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Abstract. 6‑Gingerol is a bioactive compound isolated from 
Zingiber officinale. 6‑Gingerol has been shown to have 
anticancer effects in numerous types of cancer cell. The 
mechanisms underlying the anticancer effect of 6‑Gingerol 
in prostate cancer requires investigation. In the present 
study, the effect on cell viability of 6‑Gingerol on LNCaP, 
PC3 and DU145 prostate cancer cells were determined 
using the MTT and colony formation assays. 6‑Gingerol 
significantly inhibited cell migration, adhesion and invasion in 
LPS‑stimulated and LPS‑unstimulated prostate cancer cells. 
Furthermore, these changes were accompanied by alterations 
in the protein expression levels of epithelial‑mesenchymal 
transition biomarkers, including E‑cadherin, N‑cadherin, 
Vimentin and zonula occludens‑1. 6‑Gingerol also induced 
autophagy by significantly increasing LC3B‑Ⅱ and Beclin‑1 
protein expression levels in prostate cancer cells. Combining 
6‑Gingerol with LY294002, an autophagy inhibitor, signifi‑
cantly increased cell survival in DU145 cells. Furthermore, 
6‑Gingerol significantly decreased the protein expression 
levels of glutathione (GSH) peroxidase 4 and nuclear factor 
erythroid 2‑related factor 2 in prostate cancer cells. Reactive 
oxygen species (ROS) levels were significantly increased but 
GSH levels were decreased following 6‑Gingerol treatment 
in prostate cancer cells. Co‑treatment with the ferroptosis 
inhibitor, ferrostatin‑1, significantly increased cell viability 
and significantly decreased ROS levels in 6‑Gingerol‑treated 

cells. These results suggested that 6‑Gingerol may have 
inhibited prostate cell cancer viability via the regulation of 
autophagy and ferroptosis. In addition, 6‑Gingerol inhibited 
cell migration, adhesion and invasion via the regulation of 
EMT‑related protein expression levels in LPS‑stimulated 
and LPS‑unstimulated prostate cancer cells. In conclusion, 
6‑Gingerol may induce protective autophagy, autophagic cell 
death and ferroptosis‑mediated cell death in prostate cancer 
cells. These findings may provide a strategy for the treatment 
and prevention of prostate cancer.

Introduction

Prostate cancer is a slowly developing disease with a high 
mortality rate in men, especially in Western countries (1). 
Castrate‑resistant prostate cancer (CRPC) is resistant to 
androgen ablation and cancer metastases are often observed 
in patients with CRPC (2). Cancer metastasis is a complex 
mechanism and cascade of events that allows tumor cells to 
travel to other organs. Epithelial‑mesenchymal transition 
(EMT) is as an important event in the initial steps of cancer 
cell metastasis (3). The loss of epithelial cell characteristics 
leads to the transformation of epithelial cells to mesenchymal 
cells with a stem cell‑like phenotype. Notably, EMT can result 
in increasing resistance to apoptosis and chemotherapy (4,5). 
Previous studies have reported that lipopolysaccharide (LPS), 
a component of gram‑negative bacteria, can trigger EMT, 
which induces the migration and invasion of cancer cells (6‑8).

Autophagy regulates cell damage and degradation and 
processes the recycling of cell constituents. It is an adaptive 
process and a form of cell death that occurs in response to 
stress, including elevated levels of reactive oxygen species 
(ROS) and anticancer agents (9,10). Autophagy may therefore 
serve a pivotal role during chemotherapy. Phytochemicals or 
chemotherapeutic agents can overcome drug resistance and 
induce apoptosis in cancer cells (11‑13).

Ferroptosis is a form of cell death, which has characteristics 
that are different from apoptosis and autophagy. The 
accumulation of intracellular iron and ROS, and the depletion 
of glutathione (GSH) are characteristic of ferroptosis (14). 
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Ferroptosis inducers can inhibit cancer cell proliferation and 
may be a novel target for potential cancer therapeutics (15,16).

Dietary natural products contain numerous bioactive 
phytochemicals with a wide spectrum of pharmacological 
activities. Ginger (Zingiber officinale) is commonly used as a 
spice and a traditional medicine (17). One component of ginger 
extract, 6‑Gingerol, has anti‑inflammatory, anticancer and 
antioxidant effects (18‑21). In addition, 6‑Gingerol has been 
reported to exhibit synergistic effects on PC3 cells by inducing 
apoptosis (22) and to inhibit testosterone‑induced proliferation 
of LNCaP cells (23). However, to the best of our knowledge, 
whether 6‑Gingerol also inhibits EMT, and induces autophagy 
or ferroptosis in prostate cancer cells is unknown.

The present study aimed to determine the pharmacological 
effects of 6‑Gingerol against LPS‑induced migration and inva‑
sion, and the potential of 6‑Gingerol to inhibit LPS‑induced 
EMT in prostate cancer cells. It can therefore be hypothesized 
that 6‑Gingerol may be used as an effective chemotherapeutic 
agent to treat prostate cancer.

Materials and methods

Chemicals and reagents. 6‑Gingerol (95‑99% purity, 
determined by high‑performance liquid chromatography) 
was purchased from Chengdu Biopurify Phytochemicals, 
Ltd. PI3K inhibitor (LY294002) and MTT reagent were 
purchased from Beyotime Institute of Biotechnology. LPS 
(from Escherichia coli 026:B6) and β‑actin primary anti‑
bodies (cat. no. A5441) were obtained from MilliporeSigma. 
Ferrostatin‑1 was purchased from Shanghai Aladdin 
Biochemical Technology Co., Ltd. Primary antibodies against 
Beclin‑1 (cat. no. AB3219), LC3B (cat. no. CY5992), nuclear 
factor erythroid 2‑related factor 2 (NRF2; cat. no. CY1851) and 
GSH peroxidase (GPX) 4 (cat. no. CY6959) were purchased 
from Shanghai Abways Biotechnology Co., Ltd. Primary 
antibodies against E‑cadherin (cat. no. 3195), N‑cadherin 
(cat. no. 13116), Vimentin (cat. no. 5741) and zonula occludens‑1 
(ZO‑1; cat. no. 8193) were purchased from Cell Signaling 
Technology, Inc. Anti‑rabbit IgG horseradish peroxidase 
HRP‑linked antibody (cat. no. 7074) and anti‑mouse IgG 
HRP‑linked antibody (cat. no. 7076) were purchased from Cell 
Signaling Technology, Inc.

Cell culture. The human prostate cancer LNCaP, DU145 
and PC3 cell lines were purchased from Shanghai Fuheng 
Biotechnology Co., Ltd. Cells were cultured at 37˚C in a 
humidified atmosphere with 5% CO2. LNCaP cells were 
grown in RPMI‑1640 medium, DU145 and PC3 cells were 
grown in DMEM/Ham's F12 Kaighn's (K) medium (both 
LONSERA ShangHai ShuangRu Biotech Co., Ltd). The 
media were supplemented with 10% fetal bovine serum (FBS; 
LONSERA ShangHai ShuangRu Biotech Co., Ltd.), 100 U/ml 
penicillin and 100 µg/ml streptomycin (Beyotime Institute of 
Biotechnology). In each experiment, the control group was 
untreated cells.

Cell viability assay. LNCaP, DU145 and PC3 cells were seeded 
at a density of 1x104 cells/well in 96‑well plates. When cells 
reached 80% confluency, cells were treated with 6‑Gingerol 
(1‑500 µM), with or without LPS (1 µg/ml), ferrostatin‑1 

(5 µM) and LY294002 (10 µM), at 37˚C for 24, 48 or 72 h. 
After incubation, cell viability was determined using an 
MTT assay. The medium was replaced with fresh medium, 
10 µl MTT (5 mg/ml) was added to each well contain 100 µl 
fresh medium and cells were incubated at 37˚C for 4 h. The 
supernatant was subsequently discarded and 100 µl DMSO 
was used to dissolve the MTT‑formazan crystals. Absorbance 
was then quantified using a microplate reader at a wavelength 
of 570 nm.

Colony formation. LNCaP, DU145 and PC3 cells were seeded 
into a 6‑well plate at a density of 5x102 cells/well. Cells were 
incubated at 37˚C for 4 h and were subsequently treated with 
different concentrations (1, 10, 100 and 500 µM) of 6‑Gingerol. 
After incubation at 37˚C for 7 days without changing the 
medium, 4% formaldehyde was applied for fixing cells for 
20 min at room temperature and stained with 0.2% crystal 
violet for 20 min at room temperature. Colonies were defined 
as groups of >50 cells and manually counted under an inverted 
light microscope (Nikon TI‑DH).

Wound healing assay. DU145 and PC3 cells at a density of 
1x106 cells/well were cultured on a 6‑well plate with medium 
containing 10% FBS. After reaching 100% confluency, the 
medium was replaced with serum‑free medium. A scratch was 
created on the cell monolayers using a sterile 200‑µl pipette 
tip and cells were then treated with 6‑Gingerol (10 µM), with 
or without LPS (1 µg/ml) at 37˚C for 24 or 48 h. The images 
were observed and captured by image device (NIS Elements 
version 4.30, Nikon) and inverted light microscope (Nikon 
TI‑DH). Wound healing was semi‑quantified using ImageJ 
1.52a software (National Institutes of Health). The wound area 
was calculated as the follows: (Initial wound width‑final wound 
width)/initial wound width x100 (%).

Cell adhesion assay. Fibronectin (Beijing Solarbio Science 
& Technology Co., Ltd.) was dissolved in PBS and used for 
coating. Then, 0.1 ml of fibronectin (5 µg/ml) was added per 
well in a 96‑well plate at 4˚C overnight. After incubation, 
the wells were washed with PBS twice and incubated with 
serum‑free medium at 37˚C for 30 min. LNCaP, DU145 and 
PC3 cells (1x104) were added to each well in fresh medium 
containing 6‑Gingerol (100 and 500 µM), with or without LPS 
(1 µg/ml) incubated at 37˚C at 1 and 2 h for adhesion. After 
incubation, the adhered cells were gently washed twice with 
PBS and measured using MTT assay, as aforementioned.

Migration and invasion assays. The migratory and invasive 
abilities of DU145 and PC3 cells were determined using 8‑µm 
Transwell filter membranes (Costar; Corning, Inc.). For the 
migration assay, 1x104 cells were seeded into the upper chamber 
with DMEM/Ham's F12K serum‑free medium containing 
6‑Gingerol (10 µM), whereas the bottom chamber was loaded 
with DMEM/Ham's F12K medium containing 10% FBS with 
or without LPS (1 µg/ml) as a chemoattractant. After incuba‑
tion at 37˚C for 48 h, cells in the upper chamber were gently 
scraped off and the migrating cells that had accumulated in the 
bottom chamber were fixed with 4% formaldehyde for 20 min 
at room temperature and stained with 0.2% crystal violet 
for 20 min at room temperature. The migrated cells on the 
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bottom surface of the membrane were captured (NIS Elements 
version 4.30, Nikon) and counted manually under an inverted 
light microscope (Nikon TI‑DH). For the invasion assay, each 
Transwell plate was coated with Matrigel (1 mg/ml, Corning, 
Inc.) with serum free medium at 37˚C for 1 h. The subsequent 
procedure was the same as that of migration assay.

Western blotting. To examine the mechanism of underling 
the anti‑cancer effects of 6‑Gingerol on prostate cancer cells, 
LNCaP, DU145 and PC3 cells were treated with 6‑Gingerol 
(1‑100 µM), with or without LPS (1 µg/ml) and ferrostatin‑1 
(5 µM) at 37˚C for 24 or 48 h. After incubation, total protein 
was extracted by M‑PER mammalian protein extraction 
reagent (Thermo Fisher Scientific, Inc.; cat. no. 78505). 
The concentration of protein was determined by Pierce 
Coomassie (Bradford) Protein Assay Kit (Thermo Scientific, 
cat. no. 23200) and was separated by 7.5, 10.0 or 12.0% 
SDS‑PAGE (20 µg total protein/lane). Separated proteins 
were subsequently transferred onto a PVDF membrane. The 
membranes were blocked with 5% non‑fat dried milk 1X 
TBST buffer (20 mM Tris, 150 mM NaCl, 0.1% Tween 20) at 
room temperature for 1 h. Membranes were incubated at 4˚C 
overnight with the following primary antibodies: Beclin‑1 
(1:1,000), LC3B (1:1,000), NRF2 (1:1,000), GPX4 (1:1,000), 
E‑cadherin (1:1,000), N‑cadherin (1:1,000), Vimentin 
(1:1,000), β‑actin (1:8,000) and ZO‑1 (1:1,000). Subsequently, 
membranes were incubated for 1 h at room temperature 
with the secondary antibodies, anti‑rabbit IgG HRP‑linked 
antibody (1:1,000) and anti‑mouse IgG HRP‑linked antibody 
(1:1,000). Protein bands were subsequently visualized using 
an enhanced chemiluminescent kit to determine protein 
expression (Shanghai Epizyme Biomedical Technology Co., 
Ltd). The bands were detected using a ChemiScope 3300 Mini 
(Clinx Science Instruments Co., Ltd.). β‑actin was used as the 
internal control for Western Blots. The densitometry of protein 
expression was determined using ImageJ 1.52a software 
(National Institutes of Health, USA).

Determination of intracellular ROS and GSH. Intracellular 
ROS levels were determined using reactive oxygen species 
assay kit (Biosharp; cat. no. BL714A). according to the manu‑
facturer's protocol. Briefly, the LNCaP, DU145 and PC3 cells 
were cultured in 6‑well plates at density of 1x105 cells. Cells 
were treated with 6‑Gingerol (100 µM) with or without ferro‑
statin‑1 (5 µM) at 37˚C for 24 h. After the incubation, the cells 
were collected, stained with H2DCFH‑DA (10 µM) at 37˚C 
for 30 min in the dark and then washed twice with serum free 
medium. For each experiment, the fluorescence intensity of 
ROS was quantified using flow cytometry (NovoCyte Flow 
Cytometer; Agilent Technologies, Inc.). Data were analyzed 
using NovoExpress 1.2.5 software (2016 ACEA Biosciences, 
Inc.). GSH levels were determined using a Glutathione 
Assay Kit (Nanjing Jiancheng Bioengineering Institute; 
cat. no. A006‑2‑1). LNCaP, DU145 and PC3 cells at the density 
of 1x104 were seeded into a 24‑well plate and incubated over‑
night at 37˚C. Cells were treated with 6‑Gingerol (10, 100 µM) 
with or without ferrostatin‑1 (5 µM) at 37˚C for 24 h. Cells 
were then collected and homogenized. After centrifugation 
at 14,000 g for 10 min at 4˚C, the supernatant was collected 
and GSH levels quantified according to the manufacturer's 

instructions. The absorbance was measured using a microplate 
reader at the wavelength of 405 nm. The content of GSH levels 
were determined by the standard curve.

Statistical analysis. The experiments were performed at 
three times independently and the data analysis were done 
by Excel (Microsoft 365MSO, 16.0.14931.20118). Statistical 
comparisons among more than two groups were performed 
using one‑way ANOVA followed by Tukey's post hoc test. All 
data are presented as the mean ± SEM. P<0.05 was considered 
to indicate a statistically significant difference.

Results

6‑Gingerol suppresses cell viability and colony formation 
in prostate cancer cells. LNCaP, PC3 and DU145 cells were 
treated with 6‑Gingerol (1‑500 µM) for 24, 48 or 72 h. The 
viability of LNCaP, PC3 and DU145 cells was inhibited by the 
different 6‑Gingerol (1‑500 µM) treatments. The cell survival 
rate with 6‑Gingerol (500 µM) at 72 h was 46.08±4.29, 
47.20±5.90 and 50.59±4.20% in LNCaP, PC3 and DU145 
cells, respectively (Fig. 1A). Colony formation in the pres‑
ence of 6‑Gingerol was also investigated. The colony number 
determined for each treatment group (1‑500 µM, 6‑Gingerol) 
was significantly reduced compared with the control group 
in LNCaP, PC3 and DU145 cells (Figs. 1B and S1), which 
suggested that 6‑Gingerol inhibited cell viability and colony 
formation in prostate cancer cells. Furthermore, the cell 
survival rate of LNCaP, PC3 and DU145 cells treated with 
LPS was assessed (Fig. 1C). Several studies reported that LPS 
can enhance the metastasis and invasion in prostate and breast 
cancer cells (6‑8). LPS (1 µg/ml) was not cytotoxic to any 
of the cell lines; this concentration was therefore selected to 
assess the adhesion, invasion, migration and EMT effects on 
prostate cancer cells. 6‑Gingerol (100 µM) can significantly 
inhibit LPS‑induced cell growth at 48 and 72 h (Fig. 1C). 
Overall, these results indicated that 6‑Gingerol may exhibit 
cytotoxicity in a dose‑dependent manner in LNCaP, PC3 and 
DU145 cells.

6‑Gingerol attenuates migration, invasion and adhesion in 
prostate cancer cells. CRPC is an aggressive disease, and it 
is not sensitive to medical castration with higher potential of 
invasion and metastasis (2). PC3 and DU145 cells are CRPC 
cells (7). Therefore, we selected PC3 and DU145 cells for 
migration and invasion assay. To investigate the mechanism 
of 6‑Gingerol in cell migration and invasion, the wound 
healing and Transwell assays were performed. The results 
demonstrated that cell migration and invasion were signifi‑
cantly enhanced in LPS‑induced DU145 cells. However, only 
cell invasion was significantly enhanced in LPS‑induced 
PC3 cells (Figs. 2 and 3). Moreover, 6‑Gingerol (10 µM) 
significantly inhibited migration and invasion in LPS‑treated 
or LPS‑untreated PC3 and DU145 cells at 48 h, compared with 
the LPS or control groups, respectively.

Cell attachment to the extracellular matrix is important for 
cell metastasis in distant organs (24); therefore, the effect of 
6‑Gingerol on prostate cancer cell adhesion to extracellular 
matrix proteins was investigated. Fibronectin (5 µg/ml) signifi‑
cantly induced adhesion in DU145 and LNCaP cells at 2 h 
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Figure 1. 6‑G suppresses prostate cancer cell viability. (A) Viability of LNCaP, PC3 and DU145 cells incubated with 6‑G. (B) Colony formation of LNCaP, PC3 
and DU145 cells incubated with 6‑G for 7 days. (C) Cell viability following treatment with 6‑G (100 µM) with or without LPS (1 µg/ml). Data are presented as 
the mean ± SEM from three independent experiments. *P<0.05 vs. control; #P<0.05 vs. LPS. 6‑G, 6‑Gingerol; LPS, lipopolysaccharide.

Figure 2. 6‑G inhibits migration and invasion of LPS‑stimulated and LPS‑unstimulated PC3 cells. The anti‑migratory and anti‑invasive effects of 6‑G (10 µM) 
with or without LPS (1 µg/ml) on PC3 cells were determined using (A) wound healing (magnification, x100) and (B) Transwell assays (magnification, x200). 
Scale bar=100 µm. Data are presented as the mean ± SEM from three independent experiments. *P<0.05 vs. control; #P<0.05 vs. LPS. 6‑G, 6‑Gingerol; LPS, 
lipopolysaccharide.
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(Fig. 4A). 6‑Gingerol (100 and 500 µM) significantly inhib‑
ited fibronectin‑treated attachment at 2 h in LNCaP, DU145 
and PC3 cells (Fig. 4A). The results demonstrated that LPS 
significantly enhanced the binding affinity of PC3, DU145 and 
LNCaP cells to fibronectin compared with the group treated 
with LPS alone at 2 h (Fig. 4B). 6‑Gingerol (100, 500 µM) 
significantly decreased the binding affinity of LNCaP, PC3 
and DU145 cells to fibronectin with or without LPS treat‑
ment compared with the LPS + fibronectin or fibronectin 
group, respectively at 2 h (Fig. 4). These results indicated 
that 6‑Gingerol may have anti‑invasion, anti‑migration and 
anti‑adhesion properties in prostate cancer cells.

6‑Gingerol induces autophagy in prostate cancer cells. 
Subsequently it was determined if 6‑Gingerol could induce 
autophagy in prostate cancer cells using western blotting to 
analyze Beclin‑1 and LC3B protein expression levels. LC3B‑Ⅱ 
is important in autophagy and can be used as an autophagy 
marker (25). The results demonstrated that 6‑Gingerol 
(10‑100 µM) significantly induced LC3B‑Ⅱ protein expres‑
sion levels in LNCaP cancer cells compared with the control 
(Fig. 5A). The LC3B‑Ⅱ protein expression levels were signifi‑
cantly upregulated in 6‑Gingerol‑treated (1‑10 µM) PC3 cells. 
However, this was not observed in DU145 cells, due to the 
absence of the ATG5 protein, which results in ATG12/ATG5 
conjugate deficiency (26). 6‑Gingerol (10‑100 µM) signifi‑
cantly upregulated Beclin‑1 protein expression levels in 
LNCaP, PC3 and DU145 cells compared with the control 
(Fig. 5A). LY294002, a known PI3K and autophagy inhibitor, 
slightly enhanced 6‑Gingerol cytotoxicity in LNCaP and PC3 
cells (Fig. S2); however, this effect was significantly reversed 

in DU145 cells compared with the 6‑Gingerol group (Fig. 5B). 
These results therefore indicated that 6‑Gingerol potentially 
induced protective autophagy in LNCaP and PC3 cells but 
promoted autophagic cell death in DU145 cells. The results 
suggested that 6‑Gingerol induced autophagy by regulating 
LC3B‑Ⅱ and Beclin‑1 protein expression levels in LNCaP and 
PC3 cells. Moreover, 6‑Gingerol also induced autophagy by 
inducing Beclin‑1 and LC3B‑Ⅰ but without LC3B‑II protein 
expression in DU145 cells.

6‑Gingerol suppresses EMT‑related protein expression 
in prostate cancer cells. EMT serves a significant role in 
cancer progression and metastasis, a mechanism which LPS 
can trigger and enhance (6‑8). The protein expression levels 
of E‑cadherin, N‑cadherin, Vimentin and ZO‑1 were exam‑
ined following 6‑Gingerol (1‑100 µM) treatment for 24 h in 
LNCaP, PC3 and DU145 cells. The results demonstrated 
that E‑cadherin and ZO‑1 were significantly upregulated 
in 6‑Gingerol‑treated (10‑100 µM) prostate cancer cells 
compared with the control (Fig. 6); however, N‑cadherin and 
Vimentin were downregulated in 6‑Gingerol‑treated PC3 and 
LNCaP cells. The protein expressions of N‑cadherin were not 
significantly inhibited by 6‑Gingerol (1‑100 µM) treatment for 
24 h in DU145 cells. Cell invasion and migration were signifi‑
cantly induced after LPS treatment in DU145 cells. Therefore, 
DU145 cells were selected for examining the underlying 
mechanism of action of EMT in LPS‑treated DU145 cells. 
Furthermore, the results indicated that LPS significantly 
induced N‑cadherin and Vimentin protein expression levels in 
DU145 cells at 48 h compared with the control (Fig. 7A and C). 
In addition, 6‑Gingerol did not markedly increased E‑cadherin 

Figure 3. 6‑G inhibits migration and invasion of LPS‑stimulated and LPS‑unstimulated DU145 cells. The anti‑migration and anti‑invasion effects of 6‑G 
(10 µM) with or without LPS (1 µg/ml) on DU145 cells were determined using (A) wound healing (magnification, x100) and (B) Transwell migration assays 
(magnification, x200). Scale bar=100 µm. Data are presented as the mean ± SEM of three independent experiments. *P<0.05 vs. control; #P<0.05 vs. LPS. 6‑G, 
6‑Gingerol; LPS, lipopolysaccharide.
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protein expression levels, whereas it significantly downregu‑
lated N‑cadherin and Vimentin protein expression levels in the 

LPS + 6‑Gingerol group compared with the LPS group. The 
results also demonstrated that the protein expression levels of 

Figure 5. 6‑G induces autophagy in prostate cancer cells. (A) Prostate cancer cells were treated with 6‑G (1‑100 µM) for 24 h. The protein expression levels of 
Beclin‑1 and LC3B were determined via western blotting. (B) 6‑Gingerol‑treated cell viability in the presence or absence of LY294002 (10 µM) in DU145 cells 
incubated for 24 and 48 h. Semi‑quantification of Beclin‑1 and LC3B protein expression levels were performed using image analysis in (C) PC3, (D) LNCaP 
and (E) DU145 cells. *P<0.05 vs. control; &P<0.05 vs. 6‑G (100 µM). 6‑G, 6‑Gingerol.

Figure 4. Effect of 6‑G on LNCaP, PC3 and DU145 prostate cancer cell attachment on FN (5 µg/ml)‑coated plates. (A) LPS‑unstimulated and (B) LPS‑stimulated 
prostate cancer cells were treated with 6‑G (100 or 500 µM). Attached cells were determined using an MTT assay. *P<0.05 vs. FN; #P<0.05 vs. control; 
&P<0.05 vs. LPS + FN; †P<0.05 vs. LPS. 6‑G, 6‑Gingerol; FN, fibronectin; LPS, lipopolysaccharide.
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LC3B‑Ⅰ were significantly decreased in LPS‑stimulated DU145 
cells compared with the control. 6‑Gingerol (100 µM) reversed 

the protein expression levels of LC3B‑Ⅰ in LPS‑stimulated 
DU145 cells. These data indicated that LPS potentially 

Figure 7. Effects of 6‑G treatment on autophagy, the epithelial‑mesenchymal transition and ferroptosis in LPS‑stimulated and LPS‑unstimulated prostate 
cancer cells. (A) DU145 cells were treated with 6‑G (100 µM) with or without LPS (1 µg/ml) for 48 h. Western blotting was performed to determine the protein 
expression levels of E‑cadherin, N‑cadherin, Vimentin and LC3B‑Ⅰ. (B) NRF2 and GPX4 protein expression levels following 6‑G treatment for 24 h were deter‑
mined via western blotting. (C) Semi‑quantification of E‑cadherin, N‑cadherin, Vimentin and LC3B‑Ⅰ protein expression levels was performed using image 
analysis. (D) Semi‑quantification of GPX4 and NRF2 protein expression levels was performed using image analysis. *P<0.05 vs. control; #P<0.05 vs. LPS. 6‑G, 
6‑Gingerol; LPS, lipopolysaccharide; GPX4, glutathione peroxidase 4; NRF2, nuclear factor erythroid 2‑related factor 2.

Figure 6. 6‑G inhibits the epithelial‑mesenchymal transition in prostate cancer cells. Prostate cancer cells were treated with 6‑G (1‑100 µM) for 24 h. The 
protein expression levels of E‑cadherin, N‑cadherin, Vimentin and ZO‑1 were analyzed via western blotting. *P<0.05 vs. control. 6‑G, 6‑Gingerol; ZO‑1, 
zonula occludens‑1.
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stimulated EMT and that 6‑Gingerol may reverse these effects 
on EMT in LPS‑treated prostate cancer cells.

6‑Gingerol treatment induces ferroptosis. Ferroptosis is asso‑
ciated with ROS production, which leads to decreased cellular 
GSH levels (27). GPX4 is an enzyme that belongs to the family 
of GPXs and GPX4 inactivation can promote ferroptosis (28). 
Therefore, the role of ROS, GSH, GPX4 and NRF2 protein 
expression in prostate cancer cells was determined. GPX4 
and NRF2 protein expression levels were significantly down‑
regulated after 24 h of 6‑Gingerol (100 µM) treatment in 
LNCaP, PC3 and DU145 cells (Fig. 7B and D). NRF2 protein 
expression levels were increased after 6‑Gingerol (1‑10 µM) 
treatment in PC3 and DU145 cells, but this was not observed 
in LNCaP cells. PC3 and DU145 are castration‑resistant 
prostate cancer cells, and LNCaP is androgen‑dependent 
prostate cancer cell line (18,29). This might slightly increase 
NRF2 levels after low concentration of 6‑Gingerol treat‑
ment in PC3 and DU145 cells because of castration‑resistant 
prostate cancer cells. Furthermore, ROS levels were signifi‑
cantly increased following 6‑Gingerol treatment in LNCaP, 
PC3 and DU145 cells compared with the control. Notably, 
this effect was significantly attenuated by pre‑treatment 
with ferrostatin‑1, compared with the 6‑Gingerol only group 
(Figs. 8A and S3).

To further determine the effect of 6‑Gingerol on cell death, 
ferrostatin‑1, an effective ferroptosis inhibitor, was used. The 
results demonstrated that ferrostatin‑1 significantly alleviated 
a decrease in cell viability in LNCaP, PC3 and DU145 cells 
at 48 h in cells treated with 6‑Gingerol (100 µM) compared 
with the 6‑Gingerol group (Fig. 8B). GSH levels were also 

significantly reduced after 6‑Gingerol treatment (10‑100 µM) 
compared with the control; however, this effect was signifi‑
cantly attenuated by pre‑treatment with ferrostatin‑1 (5 µM) 
compared with the 6‑Gingerol group (100 µM) (Fig. 8C). GPX4 
protein expression levels were attenuated following 6‑Gingerol 
(100 µM) treatment for 24 h in DU145 cell. The expression 
was significantly increased in ferrostatin‑1 pre‑treatment 
6‑Gingerol‑treated (100 µM) DU145 cells compared with 
the 6‑Gingerol group (Fig. 8D). These results indicated that 
cell death may be mediated by a ferroptosis mechanism. 
Furthermore, these data indicated that 6‑Gingerol may induce 
ROS accumulation and ferroptosis; therefore, ferroptosis may 
be a potential mechanism, induced by 6‑Gingerol, against 
prostate cancer cell proliferation.

Discussion 

6‑Gingerol has been reported to induce apoptosis in numerous 
types of cancer cells, including breast cancer, colon cancer, 
prostate cancer and cervical cancer cells (21,30‑32). In addition, 
it may regulate both multidrug resistance‑associated protein 1 
and glutathione S‑transferase in docetaxel‑resistant prostate 
cancer cells (21). To the best of our knowledge, no study has 
focused on the anti‑migratory and anti‑invasive activity of 
6‑Gingerol in prostate cancer cells. In the present study, it was 
reported that 6‑Gingerol affected human androgen‑dependent 
(LNCaP) and castrate‑resistant (DU145 and PC3) prostate 
cancer cells by inducing autophagy and ferroptosis. The results 
also demonstrated that 6‑Gingerol significantly inhibited cell 
migration and invasion via the regulation of EMT‑related 
proteins in prostate cancer cells.

Figure 8. 6‑G triggers ferroptosis in LNCaP, PC3 and DU145 cells. (A) ROS levels in prostate cancer cells following 6‑G treatment with or without Fer‑1 
(5 µM) for 24 h. (B) Cytotoxicity of 6‑G (100 µM) with or without Fer‑1 (5 µM) for 24 and 48 h in prostate cancer cells. (C) GSH concentration in prostate 
cancer cells following 6‑G treatment with or without Fer‑1 (5 µM) for 24 h. (D) GPX4 protein expression levels following 6‑G (100 µM) treatments with or 
without Fer‑1 (5 µM) for 24 h in DU145 cells. *P<0.05 vs. control; #P<0.05 vs. 6‑G (100 µM). 6‑G, 6‑Gingerol; ROS, reactive oxygen species; Fer‑1, ferro‑
statin‑1; GSH, glutathione.
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EMT serves a significant role in cancer progression, 
whereby epithelial cells lose cell polarity and are transformed 
into cells with a mesenchymal phenotype, which exhibit 
increased migratory and invasive abilities in combination with 
reduced intracellular adhesion (33). EMT is also associated 
with cancer stem cell‑like properties and chemotherapy drug 
resistance (4). Therefore, a therapeutic agent that can effectively 
inhibit the EMT process may be a potential anti‑metastatic 
strategy. Cadherins, named for ‘calcium‑dependent adhesion’, 
serve a key role in adherens junctions (34). A loss in E‑cadherin 
expression can result in the loss of contact inhibition, and 
increase cell motility and invasion (35). Notably, N‑cadherin 
is expressed in mesenchymal cells and is overexpressed in 
cancer cells (36). Vimentin is an intermediate filament protein, 
which is a cytoskeletal component in mesenchymal cells (37). 
In the present study, it was demonstrated that E‑cadherin and 
ZO‑1 protein expression levels were significantly upregulated 
following 6‑Gingerol treatment in prostate cancer cells, 
whereas the mesenchymal markers, Vimentin and N‑cadherin 
were significantly decreased following 6‑Gingerol treat‑
ment in the PC3 and LNCaP cell lines. Our previous study 
reported that LPS can enhance cell migration, invasion and 
inflammation in prostate cancer cells (8). LPS is known to 
induce EMT in prostate and breast cancer cells, which results 
in metastasis (7,38). In the present study, the results demon‑
strated that LPS stimulated EMT progression by significantly 
increasing Vimentin and N‑cadherin and did not markedly 
attenuate E‑cadherin protein expression levels in DU145 
cells. Cell invasion and migration were significantly induced 
following LPS treatment, whereas 6‑Gingerol significantly 
suppressed cell migration and invasion, and EMT by reversing 

this pattern of EMT protein expression levels in LPS‑treated 
DU145 cells.

Autophagy is a form of cell death that can remove mis‑folded 
proteins and maintain cellular homeostasis under stressful 
conditions; notably, excess autophagy can also result in cell 
death (39). Therefore, the induction or inhibition of autophagy 
is considered to be a potential novel strategy for the treatment 
of cancer (39). In the present study, 6‑Gingerol significantly 
induced LC3B conversion and Beclin‑1 protein expression in 
prostate cancer cells. However, autophagy inhibitor LY294002 
increased 6‑Gingerol‑induced cell death in PC3 and LNCaP 
cells. Previous studies have reported that autophagy serves 
a cytoprotective role against apoptosis (39,40). These results 
revealed that autophagy induction of 6‑Gingerol might protect 
PC3 and LNCaP cells from cytotoxicity effects. However, cell 
viability was increased following 6‑Gingerol combined with 
LY294002 treatment in DU145 cells. Protective autophagy 
(PC3 and LNCaP) and autophagic cell death (DU145) were 
observed after 6‑Gingerol treatment in prostate cancer cells.

Recent studies have demonstrated that ferroptosis is impor‑
tant in the regulation of tumor cell proliferation, including in 
breast, lung and prostate cancer (41‑43). Therefore, ferroptosis 
may be a potential novel strategy and therapeutic target for 
the treatment of cancer. Ferroptosis results from the depletion 
of GSH, GPX4 inactivation and intracellular ROS accumula‑
tion (44). In the present study, 6‑Gingerol significantly decreased 
the levels of GPX4 and GSH, and significantly elevated ROS 
accumulation in PC3, DU145 and LNCaP cells. Previous 
studies have reported that 6‑Gingerol‑induced ROS produc‑
tion is accompanied by apoptosis in gastric cancer, human 
epidermoid carcinoma and myeloid leukemia cells (45‑47).

Figure 9. Diagram demonstrating the inhibition of cell proliferation and EMT in prostate cancer cells following 6‑Gingerol treatment. In the present study, 
6‑Gingerol induced autophagy and ferroptosis. 6‑Gingerol also reversed the EMT in LPS‑treated and LPS‑untreated prostate cancer cells. EMT, epithe‑
lial‑mesenchymal transition; LPS, lipopolysaccharide; TLR4, toll‑like receptor 4; NRF2, nuclear factor erythroid 2‑related factor 2; GSH, glutathione; GPX4, 
glutathione peroxidase 4; ZO‑1, zonula occludens‑1; HO‑1, heme oxygenase‑1; GS‑SG, oxidized glutathione.
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The results of the present study demonstrated that 
6‑Gingerol may have significantly induced ROS produc‑
tion via a ferroptosis mechanism in prostate cancer cells and 
that pretreatment with the ferroptosis inhibitor, ferrostatin‑1, 
significantly reversed 6‑Gingerol‑induced ferroptosis. NRF2 
is a transcription factor that regulates signaling pathways in 
response to oxidative stress. Inhibition or knockdown of the 
NRF2 gene has been shown to enhance ferroptosis that results 
in decreased GSH synthesis and GPX4 inhibition (48,49). 
The present study demonstrated that 6‑Gingerol (100 µM) 
significantly decreased NRF2 protein expression levels in 
prostate cancer cells. Taken together, these data suggested that 
6‑Gingerol may promote ferroptosis, which could be beneficial 
for the treatment of prostate cancer. Furthermore, these results 
indicated that ferroptosis potentially serves an important role 
in mediating cell death in DU145 cells treated with 6‑Gingerol.

6‑Gingerol is a flavonoid antioxidant that is enriched in 
fresh ginger. Numerous studies have reported that 6‑Gingerol 
has anticancer and anti‑inflammatory effects (20,50‑53). The 
present study provided new evidence that 6‑Gingerol may 
have potential anti‑metastatic and anticancer activities in 
prostate cancer cells (Fig. 9). 6‑Gingerol significantly regu‑
lated EMT‑related protein expression levels in LPS‑stimulated 
and LPS‑unstimulated prostate cancer cells. Furthermore, 
6‑Gingerol may trigger autophagy and ferroptosis, which 
suggested that both mechanisms may serve pivotal roles in regu‑
lating cell survival. In summary, 6‑Gingerol may be considered 
an important novel therapeutic agent for the prevention and 
treatment of prostate cancer as a result of its numerous phar‑
macological activities. Our study demonstrated that 6‑Gingerol 
can suppress migration, invasion and cell survival in CRPC, 
and androgen‑dependent prostate cancer cells. In vivo studies 
are needed to verify these results in the future.
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