazide was then activated and
conjugated with the C-terminal segment to produce
3.0 mg of purified exenatide with a 63% isolated
yield (Fig. 4a). Compared to multifragment con-
densation in the C-to-N direction [34], our strategy
avoids the multiple intractable metal-mediated de-
protection processes at the N-terminus, providing
a more efficient protocol for chemoenzymatic total
synthesis of biomacromolecules.

In addition to intermolecular conjugation, we
investigated intramolecular ligation that could
generate more rigid cyclic peptides than linear
substrates [35]. We selected sheep myeloid an-
timicrobial peptide (SMAP) [36], which does not
contain Cys/Ser/Asp/Asn residues for sequence-
limited chemical ligation or transpeptidation in
aqueous solution, as the tested object. After esteri-
fication and ligation processes, SMAP was cyclized
with an 86% efficiency according to HPLC analysis
(Fig. 4b), illustrating that our activation and ligation
strategy is a good supplement to current peptide
cyclization methodologies.

Encouraged by the success of peptide sequen-
tial condensation and cyclization, we asked whether
this strategy could be applied to objects pre-
pared by recombinant expression, hence Cys-free
4-oxalocrotonate tautomerase (4-OT) was selected
as the target for semisynthesis. 4-OT is a fascinat-
ing enzyme that promiscuously catalyzes various im-
portant synthetic reactions, including Michael addi-
tion [37], aldol condensation [38] and epoxidation
[39]. As4-OT is considered to lie at the interface be-
tween organocatalysis and biocatalysis, this protein
scaffold serves as an excellent template for chem-
ical engineering to further broaden the synthetic
versatility of biomacromolecules. We prepared the
C-terminal part of 4-OT by recombinant expression
followed by removal of the His-SUMO-tag and then
attempted to conjugate it with the SPPS-synthesized
N-terminal fragment. The full-length protein was ob-
tained after HPLC purification, and the Michaelase
activity of the refolded semisynthesized enzyme re-
sembled that of recombinant 4-OT (Fig. 4c). Subse-
quently, we performed N-terminal functionalization
of much bulkier recombinant proteins. In 10 mo-
lar equivalents of biotin/FIT C-modified peptide hy-
drazides, the 10 kDa ubiquitin-like modifier FAT10
[40] and the 12 kDa rationally designed HIV-1 im-
munogen C4S3 [41] could be labelled with an ef-
ficiency of up to 92% (Fig. 4c). The modification
process was also successfully applied to a 248-mer
enhanced green fluorescent protein (EGFP), which
implied that our strategy is highly promising for
functionalization of the majority of human proteins
(those with a mass of up to ~30 kDa).
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Next, we tested whether the proteins bearing
post-translational modifications in the C-terminal
region were accessible via the PALME platform.
As one of the most widely investigated regulatory
proteins [42], ubiquitin (Ub) has hitherto been
a classic target of chemical protein synthesis
and semisynthesis, despite the tedious desulfu-
rization process after NCL. We divided Ser65-
phosphorylated ubiquitin into two segments,
and the majority of the targeted protein could be
obtained via recombinant expression. Accordingly,
recombinant Ub(1-59)-Gly was amidated by PHM
and PAL, followed by PAM12B-mediated hydrazi-
dation. Afterward, the purified protein hydrazide
was esterified and ligated with the synthetic 17-mer
phosphorylated peptide, successfully producing the
full-length phosphorylated Ub (Fig. 4d). Overall,
by harnessing multiple activating and coupling
enzymes that present both strict regioselectivity and
broad substrate specificity, we demonstrated that
the designed PALME platform should be able to
cover the expected full spectrum of applications.

Semisynthesis of intractable proteins
via the PALME platform

Having verified the PALME platform’s broad ap-
plication scope, we next attempted to apply it to
currently intractable targets. Recombinant proteins
bearing multiple adjacent Cys residues are tricky
to handle because chemical methods involving cys-
teine/thiols require pretreatment of native proteins
to reduce the disulfide bonds [43]. When apply-
ing thiol-dependent chemical methods to synthesize
these targets, native Cys residues are often mutated
or protected to avoid side reactions. With the thiol-
free, native Cys-independent activation and ligation
strategy in hand, we were poised to activate and func-
tionalize NrdH-redoxin, an electron donor bearing a
CXXC catalytic motif at the active site that forms a
disulfide bond in the oxidation state. This protein is
a promising drug target as it functions cooperatively
with prokaryote-specific class Ib ribonucleotide re-
ductase and is essential for cell metabolism [44].
By utilizing PHM, PAL, PAM12B and omniligase-1
together, we converted the recombinant NrdH-Gly
to the corresponding protein hydrazide and labelled
it with biotin/FITC at the C-terminus (Fig. Sa).
The vital disulfide bond was not disturbed through-
out the process, suggesting that the PALME plat-
form could be a suitable supplement for handling
intractable multiple-Cys proteins without protec-
tion/deprotection processes.

Finally, we examined the PALME'’s utility in
protein semisynthesis applied to internal regions,
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Figure 4. Broad applications of the PALME platform. (a) Total synthesis of exenatide (PDB: 1JRJ) by N-to-C sequential peptide
condensation. (b) Cyclization of SMAP. (c) (left) Semisynthesis of 4-OT monomer. The cartoon demonstrates the structure of
catalytically active 4-0T hexamer (PDB: 4X19, the A33D mutant was introduced to raise Michael-type addition activity). The
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(7), which was monitored by HPLC (320 nm). (right) N-terminal modification of the ubiquitin-like modifier FAT10 (PDB: 6GF2), the
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Page 8 of 11



Natl Sci Rev, 2022, Vol. 9, nwab158

a Functionalization of recombinant protein
bearing multiple adjacent Cys residues

-
& MSof g mesme,
9
Recombinant vzl | P
expression +7 "
S-S o Jn L
o v QD o
H G MSof il aeme
pH=6.5, 37°C | PHM & PAL 10 ®
60 min | Oy 2
+7
s-s o '13 +6
10 - QIR v N
MS of calc: 8442.5
rt. | PAM12B PRSI po Gbe: 84428206
5min | 0.4 M NoH,
s o ‘f ‘f
NH; |
1 HZNWN g gt
+10
+11
pH=3.0,-15°C | 1)0.14 MNaNO,  MS of T eeeesor
Gn-HCI, 20 min | 2) 0.60 M HBA 12 ., 5
s-s o /©/coo>-< ‘ 7
e r
12 w0 | [
pH=8.5, r.t. | Omniligase-1 MS of “32”1 e 92046
30 min | Modified peptide 13 obs: 9204.520.5

+10
§S o '“ o
W@ L

b Protein internal functionalization

o
OH
: Y VAN

Recombinant

pH=6.5, 37°C | PHM & PAL expression
30 min | O,
o
rt. | PAM12B
PP
10 min | 0.4 M NoH, ls S
o @ o
o Q) hov- G .
pH=3.0, -15°C | 1) 0.14 M NaNO, r'." PAM12B
Gn-HCI, 20 min | 2) 0.60 M HBA 10 min | 1 M NHy4

o) /©/COOH

o
IR 1563 N'NW
Omniligase-1

[ pH 8.5, r.t., 30 min |

pH=3.0, -15°C L 1) 0.14 M NaNO,

Recombinant
expression

Gn-HCI, 20 min | 2) 0.60 M HBA

COOH
i J i
H

Omniligase-1
| pH 8.5, r.t., 30 min |

N o
ve i 48-63 NW OH

mHSP10: (M)AGQAFRKFL'®PLFDRVLVERZSAAETVT
KGG*IMLPEKSQGK*VLQATVVAVG3'SGS
KG(*°K)GGEIP°QPVSVKVGDK®VLLPEYGG

743 R=Biotin TETTETT R
14 R=FITC a2
MS of calc: 9457.7 calc: 10842
NrdH: MAITVYTKPA'°CVQCNATK 14 » obs: 9457.820.5 “a obs: 1084152
KA20L DRAGLEYDLVDISLD i e
EEAR*EYVLALGYLQAPVV +15] o 12
VADGSH®WSGFRPERIR™E ) ol e,
MATAAA 500 750 1000 1250 1800 miz 280 800 750 1000 1250

TKEOVVLDDKDYFL®*FRDGDILGKY'%vD

Figure 5. Semisynthesis of intractable proteins. (a) C-terminal modification of NrdH-redoxin. The ESI-MS results showed that
the observed molecular weights of the substrate, intermediate and final products were in accord with the theoretical weight
of the corresponding hiomacromolecules in the oxidation state. (b) Semisynthesis of Lys56-acetylated mHSP10. Additional
details can be found in the Supplementary data (Methods and results 4.13, NrdH-redoxin and 4.14, mHSP10).

which is one of the most in-demand methodologies
in protein synthesis [3]. We chose LysS6-acetylated
human mitochondrial heat shock protein 10
(mHSP10), which participates in cellular protein
folding by composing a chaperonin symmetrical
football complex with mitochondrial heat shock
protein 60 (mHSP60) [45], as the target for demon-
stration. The location of the desired modification site
within the protein sequence most often determines
whether semisynthesis is viable. As the modified
LysS6 is located in the internal region of mHSP10,
a multistep ligation strategy involving the assembly
of three segments was expected to be adopted. Un-
fortunately, no Cys or even Ala residue is available
for conventional NCL protocols between Lys56
and Asp102 at C-terminus. The PALME platform’s
broad substrate spectrum in terms of both sequence
and C-terminal functionality meant that we could
design a synthetic scheme that requires the chemical
synthesis of only one 16-mer peptide amide. First,
we converted the synthetic peptide amide to an
almost equivalent amount of the corresponding
peptide hydrazide. Next, the protein hydrazide of
the N-terminal region was produced from the re-
combinant protein glycine smoothly. Afterward, two
rounds of esterification, ligation and HPLC purifi-
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cation were performed following a general protocol
for sequential fragment condensation, producing
full-length acetylated mHSP10 (Fig. Sb). Overall,
the platform’s modular nature could provide re-
searchers with a flexible selection of input substrates
and output functions and their combinations, which
would generate plentiful retrosynthetic disconnec-
tions for disassembling hard-to-access proteins.

CONCLUSION

In summary, we have designed and built a ro-
bust, modular and efficient multienzyme platform
(PALME) for traceless total/semi protein synthesis
and functionalization. The versatility of each module
was evaluated via hundreds of model reactions, and
we also demonstrated the utility of PALME by
synthesizing a series of real-case targets on the
scale of hundred micrograms to milligrams. This
platform offers a comprehensive range of solutions
for chemical protein synthesis because of its unique
features. First, the peptide-activating modules
endow the platform with an impressively broad
substrate spectrum in terms of both sequence and
C-terminal functionality. While experienced protein
chemists can directly synthesize the desired peptide
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hydrazides, biological researchers have the flexible
choice of using more easily accessible peptide
amides (provided by peptide synthesis companies)
or native peptides/proteins (obtained from in-house
recombinant expression) as assembly materials.
Second, by introducing new activating reagents
in the coupling module, previously challenging
applications of peptiligase, such as multifragment
sequential ligation and recombinant protein C-
terminal ligation/functionalization, are readily
feasible. Thus the full potential of peptiligase tech-
nology is assuredly realized. Finally, the platform’s
modular nature is likely to work well with flow chem-
istry, which offers more efficient multistep synthesis
than traditional batch methods. Taken together, the
PALME platform is highly complementary to other
modern techniques for chemical protein synthesis
and provides viable solutions to challenges that
previous strategies could not address.

While the catalysts used in this system function
well in series, their performances can be further
improved by directed evolution or computational
engineering. PHM and PAL are expected to tolerate
higher guanidine concentrations through enzyme
engineering [27,46] to accept recombinant peptides
with low solubility under nondenaturing conditions.
In addition, the use of PAM mutants that greatly
suppress hydrolysis in the acyl-shift process can
considerably decrease the hydrazine concentration
required in the one-pot process. Moreover, prote-
olytically removable sequences may be introduced
at the N-termini of acyl donor peptides to prevent
undesired cyclization or self-condensation. We
anticipate that this study will serve as a blueprint for
future development of a widely applicable protocol
to access synthetic proteins, and facilitate artificial
biomacromolecule design and applications.

MATERIALS AND METHODS

Detailed materials and methods are available in the
Supplementary data.

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
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