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Objectives: WGS-based antimicrobial susceptibility testing (AST) is as reliable as phenotypic AST for several anti-
microbial/bacterial species combinations. However, routine use of WGS-based AST is hindered by the need for
bioinformatics skills and knowledge of antimicrobial resistance (AMR) determinants to operate the vast majority
of tools developed to date. By leveraging on ResFinder and PointFinder, two freely accessible tools that can also
assist users without bioinformatics skills, we aimed at increasing their speed and providing an easily interpretable
antibiogram as output.

Methods: The ResFinder code was re-written to process raw reads and use Kmer-based alignment. The existing
ResFinder and PointFinder databases were revised and expanded. Additional databases were developed includ-
ing a genotype-to-phenotype key associating each AMR determinant with a phenotype at the antimicrobial
compound level, and species-specific panels for in silico antibiograms. ResFinder 4.0 was validated using
Escherichia coli (n = 584), Salmonella spp. (n = 1081), Campylobacter jejuni (n = 239), Enterococcus faecium
(n = 106), Enterococcus faecalis (n = 50) and Staphylococcus aureus (n = 163) exhibiting different AST profiles, and
from different human and animal sources and geographical origins.
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Results: Genotype–phenotype concordance was�95% for 46/51 and 25/32 of the antimicrobial/species combi-
nations evaluated for Gram-negative and Gram-positive bacteria, respectively. When genotype–phenotype
concordance was <95%, discrepancies were mainly linked to criteria for interpretation of phenotypic tests and
suboptimal sequence quality, and not to ResFinder 4.0 performance.

Conclusions: WGS-based AST using ResFinder 4.0 provides in silico antibiograms as reliable as those obtained by
phenotypic AST at least for the bacterial species/antimicrobial agents of major public health relevance
considered.

Introduction

Antimicrobial susceptibility testing (AST) is the cornerstone of ap-
propriate clinical use of antimicrobial agents and for surveillance
programmes aiming at estimating the occurrence of antimicrobial
resistance (AMR). Currently, in vitro phenotypic AST methods such
as broth microdilution (BMD) and disc diffusion, which are based
on principles laid down in the work by Alexander Fleming in the
1920s,1 are considered the gold standard for measuring AMR in
bacteria. Despite being conceptually simple, phenotypic methods
suffer from limitations that hinder reproducibility of results even
when following international standards.2,3 These reproducibility
issues range from the operator executing the test and reading the
results, to parameters affecting bacterial growth and stability of
reagents. In particular, the need for tightly controlled environmen-
tal conditions is a limiting factor for reliable AST in low- and
middle-income countries where AMR claims the highest social and
economic toll at present.4,5 An additional limitation of phenotypic
AST is caused by incomplete agreements on panels of antimicro-
bial agents to test and on interpretive criteria by different organiza-
tions. It has also been argued that the laboratory conditions used
for AST are poor predictors of the clinical efficacy for certain
antimicrobial agent–bacterium combinations as a consequence of
different bacterial growth dynamics in infection sites compared
with in vitro conditions, inducible resistance genes, as well as silent
genes that may revert during clinical antimicrobial treatment,
among other factors.6–8 Furthermore, phenotypes can poorly in-
form conclusions on the epidemiology of resistance genes and
bacteria, since phenotypic tests for AST have limited discriminatory
power.

Genotypic approaches have been proposed as a valid alterna-
tive to phenotypic AST since the early 1990s.9 Although genotypic
tests have been and are widely used for detection of AMR genes,
their limited overall sensitivity hindered their application as
reference AST methods.10,11 With increased accessibility and
decreasing cost of next-generation sequencing (NGS), WGS has be-
come an available methodology for routine characterization of
bacteria. NGS-based methods outperform other genotypic
approaches for detection of AMR since they allow detection of vir-
tually any known AMR gene/mutation and identification of new
variants of known AMR determinants.11 Furthermore, sequence
data can be stored indefinitely and can be re-analysed when new
AMR determinants are discovered phenotypically.11 The main
caveat related to any genotypic AST method is represented by the
fact that only known AMR mechanisms can be detected, whereas
resistance caused by new mechanisms and/or modulation of
gene expression (increased expression of efflux pumps, heterore-
sistance, etc.) might be overlooked.

In the last decade, at least 47 open-access bioinformatics pipe-
lines for detecting AMR genes in NGS data have been published
(reviewed in Hendriksen et al.12) and continue to be developed, but
they mostly lack easy and rapidly interpretable outputs including
translation of genotypes into predicted phenotypes.12–14 In 2012,
we published ResFinder,15 the first online bioinformatics tool
aimed at users without specialized bioinformatic skills, which pro-
vides detection of AMR genes in WGS data submitted through a
web server. The ResFinder tool has been widely used, and has so
far executed more than 400 000 jobs from more than 32 000 IP
addresses in over 100 countries. ResFinder was expanded with
PointFinder, a tool that detects chromosomal point mutations
mediating resistance to selected antimicrobial agents in a few
selected bacterial species16 and recently extended to include
Mycobacterium tuberculosis.17

Here we describe the development and evaluation of a new
and more advanced tool, ResFinder 4.0, which, in addition to
the detection of AMR genes and chromosomal gene mutations,
generates in silico antibiograms. ResFinder 4.0 was developed
by improving and expanding the database of ResFinder and
PointFinder and by rewriting the software. ResFinder 4.0 was vali-
dated using bacterial isolates of different species and genera from
food, animal and human sources.

Methods

ResFinder 4.0 databases

ResFinder 4.0 contains four databases including AMR genes (ResFinder),
chromosomal gene mutations mediating AMR (PointFinder), translation of
genotypes into phenotypes and species-specific panels for in silico antibio-
grams. The databases of ResFinder15 and PointFinder16 were reviewed
by experts and, when necessary, entries were removed or added.
Furthermore, the PointFinder database was extended to include chromo-
somal gene mutations leading to ampicillin resistance in Enterococcus
faecium, ciprofloxacin resistance in E. faecium and Enterococcus faecalis,
and resistance to cefoxitin, chloramphenicol, ciprofloxacin, fusidic acid,
linezolid, mupirocin, quinupristin–dalfopristin, rifampicin and trimethoprim
in Staphylococcus aureus. The genotype-to-phenotype tables were created
by experts, by using additional databases (www.bldb.eu for b-lactam resist-
ance genes,18 http://faculty.washington.edu/marilynr/ for tetracycline as
well as macrolide, lincosamide, streptogramin and oxazolidinone resist-
ance genes) and by performing extensive literature searches. In the
genotype-to-phenotype tables, the ResFinder and PointFinder entries have
been associated with an AMR phenotype both at the antimicrobial class
and at the antimicrobial compound level. A selection of antimicrobial
compounds within each class was made to include antimicrobial agents
important for clinical and surveillance purposes for the different bacterial
species included (Table S1, available as Supplementary data at JAC Online).
The genotype-to-phenotype tables also include: (i) the PubMed ID of
relevant literature describing the respective AMR determinants and
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phenotypes, when available; (ii) the mechanism of resistance by which
each AMR determinant functions; and (iii) notes, which may contain differ-
ent information such as warnings on variable expression levels (inducible
resistance, cryptic genes in some species, etc.), structural and functional
information, and alternative nomenclature.

Software and interface
ResFinder 4.0 was embedded using the same web interface as previous
ResFinder versions and available at the link https://cge.cbs.dtu.dk/services/
ResFinder-4.0/. Importantly, in the interface, the user is prompted to specify
a bacterial species, which is needed to define the specific antimicrobial
panel for the in silico antibiogram (Table S2). There is the option to include
all antimicrobial agents from all panels (‘Other’ option). In this case, inter-
pretation of results must be executed carefully and knowledge on intrinsic
resistance is essential because, in the ‘Other’ option, isolates intrinsically re-
sistant to an antimicrobial agent might appear predicted as susceptible
since intrinsic resistance is often mediated by structural traits (e.g. reduced
permeability of the outer membrane, among others) rather than by specific
genes/mutations.19

Previous versions of ResFinder were written in Perl, whereas ResFinder
4.0 was rewritten in Python 3. The ResFinder software has not previously
been able to process read data (FASTQ) directly but relied on an assembly
step. ResFinder 4.0 has implemented KMA,20 which aligns reads directly to
the databases without the need for assembly. Like all previous versions,
ResFinder 4.0 is released as open source under the Apache 2.0 license and
is available at: https://bitbucket.org/genomicepidemiology/resfinder/.

Datasets for validation
ResFinder 4.0 was validated with datasets consisting of MIC values (BMD or
Etest, Table 1) and WGS data (Illumina sequencing) of Escherichia coli,
Salmonella spp., Campylobacter jejuni, E. faecium, E. faecalis and S. aureus
of different origins (Table 1). These datasets represent a convenience
sample. Phenotypic AST results were interpreted using the EUCAST epi-
demiological cut-off values (ECOFFs) to categorize isolates as WT (MIC
�ECOFF) and non-WT (MIC >ECOFF) (www.eucast.org). Exceptions were: (i)

one S. aureus dataset for which phenotypic AST was performed by disc dif-
fusion and interpreted by EUCAST clinical breakpoints (Table 1); and (ii) one
E. coli dataset that consisted of Illumina WGS data only and MIC values
were available for the data provider but not for the ResFinder 4.0 develop-
ers, thus providing a blind test of the tool performance (Table 1). WGS data
were obtained as raw reads and processed through a quality control (QC)
pipeline as described here: https://bitbucket.org/genomicepidemiology/
foodqcpipeline/. In brief, reads were trimmed using bbduk2 (https://jgi.doe.
gov/data-and-tools/bbtools/) to a phred score of 20, reads less than 50 bp
were discarded, adapters were trimmed away and a draft de novo assem-
bly was created using SPAdes.21 From the assemblies, contigs below 500 bp
were discarded. The most important parameters that were used to assess
quality of sequencing data were: number of bases left after trimming, N50,
number of contigs and total size of assembly. QC parameters used as
guidelines were: read depth of at least 25%, N50 of >30 000 bp and a limit
on the number of contigs to <500.

WGS data (FASTQ) were used as input for ResFinder 4.0 using default
parameters (�80% identity over �60% of the length of the target gene)
and also for SNP-based phylogenetic analysis as previously described22 to
verify the genetic diversity of the validation datasets. SNP analysis was not
performed for the Salmonella spp. dataset whose diversity was already
described previously.23 The ResFinder 4.0 output was analysed to define
AMR genotypes, i.e. patterns of resistance determinants observed for each
antimicrobial, in each dataset.

Genotype–phenotype concordance was defined as presence or absence
of a genetic determinant of resistance to a specific antimicrobial agent in
non-WT (nWT) or WT isolates, respectively. Genotype–phenotype discord-
ance was defined either as presence of a relevant AMR determinant in WT
isolates or as absence of a relevant AMR determinant in nWT isolates.
All discordances were individually analysed.

Sequence data that did not derive from previous studies (Table 1) have
been deposited at NCBI (E. coli dataset from Germany: PRJNA616452;
E. faecium dataset from Germany: PRJNA625631; E. faecium dataset from
Belgium: PRJNA552025; S. aureus dataset from Belgium: PRJNA615176)
and in the European Nucleotide Archive (S. aureus dataset from Denmark:
PRJEB37586).

Table 1. Datasets for ResFinder 4.0 validation

Species Isolates (n) Observations (n) Source Origin Country Reference

E. coli 95 1520 animal, food surveillance DK Hendriksen et al.43

E. coli 99 890 animal, food surveillance UK Duggett et al.44,

AbuOun et al.48

E. colia 390 2559 human, animal clinical, surveillance DE This study

Salmonella

enterica

1081 7489 animal, food surveillance USA McDermott et al.23

C. jejuni 239 1382 animal, food surveillance FIN, FR, DE, LU, PL, PT Leekitcharoenphon et al.45

E. faecium 50 363 human clinical DE this study

E. faeciumb 56 159 human clinical BE this study

E. faecalis 50 235 human and animal clinical, surveillance DE Neumann et al.46,

Bender et al.47

S. aureusb 63 504 human clinical, surveillance BE this study

S. aureusc 100 598 human clinical, surveillance DK this study

If not otherwise specified, phenotypic AST results were obtained by BMD.
DK, Denmark; DE, Germany; FIN, Finland; FR, France; LU, Luxembourg; PL, Poland; PT, Portugal; BE, Belgium.
aDataset for blind test of ResFinder 4.0 performance. Cefepime, chloramphenicol, ertapenem and nalidixic acid susceptibility testing were performed
by Etest in a subset of isolates. All remaining AST were performed by BMD.
bPhenotypic AST results were obtained by Etest.
cPhenotypic AST results were obtained by disc diffusion.
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Results

ResFinder 4.0 databases

The ResFinder 4.0 databases validated in this study include 2690
AMR genes (ResFinder) and 266 resistance-mediating mutations in
39 selected genes (PointFinder), a genotype-to-phenotype trans-
lation database that includes 57 antimicrobial compounds (Table
S1) and in silico antimicrobial panels for eight species (Table S2). Of
note, a few antimicrobial agents included in the genotype-to-
phenotype translation database do not appear in the in silico
antimicrobial panels. Thus the database can be used for any bac-
terial species and is not restricted to the species having assigned in
silico antimicrobial panels. Furthermore, the in silico antimicrobial
panels are limited to the antimicrobial agents for which the tool
can actually provide an output. Hence, for example, antimicrobial
agents for which the genetic bases of resistance have not been
fully elucidated (e.g. daptomycin in Enterococcus spp., among
others) are not included. The most updated versions of the
databases are publicly available in BitBucket (https://bitbucket.
org/genomicepidemiology/resfinder_db and https://bitbucket.
org/genomicepidemiology/pointfinder_db). The databases are
continuously updated relying both on users’ feedback and on
curators’/developers’ own research. Importantly, the BitBucket
repository allows access to outdated versions of the databases,
which is particularly useful in case ResFinder 4.0 is used within
quality-assured procedures.

Datasets for ResFinder 4.0 validation

The SNP distances across strains used for ResFinder 4.0 validation
were in the range 1–48 102 for E. coli from Denmark and the UK,
1–48 066 for E. coli from Germany, 1–20 134 for C. jejuni, 1–7131
for E. faecium 15–17 067 for E. faecalis and 1–25 424 for S. aureus
(Table S3). The proportion of WT and nWT isolates in each dataset
is presented in Tables 2 and 3.

Concordance between genotypic and phenotypic AST

E. coli

For the dataset deriving from Danish AMR surveillance in animals
and meat, the overall genotype–phenotype concordance resulting
from 1520 observations encompassing 16 antimicrobial agents
was 97%, ranging from 71.6% for cefepime to 100% for most anti-
microbial agents (Table 2).

ResFinder 4.0 detected between 2 and 14 genotypes of resist-
ance to most antimicrobial agents besides several cases in which
no AMR determinant was detected (Table S4). The predicted and
observed AMR phenotypes matched in 99.6% (586/588) of cases
in which AMR determinants were detected and in 95.3% (889/932)
of cases in which no resistance determinant was detected.
Discordances were caused by detection of sul2 in an isolate with
the sulfamethoxazole MIC well below the ECOFF, and blaCTX-M-1

in an isolate with the ceftazidime MIC on the ECOFF (Figure 1).
Both genes were detected with a reliable read depth (see the

Table 2. Antimicrobial resistance phenotypes and genotype–phenotype concordance for the Gram-negative bacteria datasets using ECOFFs

Antimicrobial

E. coli (animal
surveillance; DK)

E. coli (animal
surveillance; UK)

E. coli (human and
animal clinical and

surveillance; DE)

Salmonella sp.
(human clinical,

animal surveillance;
USA)

C. jejuni (animal
surveillance; EU)

nWT WT
concordance

(%) nWT WT
concordance

(%) nWT WT
concordance

(%) nWT WT
concordance

(%) nWT WT
concordance

(%)

Ampicillin 95 0 100 81 18 98.9 202 0 100 249 822 98.7 – – –

Cefepime 78 17 71.6 – – – 137 0 100 – – – – – –

Cefotaxime 95 0 100 23 76 98.9 370 0 98.6 – – – – – –

Cefoxitin 46 49 97.8 – – – – – – 130 933 98.9 – – –

Ceftazidime 94 1 98.9 – – – 282 0 99.2 – – – – – –

Chloramphenicol 8 87 100 – – – 63 67 73.1 41 1030 99.7 – – –

Ciprofloxacin 29 66 87.3 64 35 95.9 275 0 99.2 22 1049 97 134 105 99.1

Colistin 0 95 100 11 88 100 – – – – – – – – –

Ertapenem 1 94 98.9 – – – 60 70 54.6 – – – – – –

Erythromycin – – – – – – – – – – – – 3 236 99.1

Gentamicin 15 80 100 34 65 100 129 258 97.6 126 945 98.9 0 239 100

Imipenem 0 95 100 0 98 100 2 192 100 – – – – – –

Meropenem 0 95 100 0 99 100 2 0 100 – – – – – –

Nalidixic acid 25 70 98.9 39 60 90.9 99 28 99.2 10 1061 99.4 131 108 97.9

Streptomycin – – – – – – – – – – – – 0 187 100

Sulfamethoxazole 61 34 98.9 – – – – – – – – – – – –

Tetracycline 53 42 100 79 20 97.9 138 33 98.8 656 415 98.6 130 109 99.1

Tigecycline – – – – – – 5 147 96.7 – – – – – –

Trimethoprim 29 66 100 – – – – – – – – – – – –

DK, Denmark; DE, Germany.
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Table 3. Antimicrobial resistance phenotypes and genotype–phenotype concordance for the Gram-positive bacteria datasets using ECOFFs

Antimicrobial

E. faecium
(human clinical; DE)

E. faecium
(human

clinical; BE)

E. faecalis
(human

clinical; DE)

S. aureus
(human clinical

and surveillance; BE)

S. aureus
(human clinical and

surveillance; DK)

nWT WT
concordance

(%) nWT WT
concordance

(%) nWT WT
concordance

(%) nWT WT
concordance

(%) R S
concordance

(%)

Ampicillin 50 0 100 55 1 100 – – – – – – – – –

Cefoxitin – – – – – – – – – 63 0 100 99 1 100

Chloramphenicol 0 50 64 – – – – – – – – – – – –

Ciprofloxacin 50 0 100 3 1 100 – – – 63 0 100 – – –

Clindamycin – – – – – – – – – 31 32 96.8 36 64 97

Erythromycin 50 0 100 – – – 39 11 96 32 31 95.2 42 58 99

Gentamicin 13 0 100 6 2 75 31 4 97.1 63 0 100 13 86 93.9

Linezolid 2 48 92 2 33 94.2 16 34 96 0 63 100 2 98 99

Tetracycline 22 28 92 – – – 43 7 98 46 17 76.2 17 82 96.9

Vancomycin 40 10 100 53 3 96.4 16 34 98 0 63 100 – – –

For the S. aureus DK dataset only, R, resistant and S, susceptible interpretations according to EUCAST clinical breakpoints were available.
DK, Denmark; DE, Germany; BE, Belgium.

Figure 1. Discordance between predicted (ResFinder 4.0) and observed phenotypes. The vertical dotted line divides the isolates having ‘WT pheno-
type with AMR determinant’ to the left and the isolates having ‘nWT phenotype without AMR determinant’ to the right. ‘Low depth’ refers to low read
depth of the respective AMR determinant as explained in the Discussion. AMP, ampicillin; FEP, cefepime; CTX, cefotaxime; FOX, cefoxitin; CAZ, ceftazi-
dime; CIP, ciprofloxacin; ETP, ertapenem; NAL, nalidixic acid; SMX, sulfamethoxazole; TET, tetracycline; ERY, erythromycin; GEN, gentamicin; LZD, line-
zolid; VAN, vancomycin; CHL, chloramphenicol; CLI, clindamycin.
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Discussion). Additional discordances were caused by lack of
detection of AMR determinants in isolates with nWT phenotype for
cefepime, cefoxitin, ciprofloxacin, ertapenem and nalidixic acid.
Most of these isolates had the respective MIC one step dilution
above the ECOFF (Figure 1 and Table S5).

For the dataset deriving from AMR surveillance in animals in the
UK, the overall genotype–phenotype concordance for 890 obser-
vations encompassing nine antimicrobial agents was 98%, ranging
from 90.9% for nalidixic acid to 100% for colistin, gentamicin,
imipenem and meropenem (Table 2). ResFinder 4.0 detected be-
tween 2 and 17 genotypes of resistance to most antimicrobial
agents, in addition to several cases in which no AMR determinant
was detected (Table S4). The predicted and observed AMR pheno-
types matched in 96.7% (325/336) of cases in which AMR determi-
nants were detected and in 98.9% (548/554) of cases in which no
resistance determinant was detected. Discordances were caused
by detection of: (i) (fluoro)quinolone resistance determinants
(gyrA and parC mutations and qnrB1) in eight (fluoro)quinolone
WT isolates for which only interpretation of the MIC was available
(Table S5); (ii) blaTEM-106 and truncated tet(M) genes in isolates
with WT cefotaxime and tetracycline phenotype, respectively, and
with very low read depth (see the Discussion) of these AMR genes;
and (iii) detection of the tet(C) gene with reliable read depth in a
tetracycline WT isolate with the MIC on the breakpoint (Figure 1).
Additional discordances were caused by lack of detection of
AMR determinants in isolates with nWT phenotype for ampicillin,
ciprofloxacin and nalidixic acid (Figure 1). Most (60%) of the
(fluoro)quinolone nWT isolates had MICs one step dilution above
the ECOFF (Figure 1 and Table S5).

For the dataset used for the blind test that comprised human
and animal origin isolates from clinical and surveillance samples,
the overall genotype–phenotype concordance resulting from 2559
observations encompassing 13 antimicrobial agents was 95.3%,
ranging from 54.6% for ertapenem to 100% for ampicillin, cefe-
pime, imipenem and meropenem (Table 2). ResFinder 4.0 detected
between 1 and 37 genotypes of resistance to most antimicrobial
agents besides several cases in which no AMR determinant was
detected (Table S4). The predicted and observed AMR phenotypes
matched in 99.7% (1649/1654) of cases in which AMR determi-
nants were detected and in 87.3% (790/905) of cases in which no
resistance determinant was detected (Table S4). Discordances
were mainly caused by lack of detection of AMR determinants in
isolates with nWT phenotype for different antimicrobial agents
(Table S4). Most of these discordant cases concerned chloram-
phenicol and ertapenem for which the phenotype was measured
by Etest (Table S5).

Salmonella spp

The overall genotype–phenotype concordance for 7489 observa-
tions encompassing seven antimicrobial agents was 98.8%, rang-
ing from 97.0% for ciprofloxacin to 99.7% for chloramphenicol
(Table 2). ResFinder 4.0 detected between 3 and 25 genotypes of
resistance to the different antimicrobial agents besides several
cases in which no AMR determinant was detected (Table S4). The
predicted and observed AMR phenotypes matched in 96.3%
(1220/1266) of cases in which AMR determinants were detected
and in 99.2% (6179/6223) of cases in which no resistance deter-
minant was detected. Discordances were mainly due to detection

of aac(60)-Ib-cr with <100% identity to the database entry in
ciprofloxacin WT isolates, whereas in the remaining cases the
genotype–phenotype discordance was mainly observed in isolates
with MIC values on the ECOFF (Figure 1). Additional discordances
were mainly observed in isolates with an MIC one step dilution
above the ECOFF. There were also cases in which ampicillin and
gentamicin resistance determinants were not detected even
though the isolates had the respective MIC well above the ECOFF
(Figure 1 and Table S5).

C. jejuni

For C. jejuni, the overall genotype–phenotype concordance result-
ing from 1382 observations encompassing six antimicrobial agents
was 99.2%, ranging from 97.9% for nalidixic acid to 100% for gen-
tamicin and streptomycin (Table 2).

ResFinder 4.0 detected between one and eight genotypes for
resistance to most antimicrobial agents besides several cases in
which no AMR determinant was detected (Table S4). The predicted
and observed AMR phenotypes matched in 99.0% (391/395)
of cases in which AMR determinants were detected and in 99.3%
(980/987) of cases in which no resistance determinant was
detected. Discordances were observed in isolates with (i) gyrA
mutations known to mediate (fluoro)quinolone resistance and the
nalidixic acid MIC close to the ECOFF, and (ii) tet(O) with <100%
identity to the ResFinder 4.0 entries and reliable read depth in
an isolate with the MIC close to the breakpoint. Additional discor-
dances were caused by lack of detection of AMR determinants in
isolates with nWT phenotype for ciprofloxacin, nalidixic acid,
erythromycin and tetracycline with MICs notably higher than the
ECOFF (Figure 1 and Table S5).

E. faecium

Of the two E. faecium datasets, the one from Germany included
363 observations encompassing eight antimicrobial agents and
the one from Belgium included 159 observations encompassing
five antimicrobial agents. In the first dataset, the overall geno-
type–phenotype concordance was 92.8%, ranging from 64% for
chloramphenicol to 100% for ampicillin, ciprofloxacin, erythro-
mycin, gentamicin and vancomycin (Table 3). In this dataset,
ResFinder 4.0 detected between 1 and 11 genotypes for resistance
to all antimicrobial agents besides several cases in which no AMR
determinant was detected (Table S4). The predicted and observed
AMR phenotypes matched in 91.0% (223/245) of cases in which
AMR determinants were detected and in 96.6% (114/118) of cases
in which no resistance determinant was detected. Most discordan-
ces were due to detection of poxtA, cat and fexB with <100% iden-
tity to the database entries and often with low read depth
(Figure 1). Furthermore, tet(M) was detected with reliable read
depth in an isolate with the tetracycline MIC on the ECOFF
(Figure 1). Additional discordances were due to lack of detection of
tetracycline and linezolid resistance determinants in isolates
with the respective MICs 1- and 3-fold dilution above the ECOFF,
respectively (Figure 1 and Table S5).

In the second dataset, the overall genotype–phenotype con-
cordance was 96.2%, ranging from 75% for gentamicin to 100%
for ampicillin and ciprofloxacin (Table 3). In this dataset, ResFinder
4.0 detected between two and six genotypes for resistance to all
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antimicrobial agents besides several cases in which no AMR deter-
minant was detected (Table S4). The predicted and observed AMR
phenotypes matched in 96.6% (117/121) of cases in which AMR
determinants were detected and in 94.7% (36/38) of cases in
which no resistance determinant was detected. Discordances
were due to detection of (i) gentamicin resistance genes in genta-
micin WT isolates (n = 2), but further analysis revealed that such
genes had low read depth, and (ii) vancomycin resistance genes
with reliable coverage in isolates (n = 2) with different vancomycin
MICs (Figure 1). Additional discordances were caused by lack of
detection of AMR determinants in isolates with the linezolid MIC
one step dilution above the ECOFF (Figure 1 and Table S5).

E. faecalis

For the E. faecalis dataset, the overall genotype–phenotype
concordance resulting from 235 observations encompassing five
antimicrobial agents was 97%, ranging from 96% for erythromycin
and linezolid to 98% for tetracycline and vancomycin (Table 3).

ResFinder 4.0 detected between 1 and 17 genotypes of
resistance to all antimicrobial agents besides several cases in
which no AMR determinant was detected (Table S4). The predicted
and observed AMR phenotypes matched in 98.6% (140/142) of
cases in which AMR determinants were detected and in 94.6%
(88/93) of cases in which no resistance determinant was detected.
Discordances were represented by isolates having erm(B) (n = 1)
and tet(M) (n = 1) with 100% and <100% identity to the ResFinder
4.0 database, respectively, and an MIC distant from the ECOFF
(Figure 1). Further analysis revealed that tet(M) had very low read
depth. Additional discordances were represented by lack of detec-
tion of determinants of resistance to erythromycin, gentamicin,
linezolid and vancomycin in a few isolates with clear nWT pheno-
type (Figure 1 and Table S5).

S. aureus

Of the two S. aureus datasets, the one from Belgium included 504
observations encompassing eight antimicrobial agents, whereas
the one from Denmark included 598 observations encompassing
six antimicrobial agents.

For the first dataset, the overall genotype–phenotype concord-
ance was 96%, ranging from 76.2% for tetracycline to 100% for
cefoxitin, ciprofloxacin, gentamicin, linezolid and vancomycin
(Table 3). In this dataset, ResFinder 4.0 detected between one and
two genotypes of resistance to most antimicrobial agents besides
several cases in which no AMR determinant was detected
(Table S4). The predicted and observed AMR phenotypes matched
in 95.1% (293/308) of cases in which AMR determinants were
detected and in 97.4% (191/196) of cases in which no resistance
determinant was detected. Most discordances were linked to de-
tection of tet(M) with <100% identity to the database entry and in
isolates with MICs on the ECOFF (Figure 1). Additional discordances
were due to lack of detection of AMR determinants in isolates with
clindamycin and erythromycin MICs notably higher than the
ECOFF (Figure 1 and Table S5).

For the second dataset, the overall genotype–phenotype con-
cordance was 97.3%, ranging from 93.9% for gentamicin to 100%
for cefoxitin (Table 3). In this dataset, ResFinder 4.0 detected be-
tween one and nine genotypes of resistance to most antimicrobial

agents besides several cases in which no AMR determinant was
detected (Table S4). The predicted and observed AMR phenotypes
matched in 94.4% (205/217) of cases in which AMR determinants
were detected and in 98.9% (379/383) of cases in which no resist-
ance determinant was detected. Discordances were due to detec-
tion of erm(A) (n = 2) and aac(60)-aph(200) (n = 6) with reliable
read depth and to detection of tet(K) (n = 3) with low read depth
(Table S4). Additional discordances were due to lack of detection
of clindamycin, gentamicin, linezolid and tetracycline resistance
determinants in isolates that were reported as resistant (Table S5).
As phenotypic data were available only as interpretation (accord-
ing to EUCAST clinical breakpoints) of disc diffusion results,
we could not assess if the measured values were close to the
breakpoint for resistance.

Discussion

We developed and implemented a freely accessible web server, a
database and bioinformatics pipeline for detecting AMR genes and
mutations and providing in silico prediction of expected pheno-
types. ResFinder 4.0 was validated for six bacterial species of major
public health relevance and has been evaluated for M. tuberculosis
previously.17 ResFinder 4.0 can also be used to predict phenotypes
for any additional bacterial species by users with profound know-
ledge of AMR.

Excellent concordance between genotypically predicted and
phenotypically detected phenotypes was found for most anti-
microbial–species combinations (Tables 2 and 3). In the vast
majority of cases in which the automatically evaluated genotype–
phenotype concordance was <95%, we could identify issues
related to ECOFFs and/or read depth of WGS data (Figure 1), indi-
cating that phenotypic tests and suboptimal sequence quality, re-
spectively, were likely sources of discrepancies. Misclassifications
by the phenotypic tests could have happened in the cases in which
the MIC was either on or bordered the ECOFF (i.e. ± one 2-fold
dilution from the ECOFF). This is due to limitation in the reproduci-
bility of MIC results, whereby one 2-fold dilution difference across
repeated tests is considered acceptable.24 Furthermore, for certain
antimicrobial–bacteria combinations including chloramphenicol–
enterococci, MIC reading is difficult due to trailing growth,24 and
we cannot exclude that this might have also contributed to the
genotype–phenotype discordances. In fact, in a previous study, we
found that most discrepancies between genotype and phenotype
were resolved when repeating the phenotypic test.25

Unfortunately, the isolates used in this study were not available for
repeating MIC determination. Also the ECOFFs themselves might
be a source of misclassification of phenotypic tests. It has been
shown that the number of isolates showing genotype–phenotype
concordance notably increased when adjusting the ECOFF of
certain antimicrobial agents.26 Low read depth was also a likely
source of some of the genotype–phenotype discordances
observed (Figure 1). There is no unequivocally accepted threshold
for acceptable read depth for detection of AMR genes and
mutations, and our definition of ‘low read depth’ derived from a
case-by-case examination. Specifically, the genes scored as ‘low
read depth’ had either ‘depth <10’ or ‘depth <1/10 compared with
that of additional AMR genes in the same isolate and query cover-
age <100%’ (which indicates an imperfect match between the
query and the subject). This shows the importance of visualizing
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the ‘read depth’ parameter in the output. At present, such a par-
ameter appears only in the output obtained when running
ResFinder 4.0 in Unix but will also be included in the web tool out-
put in the future. Of note, issues related to read depth depend
on sequencing procedures and are not indicative of ResFinder 4.0
performance and/or feasibility of WGS-based AST. ResFinder 4.0
performed poorly in prediction of linezolid resistance. This was
expected since the tool only detects linezolid resistance mediated
by acquired genes, whereas resistance mediated by mutations in
chromosomal genes is currently detected by LREFinder.27 This
underlines the importance of becoming familiar with features of
the tools used for AMR detection in WGS data to choose the most
appropriate according to the user’s aims.12 Genotype–phenotype
discordance might have also occurred due to inducible genes.
For example, the S. aureus dataset from Denmark included
erm(A)-positive isolates phenotypically classified as clindamycin
susceptible (Tables S4 and S5). erm(A) can be inducible, and muta-
tions in the translational attenuator can occur very rapidly, leading
to phenotypic resistance to all lincosamides and ketolides.28

Also, occurrence of genes with <100% identity and/or coverage (in
length) compared with the ResFinder 4.0 database entries might
have caused some genotype–phenotype discordances since genes
that underwent mutations, insertions or deletions might have
become silent. In addition, there are genes for which an nWT
phenotype is linked to specific sequences only and will not be
expressed if a mutation appears. For example, only specific muta-
tions in aac(60)-Ib mediate fluoroquinolone resistance in E. coli and
Salmonella,29 which explains why aac(6’)-Ib-cr with <100% iden-
tity to the database entry is detected in ciprofloxacin WT
Salmonella spp. isolates (Table S5). Nonetheless, in our datasets,
the prediction of a resistance phenotype matched the measured
nWT phenotype even in most of the cases presenting an AMR gene
with <100% identity and/or coverage (in length) compared with
the database entries (Tables S4 and S5). From a surveillance per-
spective, detection of potentially silent genes is still more inform-
ative than the reporting of a WT phenotype. As silencing mutations
can be transient,30 also from a clinical perspective the finding of
AMR genes may be even more relevant than the observed in vitro
phenotype as it may be used as an early warning to avoid initiating
inappropriate therapies.

In current evaluations of WGS as a tool for detection of AMR,
most studies have used the phenotypic test as the correct answer
and largely ignored the fact that phenotypic testing has important
limitations in accuracy and reproducibility.31,32 In large ring trials
running globally for several years, we have not been able to obtain
concordances to the reference test of more than 91%–93%
for Salmonella and Campylobacter.2,3 Over the years, large efforts
have been put into standardizing and improving the quality of
phenotypic susceptibility testing and ensuring that exactly the
same methodology, growth conditions and interpretations are
used. Nevertheless, even when laboratories followed the same
standard operating procedure, between 0.8% and 31% of
obtained MIC values were outside the acceptable range.33

Furthermore, even with exactly the same test in the same labora-
tory, the reading of MIC results might show inconsistencies in 5%
of all results from different readers.34 In comparison, WGS data
can be analysed using the same bioinformatics pipeline and with
100% reproducibility between laboratories and, even with the
continued need to include novel resistance genes and additional

mutations, we would argue that already today the WGS approach
would be just as reliable as phenotypic testing, at least for surveil-
lance. With further verification, WGS could potentially also be used
to support clinical decision-making. We are aware that the use of
WGS to guide antimicrobial therapy is often encountered with
scepticism, and indeed genotype–phenotype concordance when
using phenotypic results interpreted according to clinical break-
points diminished for a few antimicrobial–species combinations
(Tables S6 and S7), as also previously observed.26 However, several
discordances concerned isolates that harboured AMR determi-
nants despite being classified as phenotypically susceptible, which
may lead to therapeutic failures. Thus, the current practice of using
MICs to guide dosing regimens may not be as appropriate as com-
monly believed, as also indicated recently by others.35,36

Furthermore, the genotype-to-phenotype translation represents a
valuable resource for clinical metagenomics, which is an expand-
ing field that will greatly impact clinical medicine in the coming
years.37

Implementing WGS for routine diagnostics in clinical microbio-
logical laboratories will not be without challenges.38,39 Besides the
costs associated with implementation of equipment and training
staff, many microbiology laboratories have to adhere to regula-
tions and criteria for accreditation. In addition, the current turn-
around time is an issue for most technologies. However, while this
is the case for established clinical microbiological laboratories, it
should also be mentioned that for laboratories in low- and middle-
income countries that do not already have established laboratories
it could potentially be an advantage to install a workflow based on
WGS.40

ResFinder 4.0 can be used with raw reads and with assembled
sequences as inputs, and it performs database searches using
Kmer-based mapping and BLAST, respectively. In this work, we
presented the results obtained by inputting raw reads. As different
processing of the same input sequences has been shown to lead
to different results,41 we also evaluated genotype–phenotype con-
cordance using assembled sequences as input (data not shown).
Across 13 140 observations, which correspond to all datasets
excluding the E. coli for the blind test, there were only 29 (0.2%)
cases in which results differed using FASTQ (raw reads) and FASTA
(assembled sequences) files of the same sequence (data not
shown). In most (20/29) cases, AMR genes were detected using
FASTQ but not detected using FASTA, whereas the opposite applied
in the remaining cases. In 14 and 15 cases, the phenotype
predicted using the FASTQ and FASTA inputs was in agreement
with the observed phenotype, respectively (data not shown).
Based on this, it appears that the input file format does not affect
the reliability of ResFinder 4.0 results and, given that raw reads are
processed considerably faster compared with assemblies, FASTQ
files should be considered the preferable input for ResFinder 4.0.

The datasets available to us did not include an even distribution
of WT and nWT phenotypes to all antimicrobial agents. This limita-
tion highlights a need for making not only WGS data but
also phenotypic test data as well as the bacterial isolates publicly
available for those developing bioinformatics tools.42

In conclusion, we implemented and evaluated ResFinder 4.0, a
bioinformatics tool whose unique feature is to provide a phenotype
for each antimicrobial resistance gene detected and easily inter-
pretable in silico antibiograms for eight bacterial species including
both Gram-positive and Gram-negative bacteria of major public
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health relevance. The tool will be extended to allow for input of
Nanopore sequence data and to include antibiograms of addition-
al bacterial species. ResFinder 4.0 allows for rapid updates of all
databases to promptly respond to users’ feedback and keep pace
with improvements in knowledge on AMR. We would encourage
users around the world to input additional curated databases for
better and faster improvement.
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