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Insulin resistance and white adipose tissue
inflammation are uncoupled in energetically
challenged Fsp27-deficient mice
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Lizhen Wu1, Shenghong Ju12, Feifei Guan13, Hongyuan Yang14, Cheol Soo Choi2,15,y, David B. Savage16,y

& Peng Li1,y

Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it

facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with

increased basal lipolysis, ‘browning’ of white fat and a healthy metabolic profile, whereas a

patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype.

Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial

energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-

fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking

reduction in adipose inflammation and increase in adiponectin levels in all three models. This

appears to reflect reduced activation of the inflammasome and less adipocyte death. These

findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes

and represent a rare example where adipose inflammation and hepatic insulin resistance are

disassociated.
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C
IDE proteins including Cidea, Cideb and Fsp27 (Cidec in
humans), have emerged as key regulators of lipid droplet
(LD) morphology and function in adipocytes and

hepatocytes1–3. Cidea is predominantly expressed in brown
adipocytes, Cideb in hepatocytes and Fsp27 almost exclusively
in white adipocytes in healthy wild-type (WT) mice3. In humans,
one potentially important difference is that Cidea is also
expressed in white adipocytes2,4. Fsp27 and Cidea are also
expressed in steatotic livers5,6. Both Fsp27 and Cidea localize on
the surface of LDs7–9, are particularly enriched at LD contact sites
and appears to promote a unique form of ‘LD fusion’9,10.
Perilipin1 enhances Fsp27-mediated LD fusion in white
adipocytes11. Fsp27 knockdown studies in cultured 3T3L1
adipocytes8 and in vivo evidence from two independently
generated Fsp27-null lines12,13 and from a single human patient
with a homozygous loss-of-function premature stop mutation14

clearly supports the notion that Fsp27 is required for the
formation of a large unilocular LD in white adipocytes. The
presence of multilocular LDs in Fsp27-deficient adipocytes is in
turn consistently associated with increased lipolysis8,13,
presumably as a result of a considerable increase in the LD
surface area accessible to lipases.

White adipocytes are uniquely adapted to store surplus energy
in unilocular LDs and to quantitatively release non-esterified fatty
acids for oxidation by other metabolically active tissues. Excessive
lipid storage in white adipose tissue (WAT) results in the
development of obesity and ultimately its related complications
including insulin resistance, non-alcoholic fatty liver disease
(NAFLD) and cardiovascular disease15–17. Interestingly,
lipodystrophic states, which are characterized by reduced fat
mass and defective lipid storage in adipose tissue, are strongly
associated with ectopic fat deposition and an almost identical
constellation of metabolic problems to those associated with
obesity. In humans, at least 12 different genetic subtypes of
lipodystrophy have been reported, and these almost invariably
result in NAFLD, dyslipidemia and insulin resistance, which
frequently leads to diabetes18–20. In contrast to this human
paradigm, several mouse models including some specifically
designed to mimic human lipodystrophies21, as well as others
independently generated in direct attempts to create
lipodystrophic mouse models or simply to understand the
in vivo consequences of targeted genetic perturbations, have
appeared to display ‘lean and healthy’ metabolic phenotypes
without fatty liver disease and insulin resistance19,22.

Although the importance of Fsp27 in mediating the formation
of a unilocular LD in adipocytes is very clear and we have
suggested a plausible mechanistic basis for this function9,11, the
physiological importance of this activity is much less certain.
In mice and the human patient, Fsp27 deficiency resulted in a
significant reduction in total fat mass, but the systemic
consequences of this adipose phenotype were very different.
Whereas the human patient manifested a typical ‘lipodystrophic’
phenotype characterized by ectopic lipid accumulation in the
liver, that is, NAFLD, dyslipidemia and insulin-resistant
diabetes14, both the knockout mouse models appeared to be
protected against insulin resistance12,13.

In the current studies, we endeavour to clarify the physiological
importance of Fsp27, particularly in relation to its role in
optimizing lipid storage and insulin sensitivity. Whereas mice are
typically housed at temperatures below thermoneutrality and fed
diets with o10% fat content, humans tend to ensure that their
environs are thermoneutral and habitually consume diets with a
far greater fat content. These differences are expected to result in
significant differences in the need to store surplus fat, particularly
in mouse models where adipose tissue insulation is reduced.
Thus, to subject the Fsp27-deficient mice to a greater energetic
burden, the mice are crossed with leptin-deficient ob/ob mice or
challenged with prolonged high-fat feeding. As brown adipose
tissue (BAT) could conceivably aid adaptation to any deficiency
in WAT lipid storage, especially in mice with less fat mass housed
in a relatively cold environment where thermogenesis is typically
enhanced, we also seek to ascertain the importance of thermo-
genic BAT in these mice by crossing the Fsp27 knockouts with
BATless mice23.

Results
Reduced fat mass and inflammation in ob/ob/Fsp27�/� mice.
Fsp27-null mice were crossed with leptin-deficient (ob/ob) mice to
generate doubly-deficient mice (ob/ob/Fsp27�/� ). All the off-
spring were viable, born at the expected frequencies and of similar
length to their ob/ob littermates (Supplementary Fig. 1a–c).
ob/ob/Fsp27�/� mice weighed B30% less than ob/ob mice
(Table 1 and Supplementary Fig. 1a), with the bulk of this dif-
ference being due to substantial reductions in the volume of both
subcutaneous and visceral fat (Fig. 1a–d and Table 1). Lean mass
was similar in both groups (Fig. 1c). The major determinant of
the differences in body weight appears to be increased energy

Table 1 | Tissue weights and blood biochemistry of ob/ob and ob/ob/Fsp27�/� mice.

Parameter ob/ob ob/ob/Fsp27�/�

N Mean±s.e.m. N Mean±s.e.m. P-value

Body weight (g) 10 52.09±1.13 10 36.82±0.33 o0.0001***
Serum glycerol (mg ml� 1) 9 0.76±0.08 7 1.06±0.04 0.0092**
Serum NEFA (mEq l� 1) 7 1.19±0.15 9 1.15±0.10 0.8376
Gonadal fat (g) 9 2.08±0.19 8 0.18±0.01 o0.0001***
Subcuteneous fat (g) 9 2.34±0.11 8 0.47±0.04 o0.0001***
Mesenteric fat (g) 9 1.64±0.06 8 0.34±0.01 o0.0001***
Retroperitoneal fat (g) 9 2.25±0.12 8 0.46±0.02 o0.0001***
Inguinal fat (g) 9 0.50±0.05 8 0.08±0.01 o0.0001***
Muscle(gastrocnemius) (g) 10 0.45±0.01 10 0.45±0.01 0.886
Kidney (g) 10 0.45±0.01 10 0.46±0.01 0.250
Heart (g) 10 0.16±0.002 10 0.16±0.003 0.307
Spleen (g) 10 0.10±0.006 10 0.11±0.003 0.398
Liver (g) 6 3.49±0.19 10 5.06±0.27 o0.001***
BAT (g) 5 0.39±0.03 7 0.70±0.06 o0.01**

BAT, brown adipose tissue; N, the number of mice used; NEFA, non-esterified fatty acid.
Four-month-old chow fed ob/ob and ob/ob/Fsp27�/� mice were used. Quantitative data are presented as mean±s.e.m. Significance was established using a 2-tailed Student’s t-test. Differences were
considered significant at Po0.05. **Po0.01, ***Po0.001.
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expenditure in the ob/ob/Fsp27�/� mice (Supplementary Fig. 1d),
as food intake tended to be greater in the
ob/ob/Fsp27�/� mice (Supplementary Fig. 1e). Consistent with
the role of Fsp27 in regulating LD fusion, white adipocytes of
ob/ob/Fsp27�/� mice were smaller and contained small multi-
locular LDs (Fig. 1e–h). Expression levels of several LD-associated
proteins (Perilipin1, Perilipin2 and Cidea) were significantly
increased (Fig. 1i), presumably due to the relative increase in
LD-associated surface area. Proteins involved in mitochondrial
oxidative phosphorylation, fatty acid oxidation (Cyto C and
Cox4) and lipolysis (ATGL, CGI58 and HSL) were all increased,
whereas levels of key adipogenic transcription factors
(CEBPb and PPARg) were similar in ob/ob/Fsp27�/� and ob/ob
mice (Fig. 1i). Plasma levels of glycerol were increased in

ob/ob/Fsp27�/� mice, reflecting increased lipolysis as previously
observed in Fsp27-deficient mice12,13 (Table 1).

Next, we systematically analysed the gene expression profiles of
gonadal WAT (GWAT) from ob/ob/Fsp27�/� and ob/ob mice by
microarray analysis, and observed that the expression of 8,000
genes were different in this depot. Wiki pathway analysis
suggested that 23 of 162 Wiki pathways were significantly
increased, whereas 39 pathways were significantly decreased in
the GWAT of ob/ob/Fsp27�/� mice compared with that in ob/ob
mice (Supplementary Table 1). Importantly, expression levels of
genes in the inflammatory response pathway, B- and T-cell
receptor signalling pathway and chemokine signalling pathway
were all markedly decreased (Fig. 2a and Supplementary Table 1).
A similar comparison of gene expression data from GWAT of
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Figure 1 | Reduced fat mass in the ob/ob/Fsp27�/� mice. Four-month-old ob/ob and ob/ob/Fsp27�/� mice were maintained on a chow diet for the

analyses shown in (a–i). (a) computed tomography (CT) scan analysis of the mice; fat is shown in yellow. (b) GWAT of ob/ob and ob/ob/Fsp27�/� mice.

(c) Body composition of ob/ob (n¼ 5) and ob/ob/Fsp27�/� mice (n¼ 6). (d) Decreased TAG content in the GWAT of the ob/ob and ob/ob/Fsp27�/�

mice (n¼ 5). (e) Abdominal magnetic resonance imaging (MRI) of ob/ob and ob/ob/Fsp27�/� mice (upper panel). Fat is shown in white in these MRI

images. GWAT morphology (middle and lower panels). H&E, haematoxylin and eosin staining; EM, electron microscope. Scale bar, 64 and 2 mm for H&E

staining and EM, respectively. (f) LD number per adipocyte in ob/ob and ob/ob/Fsp27�/� mice. The number of LDs in ten adipocytes was measured.

(g) The average LD diameter in the GWAT of ob/ob and ob/ob/Fsp27�/� mice. The diameter of LDs in ten adipocytes was measured. (h) The distribution

of fat cell size in the GWAT of ob/ob and ob/ob/Fsp27�/� mice. The fat cell area from 400 adipocytes was measured. (i) A representative western

blotting showing the expression pattern of Fsp27, Perilipin1, Perilipin2, Cidea, Cyto C, Cox4, ATGL, CGI58, HSL, CEBPb and PPARg in the GWAT of

ob/ob and ob/ob/Fsp27�/� mice. Actin was used as a loading control. Quantitative data are presented as mean±s.e.m. Significance was established

using a two-tailed Student’s t-test. Differences were considered significant at Po0.05. ***Po0.001.
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chow-fed Fsp27�/� and WT mice revealed no significant
differences in inflammatory pathways (Supplementary Table 2).
Thus, the reduction in expression of genes involved in pro-
inflammatory pathways was specific to the ob/ob/Fsp27�/� mice.

We further validated these data by semi-quantitative reverse
transcription–PCR and observed significantly lower expression
for F4/80 (a macrophage-specific marker), Cd11c (a marker of
M1-like macrophages), TNFa, SAA3, MCP1 and IL-6 in the WAT
of ob/ob/Fsp27�/� mice (Fig. 2b). In contrast, expression levels of
non-inflammatory M2 marker genes (Arg1, Ym1 and IL-4) were
similar between ob/ob and ob/ob/Fsp27�/� mice (Fig. 2c).
Immunohistochemical analyses also confirmed that F4/80 and
tumour necrosis factor-a (TNFa) protein levels were significantly
lower in the WAT of ob/ob/Fsp27�/� mice (Fig. 2d,h). Consistent
with reduced adipose tissue inflammation, plasma levels of
interleukin (IL)-6 and TNFa were significantly reduced in ob/ob/
Fsp27�/� mice (Fig. 2e,f). In contrast, adiponectin messenger
RNA expression in WAT and circulating adiponectin concentra-
tions were considerably higher in the ob/ob/Fsp27�/� mice
(Fig. 2c,g).

Cinti et al.24,25 have previously shown that 490% of
macrophages infiltrating WAT typically surround dead
adipocytes forming crown-like structures (CLSs), and that the
number of CLSs present in the WAT of ob/ob mice is significantly
elevated. In ob/ob/Fsp27�/�mice, we observed a dramatic
reduction in CLS compared with ob/ob mice (Fig. 2h). Exactly
what causes cell death in hypertrophic adipocytes remains
unclear, but Giordano et al.26 and others27 have suggested that
NLRP3-dependent caspase-1 activation is likely to induce cell
death by pyroptosis, a proinflammatory form of programmed cell
death. In keeping with these data, we also observed significantly
reduced expression of ASC, NLRP3, Caspase-1 and TXNIP in the
adipose tissue of ob/ob/Fsp27�/�mice (Fig. 2i).

The reduction in WAT inflammation in ob/obFsp27�/� mice
prompted us to review the biopsy we had previously obtained
from the patient with the E186X homozygous CIDEC mutation14.
Careful review of this sample obtained from axilliary white fat
indicated that this patient’s WAT was characterized by a mixed
population of larger unilocular and smaller multilocular cells, and
that the CLSs were only observed in relation to unilocular cells
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(b) Relative mRNA expression of F4/80, CD11c and other pro-inflammatory genes, or (c) anti-inflammatory genes in the GWAT of ob/ob and ob/ob/Fsp27�/

� mice (n¼4 per group). (d) F4/80 immunohistochemical analysis in the GWAT of ob/ob and ob/ob/Fsp27�/� mice. Scale bar, 64mm.

(e) Serum concentration of IL-6 (n¼ 7 per group). (f) Serum concentration of TNFa (n¼ 7 for ob/ob and n¼ 9 for ob/ob/Fsp27�/� ). (g) Serum

concentration of adiponectin (n¼ 8 per group). (h) TNFa immunohistochemical analysis in the GWAT of ob/ob and ob/ob/Fsp27�/� mice showing

the CLSs (left). Right: statistic analysis of the CLSs per 1,000 adipocytes. Scale bar, 50mm. (i) Relative mRNA levels of ASC, NLRP3, Caspase-1 and TXNIP

in the GWAT of ob/ob and ob/ob/Fsp27�/� mice (n¼ 3 per group). Quantitative data are presented as mean±s.e.m. Significance was established

using a two-tailed Student’s t-test. Differences were considered significant at Po0.05. *Po0.05, **Po0.01, ***Po0.001.
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(Supplementary Fig. 2). These observations are consistent with
the notion that the smaller multilocular Fsp27-null cells are less
prone to macrophage recruitment and activation. Overall, these
data strongly indicate that the WAT of ob/obFsp27�/� mice is
defective in storing lipid and manifests reduced chronic
inflammation.

Fatty liver and insulin resistance in ob/ob/Fsp27�/� mice. As
defective adipose lipid storage often results in increased circu-
lating triglyceride (TAG) levels and ectopic lipid deposition, we
measured TAG levels in the serum and in several other tissues.
Serum TAG concentrations were found to be significantly higher
in ob/ob/Fsp27�/� mice compared with that in ob/ob mice
(Fig. 3a). No difference in tissue weight and TAG levels were
observed in the skeletal muscle (Gastrocnemius), heart or kidneys
of ob/ob and ob/ob/Fsp27�/� mice (Table 1 and Fig. 3b). How-
ever, the size and weight of livers of ob/ob/Fsp27�/� mice were
significantly greater than those of ob/ob mice (Fig. 3c and
Table 1). Hepatic levels of TAG and cholesterol ester (CE) were
significantly greater in ob/ob/Fsp27�/� mice (Fig. 3d,e).
Consistent with this, larger LDs were observed in the liver of
ob/ob/Fsp27�/� mice (Fig. 3f–h). The interscapular BAT depot
was larger in the ob/ob/Fsp27�/� mice than in the ob/ob mice
(Table 1 and Supplementary Fig. 3a) and contained larger LDs
and elevated levels of TAG (Supplementary Fig. 3b,c).

Expression levels of several genes involved in hepatic de novo
lipogenesis (ACC1, FAS, Elovl6 and SCD1), and their major
transcriptional regulator SREBP1c, were found to be significantly
increased in ob/ob/Fsp27�/� mice (Fig. 3i,j). In contrast,
expression levels of several genes involved in fatty acid oxidation
and oxidative phosphorylation (Ppara, CPT1, Cox4, Cyto C,
ACADL and ACADM) were all slightly decreased in the liver of
ob/ob/Fsp27�/�mice (Fig. 3j,k). Expression levels of inflammatory
genes such as MCP1 and MIP1a were increased in the liver of ob/
ob/Fsp27�/� mice (Fig. 3l).

Fsp27�/� mice were previously shown to be glucose tolerant
and more insulin sensitive than WT littermates when studied at
21–23 �C on a chow diet12,13. We have also previously reported
that glucose tolerance was improved in ob/ob/Fsp27�/� mice
compared with ob/ob littermates when studied at a young age (10
weeks12). When studied at age 4 months, fasting glucose and
insulin concentrations, glucose tolerance tests and insulin
tolerance tests (ITTs) were again similar in ob/ob/Fsp27�/� and
ob/ob mice (Supplementary Fig. 3d–g). When studied at age 8.5
months, fasting glucose and insulin concentrations remained
similar between ob/ob/Fsp27�/� and ob/ob mice (Fig. 4a,b).
Glucose tolerance was also similar in both groups (Fig. 4c).
However, ITTs appeared to demonstrate insulin resistance
(Fig. 4d) in the ob/ob/Fsp27�/� group. To more precisely assess
insulin sensitivity, we performed hyperinsulinaemic–euglycaemic
clamps in these mice (at age 4 months). When infusing insulin at
a constant rate (15 mU kg� 1 min� 1), the exogenous glucose
infusion rate required to maintain euglycaemia was much lower
in ob/ob/Fsp27�/� mice compared with ob/ob mice, confirming
reduced systemic insulin sensitivity (Fig. 4e,f). Glucose turnover,
glycolysis and glycogen synthesis were similar in the ob/ob/
Fsp27�/� group (Fig. 4g). However, radio-isotope tracer analysis
suggested that hepatic glucose output (production) was higher in
the ob/ob/Fsp27�/�mice than in the ob/ob group in the basal state
and during the insulin infusion (Fig. 4h). Consistently, expression
levels of gluconeogenic genes (G6pc and Pck1) were increased in
the liver of ob/ob/Fsp27�/�mice (Fig. 4i).

We next assessed insulin signalling in various tissues of
ob/ob/Fsp27�/� mice following tail vain injection of insulin.
Insulin-induced Akt phosphorylation was similar in the muscle

and BAT of ob/ob and ob/ob/Fsp27�/�mice, and was increased in
the GWAT of ob/ob/Fsp27�/� mice (Fig. 4j–l). However, insulin-
stimulated Akt phosphorylation was significantly reduced in the
liver of ob/ob/Fsp27�/� mice (Fig. 4m), suggesting reduced
hepatic insulin signalling. These data indicate that ob/ob/Fsp27�/

� mice have systemic insulin resistance, which is mostly
attributed to severe hepatic insulin resistance despite reduced
inflammation and increased insulin-stimulated Akt phosphoryla-
tion in WAT.

Fatty liver and insulin resistance in HFD-fed Fsp27�/� mice.
To check whether reduced WAT inflammation and hepatic
insulin resistance also occur in Fsp27-deficient mice with diet-
induced obesity, Fsp27�/� mice were fed with an high-fat diet
(HFD; Research Diet, D12331) for 3 months. HFD feeding (for 3
months) has very little effect on Fsp27 expression in WAT depots
in WT mice (Supplementary Fig. 4a). However, Fsp27 expression
is clearly elevated in WAT depots in ob/ob mice (Supplementary
Fig. 4a). Body weight remained similar in HFD-fed WT and
Fsp27�/� mice (Supplementary Fig. 4b,c), but liver and BAT
mass were significantly higher in the Fsp27�/� mice
(Supplementary Fig. 4d,e). Fat mass, including GWAT, sub-
cutaneous fat and mesenteric fat, was significantly reduced in
Fsp27�/� mice (Supplementary Fig. 4d,e). Reduced LD sizes and
lower TAG levels were observed in the WAT of Fsp27�/� mice
(Fig. 5a,b). In contrast, serum TAG concentrations (Fig. 5c), the
size of LDs and cellular TAG content in the BAT, liver and iso-
lated hepatocytes of HFD-fed Fsp27�/� mice were all increased
(Fig. 5a,b). In agreement with reduced inflammation in the WAT
of ob/ob/Fsp27�/� mice, expression levels of F4/80, TNFa and
MCP1 in the WAT of HFD-fed Fsp27�/� mice were reduced
(Fig. 5d). Reduced serum IL-6 concentrations and elevated serum
adiponectin concentrations were also observed in these mice
(Fig. 5e,f). Consistent with increased hepatic inflammation in
ob/ob/Fsp27�/� mice, expression levels of MCP1, MIP1a, TNFa
and IL-1b were increased in the liver of HFD-fed Fsp27�/� mice
(Fig. 5g). Thus, HFD-fed Fsp27-deficient mice displayed reduced
WAT inflammation but increased hepatic lipid accumulation.

Next, we measured fasting glucose and insulin concentrations,
and found them to be significantly higher than those of WT mice
(Fig. 5h,i). Blood glucose concentrations were also higher in the
HFD-fed Fsp27�/� mice during the first 1 h of the clamp
experiment (Fig. 5j). When infusing insulin at a constant rate
(3 mU kg� 1 min� 1), the glucose infusion rate required to
maintain euglycaemia was much lower in Fsp27�/� mice fed
with an HFD (Fig. 5k). In addition, basal and clamp hepatic
glucose output were increased in the HFD-fed Fsp27�/� group
(Fig. 5l). Consistent with increased glucose output, the expression
levels of G6pc and Pck1 were increased in the liver of HFD-fed
Fsp27�/� mice (Fig. 5m). Glucose turnover, glycolysis and
glycogen synthesis were similar in the HFD-fed Fsp27�/� group
(Fig. 5n). Overall, these data suggest that Fsp27 deficiency also
induces hepatic steatosis and insulin resistance despite reduced
WAT inflammation in HFD-fed mice.

Fatty liver and insulin resistance in BATless/Fsp27�/� mice. As
BAT could conceivably aid adaptation to any deficiency in WAT
lipid storage, especially in mice with less fat mass housed in a
relatively cold environment where thermogenesis is typically
enhanced, we also sought to ascertain the importance of ther-
mogenic BAT in these mice by crossing the Fsp27 knockouts with
BATless mice23. BATless mice were previously shown to lack
BAT as a result of BAT-selective expression of diphtheriatoxin
and are susceptible to HFD-induced obesity and insulin
resistance28. At age 3 months, BATless and littermate BATless/
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Fsp27�/� mice were placed on an HFD (Research Diet, D12492)
for 6 weeks before analysis at age 4.5 months. Body weight and fat
mass were significantly lower in the BATless/Fsp27�/� mice after
HFD feeding than in the BATless group, whereas lean mass was
similar (Fig. 6a and Table 2). WAT morphology in the BATless/
Fsp27�/� mice showed similar changes to those observed in the
ob/ob/Fsp27�/� and HFD-fed Fsp27�/� models (Fig. 6b). The
expression level of F4/80 and MCP1 was significantly lower in the
WAT of BATless/Fsp27�/� mice (Fig. 6c), and in keeping with
our observations in the ob/ob/Fsp27�/� mice and HFD-fed

Fsp27�/� mice we again noted higher plasma adiponectin levels
in the BATless/Fsp27�/� mice (Fig. 6d). Liver TAG and CE levels
were higher in the BATless/Fsp27�/� mice than in the BATless
mice (Fig. 6b,e,f). These data indicate that BATless/Fsp27�/�

mice have reduced WAT inflammation but increased hepatic
lipid storage.

Despite similar concentrations of fasting glucose and insulin
in BATless and BATless/Fsp27�/� mice (Fig. 6g,h), the
glucose infusion rate was again significantly lower in the
BATless/Fsp27�/� group (Fig. 6i), suggesting reduced insulin

ob/ob ob/ob/Fsp27 –/–

H
 a

nd
 E

E
M

0.0

2.5

5.0

7.5
***

Li
ve

r 
C

E
s 

(n
m

ol
 m

g–1
)

0

50

100

150

200

250

***

Li
ve

r 
T

A
G

s 
(μ

g 
m

g–1
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

**

S
er

um
 T

A
G

s 
(m

g 
m

l–1
)

0.0

2.5

5.0

7.5

ob/ob
ob/ob/Fsp27 –/–

FAS

Elov
l6

ACC1

SCD1

DGAT1

DGAT2

***

***

**

***

R
el

at
iv

e 
m

R
N

A
 le

ve
l

0

1

2

3

SREBP1c

SREBP2
Ppa

ra
Pp

ar
g

LX
Rα

LX
Rβ

**

*

R
el

at
iv

e 
m

R
N

A
 le

ve
l

0.0

0.5

1.0

1.5

CPT1
CPT2

Cox
4

Cyto
 C

Aca
dl

Aca
dm

* * * * *
R

el
at

iv
e 

m
R

N
A

 le
ve

l

0.0

0.5

1.0

1.5

2.0

CRP

M
IP

1α
IL

-1
β

TNFα
M

CP1

** *

R
el

at
iv

e 
m

R
N

A
 le

ve
l

0

5

10

15

ob/ob
ob/ob/Fsp27 –/–

SM
Hea

rt

Kidn
ey

T
A

G
s 

(μ
g 

m
g–1

)

ob/ob ob/ob/Fsp27 –/–

Li
ve

r
M

R
I

0 2 4 6 8 10
%0

%10

%20

%30

%40

%50

%60 ob/ob

ob/ob/Fsp27 –/–

Diameter(μm2)

F
re

q
ue

nc
y

0

1

2

3

4

***

LD
 d

ia
m

et
er

 (
μm

)

Figure 3 | Hepatic steatosis in ob/ob/Fsp27�/� mice. Four-month-old chow-fed ob/ob and ob/ob/Fsp27�/� mice were used (a–l). (a) Serum TAG

concentrations (n¼6 per group). (b) TAG content in the skeletal muscle (SM, gastrocnemius), heart and kidney (n¼ 5 per group). (c) Photograph

of the liver (top panel) and magnetic resonance imaging analysis of the liver section (lower panel). (d) Liver TAG content (n¼ 8 for ob/ob and n¼ 10 for

ob/ob/Fsp27� /� mice). (e) Liver CE content (n¼ 5 per group). (f) Liver histology of ob/ob and ob/ob/Fsp27�/� mice. H&E, haematoxylin and eosin

staining. EM, electron microscope image. Scale bar, 64 and 2mm for HE and EM, respectively. (g) The average LD diameter in the liver of ob/ob and ob/ob/

Fsp27�/� mice. The diameter of LDs in 50 cells was measured. (h) The distribution of LD size in the liver of ob/ob and ob/ob/Fsp27�/� mice.

(i–l) Relative mRNA expression levels in the livers of ob/ob and ob/ob/Fsp27�/� mice (n¼4 per group). Quantitative data are presented as mean±s.e.m.

Significance was established using a two-tailed Student’s t-test. Differences were considered significant at Po0.05.*Po0.05, **Po0.01, ***Po0.001.
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sensitivity. Similar to the observations in the ob/ob/Fsp27�/� and
the HFD-fed Fsp27�/� mice, both basal and clamp hepatic
glucose production were increased in the BATless/Fsp27�/� mice,
suggesting significant hepatic insulin resistance
(Fig. 6j). Glucose turnover and glycolysis rates were similar,
whereas glycogen synthesis appeared to be elevated in the
BATless/Fsp27�/� mice (Fig. 6k). In conclusion, Fsp27

deficiency in this BAT-deficient model also resulted in reduced
WAT inflammation but increased hepatic insulin resistance.

Increased Cidea expression in ob/ob/Fsp27�/� mice liver. As
mentioned previously, Fsp27 expression is typically increased in
steatotic livers and knocking it down has been shown to alleviate
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Figure 4 | Insulin-resistant phenotype of ob/ob/Fsp27�/� mice. (a) Fasting glucose and (b) fasting insulin concentrations of chow-fed 8.5-month-old

ob/ob (n¼ 6) and ob/ob/Fsp27�/� (n¼ 7) mice. (c) Glucose tolerance tests (GTTs) and (d) ITTs in chow-fed 8.5-month-old ob/ob (n¼ 7) and

ob/ob/Fsp27�/� (n¼8) mice. Peripheral and hepatic insulin sensitivity were assessed in 4-month-old male mice using hyperinsulinaemic–euglycaemic

clamps (e–h, ob/ob, n¼ 11; ob/ob/Fsp27�/� , n¼ 6). (e) Blood glucose concentrations during the clamp experiment. (f) Glucose infusion rates.

(g) Peripheral glucose turnover. (h) Hepatic glucose output during basal and clamp conditions. (i) Relative mRNA level of G6pc and Pck1 in the liver (n¼4

per group). Insulin was injected in three pairs of anaesthetized 4-month-old male ob/ob and ob/ob/Fsp27�/� mice. Representative images of basal and

insulin-stimulated phospho-AKT (Ser473) levels in the muscle (j), BAT (k), gonadal fat (GWAT) (l) and liver (m). Quantitative data are presented as

mean±s.e.m. Significance was established using a two-tailed Student’s t-test. Differences were considered significant at Po0.05.*Po0.05, **Po0.01,

***Po0.001. Two-way repeated-measurement analyses of variance were used to evaluate the data in Fig. 4c,d,f (###Po0.001 in this figure indicates that

the two groups respond differently following the intervention).
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Figure 5 | Hepatic steatosis and insulin resistance but reduced WAT inflammation in HFD-fed Fsp27�/� mice. Three-month-old WT and Fsp27�/� mice

were challenged with a HFD (D12331, 58% kcal of fat) for 3 months (a–g). (a) Morphology of WAT, BAT and liver in WT and Fsp27�/� mice. Scale bar,

64mm for H&E (haematoxylin and eosin staining). Isolated hepatocytes were stained with bodipy 493/503. Scale bar, 10mm. (b) TAG content in WAT, BAT

and liver (n¼ 5 per group). (c) Serum TAG concentrations (n¼6 for WT and n¼ 8 for Fsp27�/� ). (d) Relative mRNA levels (n¼4 per group).

(e) Serum IL-6 concentrations (n¼ 7 per group). (f) Serum adiponectin concentrations (n¼8 per group). (g) Relative mRNA levels (n¼4 per group).

Three-month-old WT (n¼ 6) and Fsp27�/� mice (n¼6) were challenged with an HFD (D12492, 60% kcal of fat) for 6 weeks (h–n). Fasting blood glucose

(h) and insulin (i) concentrations of WT and Fsp27�/� mice. Peripheral and hepatic insulin sensitivity were assessed using hyperinsulinaemic–euglycaemic

clamps (j–l,n; WT, n¼6; Fsp27�/� , n¼6). (j) Blood glucose concentrations during the hyperinsulinaemic–euglycaemic clamp. (k) Glucose infusion rates.

(l) Hepatic glucose output during the basal and hyperinsulinaemic clamp conditions. (m) Relative mRNA level of G6pc and Pck1 in the liver (n¼4 per

group). (n) Peripheral glucose turnover. Quantitative data are presented as mean±s.e.m. Significance was established using a two-tailed Student’s t-test.

Differences were considered significant at Po0.05.*Po0.05, **Po0.01, ***Po0.001. Two-way repeated-measurement analyses of variance were used to

evaluate the data in Fig. 5k (###Po0.001 in this figure indicates that the two groups respond differently following the intervention).
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hepatic steatosis5. We therefore sort to understand the molecular
pathways involved in mediating the hepatic steatosis observed in
our Fsp27�/� models. We began by checking the expression levels
of several LD-associated proteins in the livers of ob/ob and ob/ob/
Fsp27�/� mice. Cidea expression (mRNA and protein) was
markedly increased in the livers of ob/ob/Fsp27�/� mice (Fig. 7a

(protein) and Supplementary Fig. 5a (mRNA)), whereas
expression of other LD-associated proteins including Cideb and
Perilipin 2/3 were similar between ob/ob/Fsp27�/� and ob/ob
mice (Fig. 7a and Supplementary Fig. 5a). The protein stability of
Cidea but not Cideb and Perilipin 2 was also significantly
increased in the liver of ob/ob/Fsp27�/� mice, suggesting that the
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two-tailed Student’s t-test. Differences were considered significant at Po0.05.*Po0.05, **Po0.01, ***Po0.001. Two-way repeated-measurement

analyses of variance were used to evaluate the data in Fig. 6i (###Po0.001 in this figure indicates that the two groups respond differently following the

intervention).
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observed increase in Cidea expression is a consequence of
transcriptional changes as well as changes in protein degradation
(Supplementary Fig. 5b). Similar changes in Cidea protein levels
were apparent in the livers of HFD-fed Fsp27�/� mice
(Supplementary Fig. 5c–e).

To evaluate the physiological significance of the observed
changes in hepatic Cidea expression, we proceeded to knockdown
Cidea expression using adenovirally delivered short hairpin RNA
against Cidea in ob/ob/Fsp27�/� mice. This strategy resulted in a
substantial (B90%) knockdown of Cidea (Fig. 7b) but had no
discernible effect on Cideb or Perilipin2/3 expression (Fig. 7b).
Depletion of Cidea led to a significant reduction in LD size and
both TAG and CE content in the liver of ob/ob/Fsp27�/� mice
(Fig. 7c–e). Knocking down Cidea in isolated hepatocytes from
ob/ob/Fsp27�/� or HFD-fed Fsp27�/� mice also reduced TAG
concentration (Supplementary Fig. 5f–i). These changes in liver
lipid accumulation were not associated with differences in food
intake, body weight or serum free fatty acid concentrations
(Fig. 7f). However, they did correspond with differences in serum
TAG concentrations (Fig. 7g).

These findings suggest that the observed increase in hepatic
Cidea expression compensates for the absence of Fsp27 and
facilitates liver lipid accumulation. Furthermore, many of the
changes in gene expression noted in the livers of ob/ob/Fsp27�/�

mice (see Fig. 3i–k) were reversed following Cidea knockdown.
Specifically, expression levels of SREBP1c and some of its
downstream target genes (ACC1, FAS, Elovl6 and SCD1) were
significantly reduced when Cidea was depleted in the liver of
ob/ob/Fsp27�/� mice (Fig. 7h), whereas expression of Ppara
and some of its target genes were significantly increased in the
liver of these mice (Fig. 7i). Collectively, these data suggest
that Cidea compensates functionally for the absence of
Fsp27 in regulating hepatic lipid storage in ‘obese’ Fsp27-deficient
mice.

Discussion
In summary, our data suggest that Fsp27 deficiency significantly
reduces the capacity of white adipocytes/adipose tissue to store
lipids in the face of severe energy overload and thus enhances
susceptibility to develop liver steatosis and hepatic insulin
resistance (schematically illustrated in Fig. 7j). In this context,
increases in hepatic Cidea expression appear to compensate for
the absence of liver Fsp27 expression and contribute to the
development of hepatic steatosis. These mouse data are consistent
with the lipodystrophic phenotype reported in the human patient
with a homozygous CIDEC mutation14. Although this defect in

lipid storage is at least partly compensated for by increased fat
oxidation and energy expenditure, the very modest increase in
energy expenditure is not sufficient to dispose off all the excess
lipid/energy delivered to WAT in the context of leptin deficiency
or long-term exposure to an HFD; thus, lipid starts to accumulate
in the liver. Here it impairs insulin signalling and induces hepatic
insulin resistance, which manifests as increased hepatic glucose
output and increased lipogenesis. Exactly how liver steatosis leads
to insulin resistance has been the subject of many previous
studies29 but remains incompletely understood30.

Our findings suggest that in the context of surplus energy
intake, Fsp27 deficiency can switch a relatively ‘lean and healthy’
insulin-sensitive animal to a ‘lipodystrophic’ insulin-resistant
state. This is particularly important when considering the lean
phenotypes observed in several other mouse models and their
potential relevance to humans, as mice are conventionally fed a
low-fat diet and housed at a sub-thermoneutral temperature,
conditions in which mice require higher metabolic activity,
whereas humans live in a thermoneutral environment and
consume diets typically containing considerably more fat over
prolonged periods of time. It is thus tempting to speculate that
other ‘lean’ mouse models19,22,31,32 that arise from defects in
neutral lipid storage in WAT may also manifest a lipodystrophic
phenotype with the development of hepatic steatosis and insulin
resistance when exposed to a more extreme nutritional challenge
as was previously reported for mice with a loss-of-function Pparg
mutation33.

Our conclusions differ from those previously reported by
Nishino et al.13, who reported improved whole body and hepatic
insulin sensitivity in 12-week-old, HFD-fed (from age 4 weeks)
Fsp27-null mice, and from those of Toh et al.12, who reported
improved glucose and insulin tolerance in 10-week-old chow-
fed ob/ob/Fsp27�/� . To comprehensively address these
discrepancies, we have studied both of these independently
generated Fsp27 knockout lines, involved collaborators from both
of these original studies and ‘nutritionally’ challenged the Fsp27
knockouts in three different ways. The consistency of our current
findings is in our view compelling evidence for the conclusions
we report. The precise reasons for the discrepancies between our
data and those of Nishino et al.13 are difficult to be certain of; all
we can say is that they studied the mice at a younger age (B12
versus B20 weeks) and on a different HFD formulation, in a
different laboratory environment. The work reported by Toh
et al.12 did not include hyperinsulinaemic-euglycaemic clamps
and the mice were again studied at a younger age (B10 weeks)
than in the current studies. The differences we observed in
glucose tolerance tests and ITTs were still relatively subtle in the

Table 2 | Body composition and tissue weights of BATless and BATless/Fsp27�/� mice while on a HFD.

Parameter BATless BATless/Fsp27�/� P value

N Mean±s.e.m. N Mean±s.e.m.

Body weight (g) 12 44.3±0.8 10 32.2±1.6 o0.0001***
Fat mass (g) 12 17.9±0.5 10 7.0±2.3 o0.0001***
Lean mass (g) 12 26.5±0.7 10 24.0±3.4 0.2272
Liver (g) 12 1.4±0.08 10 1.7±0.07 0.0071**
Gonadal fat (g) 12 1.4±0.05 10 0.149±0.02 o0.0001***
BAT (mg) 12 35.4±3.2 10 66.7±16.4 0.0445*
Heart (mg) 12 136.4±3.0 10 144.6±4.0 0.1104
Gastrocnemius (mg) 12 160.9±2.8 10 172.1±4.2 0.0342*
Tibialis anterior (mg) 12 45.6±2.6 10 57.1±1.5 0.0017**
Quadriceps (mg) 12 148.5±7.3 10 183.5±9.2 0.0069**

HFD, high fat diet; N, the number of mice used.
Three-month-old BATless and BATless/Fsp27�/� mice were challenged with a HFD (D12492, 60% kcal of fat) for 6 weeks. Quantitative data are presented as mean±s.e.m. Significance was established
using a two-tailed Student’s t-test. Differences were considered significant at Po0.05. *Po0.05, **Po0.01, ***Po0.001.
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older mice we studied; hence, this might explain, at least in part,
the discrepancy.

One of the most striking observations in the ob/ob/Fsp27�/� ,
HFD-fed Fsp27�/� mice and BATless/Fsp27�/� mice was the
disassociation of WAT inflammation and insulin resistance. We
had anticipated that ‘overloading’ the Fsp27-deficient adipocytes
would lead to an adverse WAT phenotype. Instead, the

accumulation of smaller multilocular LD containing adipocytes
was associated with reduced inflammasome activation, less
adipocyte death, and hence fewer CLSs and a reduction in
WAT inflammatory cytokine expression. In addition, less
systemic inflammation was demonstrated by the reduced serum
TNFa and IL-6 levels, and increased adiponectin level was
observed (Fig. 2). Consistent with these data, insulin stimulated
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Akt phosphorylation was improved in the WAT of ob/ob/Fsp27�/�

mice. Insulin-stimulated Akt phosphorylation in skeletal muscle
was not affected by Fsp27 deficiency. Glucose tolerance, one
useful indicator of b-cell function was also unaffected by Fsp27
deficiency. This represents a very rare, but informative, model of
‘pure WAT lipid storage limitation’ resulting in hepatic steatosis
and hepatic insulin resistance; it also reminds us that although
abundant data now emphasizes the importance of endocrine and
cytokine WAT dysfunction, the primary role of WAT remains
energy storage. Our data suggest that treating WAT inflammation
alone may not be sufficient to improve systemic insulin sensitivity
unless energy balance is also favourably modified. Clearly, our
data does not prove that anti-inflammatory approaches to
treating obesity-associated insulin resistance will not be useful
and we are aware of several mouse studies in which knockdown
or inhibition of inflammatory signalling intermediates were
shown to improve insulin sensitivity34,35. Nevertheless, our data
at least suggest that this may be a contributing factor in
explaining the relatively modest benefits observed to date in
response to anti-inflammatory therapies in humans with type 2
diabetes36,37.

Methods
Animal models. The double knockout mice ob/ob/Fsp27�/� were generated by
crossing Fsp27�/� mice generated by Toh et al.12 with leptinþ /� mice. Mice used
were on a C57BL/6J background. Male mice were studied in all cases. Mice were fed
with a chow diet (ND, 5053, PicoLab Rodent Diet20, Research Diet, USA) or an
HFD (D12331, Research Diet). For the HFD experiments presented in Fig. 5a–g,
Supplementary Fig. 4a–e and Supplementary Fig. 5c–e,h,i, 3-month-old mice were
provided with an HFD for 3 months. Mouse experiments were performed in the
animal facility of the Center of Biomedical Analysis at Tsinghua University
(Beijing, China). The laboratory animal facility has been accredited by the
AAALAC (Association for Assessment and Accreditation of Laboratory Animal
Care International), and the IACUC (Institutional Animal Care and Use
Committee) of Tsinghua University approved all animal protocols used in
this study. Computed tomography (CT) analysis was performed using the
Latheta LCT-200, Hitachi Aloka, Japan. Magnetic resonance imaging analysis
was performed at the Department of Radiology, Southeast University, Nanjing,
China38.

BATless transgenic mice (FVB/N-Tg(UcpDta)1Kz/J) were purchased from The
Jackson Laboratory (Bar Harbor, Maine) and crossed with Fsp27�/� mice
generated by Nishino et al.13, to generate BATless/Fsp27�/� mice. These mice were
rederived onto a C57BL/6J background and interbred thereafter. At age 3 months,
BATless and littermate BATless/Fsp27�/� mice were placed on an HFD (D12492)
for 6 weeks before surgery, recovery and then hyperinsulinaemic–euglycaemic
clamps at age 4.5 months. Three-month-old WT and Fsp27�/� mice generated by
Toh et al.12 were placed on an HFD (Research Diet, D12492) for
6 weeks before surgery, recovery and then hyperinsulinaemic–euglycaemic clamps
at age 4.5 months. The BATless mouse studies and all hyperinsulinaemic–
euglycaemic clamps were accredited by the AAALAC. The IACUC of Center of
Animal Care and Use at Lee Gil Ya Cancer and Diabetes Institute, Gachon
University (Incheon, Korea) approved all animal protocols used in this project
(approval number: DI-2011-0044 and LCDI-2013-0053).

Generation and administration of recombinant adenoviruses. Recombinant
adenoviruses used for the knockdown of Cidea (AD-shCidea) and control
(AD-shcontrol) were constructed using the AdEasy Adenoviral Vector System
(Stratagene, USA). The short hairpin RNA targeting sequence of Cidea was as
follows: 50-ACACGCATTTCATGATCTT-30 . The recombinant adenoviruses were
produced and purified according to the manufacturer’s instructions. Following a
large-scale amplification in AD293 cells and CsCl adenoviral purification, the titres
of the adenoviruses were determined using the AdEasy Viral Titer Kit (Stratagene).
The viruses were stored at � 80 �C. For the in vivo infection, 4-month-old mice
were intravenously injected in the tail vein with 1� 1010 viral particles of the
indicated viruses in a total volume of 200 ml and were euthanized for tissue col-
lection 7 days later. For the infection of isolated primary hepatocytes, the cells were
infected with the indicated viruses in serum-free DMEM for 4 h, followed by the
addition of fetal bovine serum (FBS) to a final concentration of 10%. Twenty-four
hours later, the cells were harvested for further experiments.

Isolation of primary hepatocytes. Mouse primary hepatocytes were isolated as
follows. Four-month-old male ob/ob or ob/ob/Fsp27�/� mice were anaesthetized
with 1% Pelltobarbitalum Natricum (Amresco, USA) before exposing the hepatic
portal veins, which were washed to remove residual blood and then perfused with

collagenase (C5138, Sigma, USA) for about 10 min. Thereafter, the livers were
immediately moved to a sterile 10-cm cell culture dish for mincing before the
hepatocytes were dispersed, by aspiration with a large-bore pipette; the hepatocytes
were then filtered through a 70-mm membrane (Millipore, USA) to remove tissue
debris. After washing twice with cold DMEM and centrifuging at 50g for 4 min at
4 �C, the isolated hepatocytes were seeded at a density of 1� 107 cells per dish in
6-cm dishes in DMEM with 10% FBS. The medium was changed 6 h after seeding.
Isolated hepatocytes were maintained in DMEM (Invitrogen, USA) containing 10%
FBS (Invitrogen). For protein stability experiment, medium was replaced with fresh
DMEM plus 10% FBS and Cycloheximide (100 mg ml� 1, Sigma). Hepatocytes were
harvested at different time points after the addition of Cycloheximide.

Serum and plasma biochemical and metabolic analyses. Serum TAG con-
centrations were measured using Serum Triglyceride Determination Kit (Sigma)
following the manufacturer’s instructions. Plasma glycerol concentrations were
determined using the Free Glycerol Reagent (Sigma). The free fatty acid con-
centrations were determined using enzymatic assay kits (Wako Pure Chem, Japan).
The serum concentrations of IL-6 and TNFa were determined using the Mouse IL6
Elisa Ready-SET-GO kit and Mouse TNFa Elisa Ready-SET-GO kit (eBioscience,
USA). Serum concentrations of adiponectin were determined using the enzymatic
methods (Abcam, USA, ab108785). Plasma concentrations of adiponectin in
BATless background mice were determined using the Adiponectin Elisa kit,
47-ADPMS-E01 (Alpco). Blood insulin concentrations were measured using a Rat
Insulin RIA kit (Millipore, RI-13K).

Mouse metabolic studies. Fat and lean body masses were measured by 1H
minispec system (LF90II, Bruker Optik, Germany) in mice. Energy expenditure
was determined using a MM-100 Metabolic Monitor system (CWE, Inc., USA).
Experiments were performed on 4-month-old ob/ob and ob/ob/Fsp27�/� male
mice. The mice were monitored individually in the Oxymax chamber for 24 h and
were allowed to acclimate the chamber for several hours before commencing
data collection. For HFD-fed mice, energy balance was assessed in a metabolic
monitoring system (CLAMS, Columbus Instruments, USA) for 4 days (2 days
of acclimation followed by 2 days of measurement).

GTTs and ITTs. Glucose tolerance tests of ob/ob and ob/ob/Fsp27�/� mice
were performed in overnight-fasted mice following an intraperitoneal injection of
glucose (0.5 g per kg body mass). ITTs of ob/ob and ob/ob/Fsp27�/� mice were
performed after an intraperitoneal injection of insulin (2 U per kg body mass)
following a 6 h fast. Blood glucose concentrations were measured with glucose
analyser (GM9, Analox Instruments Ltd, UK). For examination of in vivo insulin
signalling, 4-month-old male ob/ob and ob/ob/Fsp27�/� mice were fasted for 2 h,
anaesthetized and injected with insulin (5 U per kg body weight). After 5 min, mice
were killed and tissues were collected.

Hyperinsulinaemic–euglycaemic clamp. After an overnight fast, [3-3H]-glucose
(HPLC purified; American Radiolabeled Chemicals, USA) was infused at a rate of
0.05 mCi min� 1 for 2 h, to assess the basal glucose turnover. Following the basal
period, a hyperinsulinaemic–euglycaemic clamp was conducted for 120 min with a
primed/continuous infusion of human insulin (Eli Lilly) (for BATless background
mice and HFD-fed mice: 21 mU kg� 1 during priming and 3 mU kg� 1 min� 1

during infusion; for ob/ob background mice: 105 mU kg� 1 during priming and
15 mU kg� 1 min� 1 during infusion, whereas plasma glucose was maintained at
basal concentrations (B180 mg dl� 1 for ob/ob background mice; B150 mg dl� 1

for BATless background mice and HFD-fed mice))39. To estimate insulin-
stimulated whole-body glucose fluxes, [3-3H]-glucose was infused at a rate of
0.1 mCi min� 1 throughout the clamps40. Rates of basal and insulin-stimulated
whole-body glucose fluxes and tissue glucose uptake were determined as previously
described40.

Microarray analysis. Equal amounts of total RNA from three mice were com-
bined to form RNA pools. In total, we analysed three RNA pools from nine ob/ob
mice and three RNA pools from nine ob/ob/Fsp27�/� mice. Six Affymetrix gene
chips (GeneChip Mouse Gene 1.0 ST Array, Affymetrix, USA) were used for
hybridization and data collection. Microarray data related to WT and Fsp27�/�

mice were from Li et al. (GSE22693)41. Quality control and statistical analyses of all
the Mouse Gene 1.0 ST microarray data was conducted using R/Bioconductor42.
Methods including scatterplots, distribution histograms, boxplots and
unsupervised Principle Component Analysis were employed to visualize the data
before and after preprocessing procedures. All arrays were consistent and
comparable for further analyses, and we performed background adjustment,
quantile normalization and summaries of transcript-level intensity for all arrays
using the Robust Multi-array Average algorithm43, followed by two rounds of
probeset filtering. After removing control probesets, 28,858 probesets from the
original 35,556 were retained. Next, the Detection Above Background P-values for
probesets were calculated using the xps package and only the significant ones
(Po0.05) were considered as ‘present’. We only retained probesets flagged as
present in at least one sample for each type of tissue and used the package
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LIMMA to identify probesets that were differentially expressed between the
ob/ob/Fsp27�/� and ob/ob mice44. The Benjamini and Hochberg method was used
to estimate the false discovery rate and correct for multiple hypotheses testing.
Annotation was taken and genes that changed by log fold of at least 0.5 between
ob/ob/Fsp27�/� and ob/ob mice, and with a false discovery rate o0.05 were
considered significant. The up- and downregulated genes were further mapped to
biological pathways using PathVisio with Wiki Pathways content, and the results
were sorted by Z-score, which is the standard statistical test under the
hypergeometric distribution45,46.

Quantitative PCR analysis. Total RNA was isolated from mouse livers and WAT
with TRIzol (Invitrogen) extraction. First-strand complementary DNA synthesis
was performed using the Superscript First-Strand Synthesis System (Invitrogen).
Quantitative real-time PCR reaction were performed using the Power SYBR Green
PCR Master Mix (Applied Biosystems) on an ABI 7500 (Applied Biosystems) with
reaction volumes of 20ml. The primer sequences are listed in Supplementary
Table 3.

Histology. The livers were excised and fixed in 10% formalin buffer. The fixed
specimens were processed to paraffin blocks, sectioned and stained with
haematoxylin–eosin. For electron microscope analysis, liver or fat tissue was fixed
in 2.5% glutaraldehyde buffer and studied at Center of Biomedical Analysis,
Tsinghua University, China. For immunohistochemistry, formalin-fixed and
paraffin-embedded sections were blocked with endogenous peroxidase (3% H2O2

in 80% methanol) for 20 min. Antigen retrieval was performed in 10 mM sodium
citrate in a microwave for 15 min. After blocking nonspecific antigen with normal
goat serum for 30 min, the slides were then incubated with TNFa (Abcam, ab1793,
1:100 dilution) or F4/80 (Abcam, ab6640, 1:100 dilution) antibody overnight at
4 �C. The slides were then incubated with biotinylated-labelled secondary anti-
bodies (1:200, GE Health, UK) for 30 min at room temperature. Visualization was
performed using 0.1% 3,30-diaminobenzidine (Dako, Denmark) in PBS together
with 0.05% H2O2 (ref. 47). For the analysis of CLS, immunohistochemistry sections
stained with a TNFa antibody were used and the CLS density was derived by
counting the total number of CLS in each section compared with the total number
of adipocytes. Data were expressed as the number of CLS/1,000 adipocytes.

Tissue lipid content. Tissues were homogenized in PBS buffer with protease
inhibitors. A chloroform/methanol (2:1) solution was rapidly added to the
homogenate and the samples were vortexed. The samples were centrifuged at 250g
for 10 min, to separate the phases. The lower lipid-containing phase was carefully
aspirated and allowed to dry in a 70 �C metal bath with nitrogen steam. The dried
lipids were reconstituted in methylbenzene and loaded onto a thin-layer chro-
matography plate. The lipids were separated in a hexane/diethyl ether/acetic acid
(70:30:1, v/v) solution. The thin-layer chromatography plates were sprayed with
10% CuSO4 in 10% phosphoric acid and were developed by drying in an oven at
120 �C. Alternatively, the dried lipids were emulsified in chloroform with 5%
Triton X-100. Finally, dried emulsified lipids with nitrogen gas were reconstituted
in distilled water. The contents of TAG and CE were measured by enzymatic
reaction according to the instruction manual (Wako Diagnotics, Japan).

Western blotting. The frozen tissues were homogenized in a lysis buffer (20 mM
Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton-X100 and protease
inhibitor, pH 7.4) and then centrifuged for 20 min at 10,000g to discard cell debris.
The total protein concentrations were determined using a Bio-Rad kit (USA).
The proteins were subjected to western blot analysis with the desired antibodies.
The antibodies against Cidea (1:1,000), Cideb (1:500) and Fsp27 (1:2,000) were
generated by injection of rabbits with His-tagged truncated Cidea (aa 1–195)
and Cideb (aa 1–176), and Fsp27 (aa 1–190) proteins that were expressed in and
purified in Escherichia coli12. Antibodies against b-actin (Sigma-Aldrich, USA,
1:2,000), Perilipin1 (Fitzgerald Industries, USA, 20R-pp004, 1:4,000), Perilipin2
(Fitzgerald Industries, 20R-Ap002, 1:8,000), Perilipin3 (Santa Cruz, USA,
sc14726R, 1:1,000), Cyto C (BD Pharmingen, USA, 556433, 1:1,000), Cox4
(Molecular Probes, Invitrogen, A21348, 1:1,000), ATGL (Cell Signaling, USA, 2439,
1:1,000), HSL (Cell Signaling, 4107, 1:1,000), CGI58 (Santa Cruz, sc100468,
1:1,000), PPARg (Santa Cruz, sc271392, 1:1,000), CEBPb (Santa Cruz, sc7962,
1:1,000), P-AKT(S473,193H12, Cell Signaling, 4058, 1:1,000), AKT (Cell Signaling,
9272, 1:1,000) were used for western blot analysis. The blots were developed using
HRP-conjugated secondary antibodies (GE Health, 1:3,000) and the ECL-plus
system.

Statistics. The statistical data reported includes results from at least three biolo-
gical replicates. All results are expressed as mean±s.e.m.. All statistical analyses
were performed in GraphPad Prism Version 5 (GraphPad Software). Significance
was predominantly established using a two-tailed Student’s t-test. However, energy
expenditure was analysed using analysis of covariance as recommended by Tschop
et al.48 and we used two-way repeated-measurement analyses of variance to
evaluate the data in Figs 4c,d,f, 5k and 6i. (###Po0.001 in these figures indicates
that the two groups respond differently following the intervention). In all cases,

differences were considered significant at Po0.05. P-values are indicated in each
figure as *Po0.05, **Po0.01, ***Po0.001.
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