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SUMMARY

This investigation showed that neonatal inflammation
increases susceptibility to inflammatory bowel disease by
epigenetically sensitizing the interleukin 18 promoter for

exacerbated overexpression when exposed to another
episode of inflammation later in life. Propranolol might
mitigate against the inflammatory bowel disease suscepti-
bility by reversing epigenetic modifications.

BACKGROUND & AIMS: Early life adversity is considered a risk
factor for the development of gastrointestinal diseases,
including inflammatory bowel disease. We hypothesized that
early life colonic inflammation causes susceptibility to aggra-
vated overexpression of interleukin (IL)1f6.

METHODS: We developed a 2-hit rat model in which neonatal
inflammation (NI) and adult inflammation (AI) were induced by
trinitrobenzene sulfonic acid.

RESULTS: Aggravated immune responses were observed in
NI + Al rats, including a sustained up-regulation of IL15 and other
cytokines. In parallel with exacerbated loss of inhibitor of kappa B
alpha expression, NI 4 Al rats showed hyperacetylation of histone
H4K12 and increased V-Rel Avian Reticuloendotheliosis Viral
Oncogene Homolog A binding on the /L1B promoter, accompanied

IL-18 activation

by high levels of norepinephrine/epinephrine. Propranolol, a -
blocker, markedly ameliorated the inflammatory response and
IL13 overexpression by mitigating against epigenetic modifica-
tions. Adrenalectomy abrogated NI-induced disease susceptibility
whereas yohimbine sensitized the epithelium for exacerbated
immune response. The macrophages of NI rats produced more
IL13 than controls after exposure to lipopolysaccharide (LPS),
suggesting hypersensitization; incubation with LPS plus Foradil
(Sigma, St. Louis, MO), a (2-agonist, induced a greater IL18
expression than LPS alone. Epinephrine and Foradil also exacer-
bated LPS-induced IL18 activation in human THP-1-derived
macrophages, by increasing acetylated H4K12, and these in-
creases were abrogated by propranolol.

CONCLUSIONS: NI sensitizes the colon epithelium for exacer-
bated IL18 activation by increasing stress hormones that
induce histone hyperacetylation, allowing greater access of
nuclear factor-«B to the IL1B promoter and rendering the host
susceptible to aggravated immune responses. Our findings
suggest that @ blockers have a therapeutic potential for
inflammatory bowel disease susceptibility and establish a
novel paradigm whereby NI induces epigenetic susceptibility to
inflammatory bowel disease. (Cell Mol Gastroenterol Hepatol
2018;6:65-78; https://doi.org/10.1016/jjcmgh.2018.02.014)

Keywords: Early Life Adversity; Inflammatory Bowel Disease;
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I nflammatory bowel disease (IBD) is a chronic,
progressive, relapsing, and immunologically mediated
disorder that often targets the young and remains a lifelong
affliction. Epidemiologic studies have suggested that the
incidence of IBD is increasing worldwide.'® Current models
of human IBD posit that the inflammatory pathogenesis
arises from, and is perpetuated by, interactions between
host genetic and immune factors, gastrointestinal microbes,
and environmental triggers.” Accumulating clinical evidence
has shown that early life infection is a risk factor for the
development of pediatric and adult IBD,” ' and gastroin-
testinal infection in adolescents and adults is a trigger for
its onset or exacerbation.’®>'” However, it is unclear how
these events cause an aggravated and prolonged immune
response, which is the hallmark of IBD.

Early postnatal life is a uniquely vulnerable period,
characterized by epigenetic plasticity, in which neonates
are susceptible to environmental influences that induce
durable-epigenetic changes that persist in the adult."®"? It
now is well recognized that adverse early life events have
an important role in perinatal programming and maturation
of the immune system that make the host susceptible to
complex diseases,?*%* including IBD.21%1® However, the
molecular mechanisms by which adverse early life experi-
ences predispose to IBD remain unknown.

A variety of cytokines, including interleukin (IL)1, have
been implicated in the pathogenesis of IBD.”” The IL1 family
of cytokines comprises 11 proteins (IL1F1-IL1F11) encoded
by 11 distinct genes in human beings and mice. IL1-type
cytokines are major mediators of innate immune reactions,
and blockade of IL1 by the IL1 receptor antagonist has shown
an essential role of IL1 in a number of human auto-
inflammatory diseases.”® IL18, a proinflammatory cytokine
with a wide range of systemic and local effects, has received
considerable attention as a potential mediator of inflamma-
tory cell infiltration and mucosal barrier disruption that ac-
companies gut inflammation.”” It can modulate the function
of both immune and nonimmune cells. IL14 also appears to
promote inflammation by stimulating the production of other
cytokines (eg, IL6) and chemokines (eg, C-X-C motif chemo-
kine ligand 1, C-X-C motif chemokine ligand 8, 1L8).?*""
Stimulation with IL18 promotes the activation and effector
functions of dendritic cells, macrophages, and neutrophils.31
It also induces neutrophilia and promotes neutrophil
migration.*” IL18 promotes T-cell activation and survival,**
and acts in concert with other proinflammatory cytokines
to promote the differentiation of CD4+ Th17 cells.>*%’
Because of the potent inflammatory activity of IL1g, tight
mechanisms are in place to regulate its secretion. However,
our understanding of IL1§ activation in the pathogenesis of
IBD is limited, and it is unclear whether early life adversity,
such as neonatal colonic inflammation, aggravates IL1gG
overexpression to exacerbate immune responses when sub-
jected to a second inflammatory insult later in life.

The present investigation sought to test the hypothesis
that neonatal colonic inflammation epigenetically aggra-
vates IL18 activation in rat colon epithelium when the host
is exposed to a second episode of inflammation as an adult.
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Our findings provide compelling evidence that neonatal
colonic inflammation triggers aberrant increases in norepi-
nephrine and epinephrine to enhance histone acetylation at
the IL1B gene promoter. Notably, the altered chromatin
status persists, facilitating nuclear factor-«xB (NF-«B)
recruitment and IL14 overexpression when subjected to an
additional insult in adult life.

Materials and Methods
Reagents

Propranolol hydrochloride was purchased from Tocris
Bioscience (Bristol, UK). Epinephrine, norepinephrine, lipo-
polysaccharide (LPS, from Escherichia coli 0111:B4, cat.
L4391), formoterol fumarate dihydrate (Foradil), phorbol
12-myristate 13-acetate (PMA), sodium butyrate, yohim-
bine, and 2,4,6-trinitrobenzene sulfonic acid (TNBS) were
from Sigma (St. Louis, MO).

Cell Culture

THP-1 cells were purchased from ATCC (Manassas, VA)
and maintained in RPMI 1640 medium with 2 mmol/L
L-glutamine, 10% fetal bovine serum, and 0.05 mmol/L
2-mercaptoethanol. To induce differentiation, THP-1 cells
seeded at 2 x 10 cells/mL were incubated with 100 nmol/L
PMA for 3 days.

Animals and Procedures

Male Sprague Dawley rat littermates were used in the
preclinical studies. Five-day-old and 6-week-old Sprague
Dawley rats were purchased from Harlan Laboratories
(Houston, TX). The work was approved by the Institutional
Animal Care and Use Committee at The University of Texas
Medical Branch at Galveston.

Rat littermates were divided randomly into 4 groups:
(1) vehicle treatment in both neonatal and adult-life stages
(controls, Ctl); (2) sham treatment as neonates followed by
an inflammatory insult as adults (adult inflammation [AI])
(Ctl + AD; (3) neonatal inflammatory insult (neonatal
inflammation [NI]) and then sham treatment as adults;
and (4) NI plus Al in combination (NI 4+ AI) (Figure 14).
Experimenters were blinded to treatment assignment. To
induce neonatal inflammation, TNBS (130 mg/kg, 2.86 mg for
a 22-g pup, dissolved in 200 uL saline containing 10%

Abbreviations used in this paper: Al, adult inflammation; ChIP, chro-
matin immunoprecipitation; Ctl, control; H4K12ac, acetylated HRK12;
HDAC, histone deacetylase; IBD, inflammatory bowel disease; I«B,
inhibitor of kappa B alpha; IL, interleukin; LPS, lipopolysaccharide;
MPO, myeloperoxidase; mRNA, messenger RNA; NF-«kB, nuclear
factor-«B; NI, neonatal inflammation; PCR, polymerase chain reaction;
PMA, phorbol 12-myristate 13-acetate; RelA, V-Rel Avian Retic-
uloendotheliosis Viral Oncogene Homolog A; RNAP I, RNA polymer-
ase ll; TNBS, 2,4,6-trinitrobenzene sulfonic acid; Tnf, tumor necrosis
factor.
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Figure 1. Neonatal colonic inflammation induces aggravated immune responses when subjected to a secondary insult.
(A) Schematic presentation of the animal protocol. NS, normal saline. (B) Body weight changes of 4 groups of rats after the
second TNBS treatment. (C) H&E staining of the colon, from muscularis to lumen. Scale bar: 100 um. (D) MPO activity in colon
mucosa/submucosa. (E) IL18 protein expression in the mucosa/submucosa dissected from the entire colon. 3-Actin served as
the loading control. Top: representative images of Western blots. Bottom: relative optical band density ratio between IL18 and
B-actin. Real-time reverse-transcription PCR was performed to detect /L7838 mRNA levels in the colon mucosa/submucosa
at (F) 1 week, (G) 2 weeks, or (H) 4 weeks after Al, as well as the mRNA accumulation of (/) /12, (J) Tnfa, (K) interferon v (Ifng),
and (L) /I70 at 7 days after Al. Values are presented as means + SEM (n = 12). Two-way analysis of variance. *P < .05 vs Cil.

#P < .05 vs Ctl + Al. rRNA, ribosomal RNA.

ethanol) was injected intraluminally 2 cm into the colon of
male pups on postnatal day 10.*® The animals were kept in a
head-down position while the anus was held closed for
1 minute to prevent leakage. Rats in the sham treatment
groups received 200 ul. of saline. Six to 8 weeks later,
animals were subjected to a secondary TNBS insult
(65 mg/kg, 13 mg for a 200-g rat), as Al Under light
anesthesia, 250 uL of TNBS in phosphate-buffered saline con-
taining 40% ethanol was injected intrarectally via a catheter,
advanced to 8 cm into the colon. Control rats were given 250 uL
of saline. One to 8 weeks after the second TNBS treatment,
animals were decapitated under anesthesia, blood samples
were collected for plasma preparation. For histologic exami-
nation, a full-thickness colon specimen located 3 cm above the
anal canal was obtained, fixed in 4% paraformaldehyde in
phosphate-buffered saline, embedded in paraffin, sectioned,
and stained with H&E. The mucosa/submucosa were dissected
from the full-length colon, snap-frozen in liquid nitrogen,
pulverized, and stored at -80°C for molecular studies.

We also induced Al with TNBS (130 mg/kg) in 6- to
8-week-old rats followed by a second Al (65 mg/kg TNBS)
6-8 weeks later (Al + Al), to determine whether a delayed

first-time Al also aggravates the immune response, compa-
rable with NI treatment.

For intervention experiments with propranolol, all
4 groups of rats were given propranolol hydrochloride
(2 mg/kg dissolved in saline) by daily intraperitoneal
injection for 7 days, starting right before the Al. Control
groups received normal saline. Animals were killed 3 hours
after the last injection.

To ablate epinephrine/norepinephrine, adrenalectomy
was performed in 6-week-old control and NI rats. Briefly, rats
were anesthetized with 2%-3% isoflurane. The left flank of
the rat (landmark the adrenals: caudal end of the ribs on left
lateral side of the animal) was shaved with electric clippers
and the fur was removed. A 1.5- to 2-cm dorsal incision was
made over the left adrenal. The adrenals, left and right, were
externalized from the abdominal cavity and a ligature was
placed below each gland. The adrenals were excised using
forceps, and the peritoneal cavity was closed with Vicryl
sutures (Ethicon, Somerville, NJ), and the skin with Prolene
sutures (Ethicon, San Lorenzo, Puerto Rico). The rats were
given normal saline in place of drinking water and
they were given 2 weeks to recover before the next
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Table 1.Primers Specific to the Human IL7B and Rat /l1b

Promoters Used in ChIP-Quantitative PCR Assays

Species Primer name Primer sequence
Human
IL1B-NF-«kB-F  5’-TGGCCCTTCATTGTACCCAT-3’
IL1B-NF-kB-R 5’-TCGTTGTGCAGTTGATGTCC-3’
IL1B-core-F 5’-CTCAGTTTATTAGTCCCCTCCCC-3’
IL1B-core-R 5’-CTCCCTCGCTGTTTTTATGGC-3’
Rat
I11b-NF-kB-F  5’-GCTCCCTCAGCTTAAGTCCA-3’
I11b-NF-kB-R  5’-CATTATTTCCCCCTGGACAA-3’
111b-core-F 5’-ATTCCCACCAAGCTTCTTCC-3’
111b-core-R 5-TGGAGAGGATCCCAGATGAG-3’

F, forward; R, reverse.

procedure. Sham surgery also was performed and served
as control. All 4 groups of animals then were treated with
TNBS (65 mg/kg) and killed 7 days later.

To increase endogenous levels of epinephrine/
norepinephrine in animals, we treated 10-day-old rat pups
with LPS-free yohimbine (2.5 mg/kg dissolved in saline)
by intraperitoneal injection twice weekly for 6 weeks. The
control group received saline. Four hours after the last
injection, blood was collected under light anesthesia from
the saphenous vein for the measurement of epinephrine
levels, and the rats then were treated with TNBS (65 mg/kg)
via intrarectal injection. All animals were euthanized 7 days
later for tissue collection.

Chromatin Immunoprecipitation

Chromatin immunoprecipitation (ChIP) assays were
performed as described previously.***° Antibodies for
immunoprecipitation were from the following sources:
V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog
A (RelA) (cat. 06-418; Millipore, Temecula, CA), histone H4
acetyl lysine 12 (H4K12ac, cat. 39165), histone deacetylase
3 (HDAC3; cat. 40968), and RNA polymerase II (cat. 39097;
Active Motif, Carlsbad, CA). Precipitated DNA, SYBR Green
Master Mix (Applied Biosystems, Foster City, CA), and
primers specific to the human ILIB or rat IL13 gene pro-
moter (Table 1) were used for real-time quantitative
polymerase chain reaction (PCR). Fold differences in
precipitated DNA were normalized against input.

Real-Time Reverse-Transcription PCR

Total RNA was extracted using the RNeasy Mini Kit (Qiagen,
Valencia, CA). Complementary DNA was synthesized using
SuperScript III First-Strand Synthesis System (Invitrogen,
Carlsbad, CA). IL1B and IL1( messenger RNA (mRNA) levels
were quantitated using TagMan-based quantitative PCR, as
reported.®® 18S ribosomal RNA served as an internal control.

Immunoblotting

Western blot was performed as described previ-
ously.*®*? Primary antibodies were as follows: anti-IL108
rabbit polyclonal (cat. sc-7884), anti-inhibitor of kappa B

Cellular and Molecular Gastroenterology and Hepatology Vol. 6, No. 1

alpha (IkBa) rabbit polyclonal (cat. sc-371, 1:200) (Santa
Cruz, Dallas, TX), and anti-@-actin mouse monoclonal anti-
body (cat. A5441, 1:5000; Sigma). All blots were scanned
using an Odyssey Infrared Imaging System (LI-COR Bio-
sciences, Lincoln, NE). Band density was determined using
LI-COR Image Studio Software.

Isolation of Macrophages by Fluorescence-
Activated Cell Sorting

Cell sorting was performed using a BD FACSAria IIU
instrument (Becton Dickinson, Franklin Lakes, NJ). Mucosa/
submucosa tissue from the entire colon of each rat was disso-
ciated in 10 mL Hanks’ balanced salt solution containing
0.1 mg/mL Liberase (Sigma) and 0.1 mg/mL DNase I, and
passed through 70-micron filters. The associated macrophages
were isolated by sorting CD163+ and propidium iodide-
negative cells (viable cells) from a 40% Percoll fractionation
of dissociated mucosal cells obtained from 4 groups of rats,
euthanized 7 days after Al. This time point provided the optimal
isolation of mature tissue macrophages, based on pilot studies
(not shown). Expression of CD163, a member of the scavenger
receptor cysteine-rich family class B, was restricted to cells of
the monocyte/macrophage lineage, and it is expressed in most
subpopulations of mature tissue macrophages.

Myeloperoxidase Assay

Frozen colon mucosa/submucosa was pulverized in
liquid nitrogen, homogenized in 20 mmol/L phosphate
buffer (pH 7.4), and centrifuged at 4°C for 10 minutes.
Pellets were sonicated in 50 mmol/L phosphate buffer
(pH 6.0) containing 0.5% hexadecyl trimethyl ammonium
bromide and centrifuged at 4°C for 5 minutes. The super-
natant (100 uL) was incubated with 16 mmol/L tetramethyl
benzidine in 50% ethanol, 0.3 mmol/L H,0,, and 8 mmol/L
sodium phosphate buffer (pH 5.4) for 3 minutes. Myelo-
peroxidase (MPO) activity was measured by reading the
absorbance at 655 nm in a microplate reader.*’

Norepinephrine and Epinephrine Assays

Plasma norepinephrine and epinephrine levels were
measured using the Noradrenaline Research Enzyme
Immunoassay kit and the Epinephrine Research Enzyme-
Linked Immunosorbent Assay kit (Rocky Mountain
Diagnostics, Colorado Springs, CO), respectively, according
to the manufacturer’s instructions.

Statistics

All data were expressed as means + SEM. We used 1-way
analysis of variance followed by the Tukey post hoc analysis
for comparison of more than 2 means, and the Student ¢ test
to compare between 2 means, and considered P < .05 to be
statistically significant.

Results
Neonatal Inflammation in the Colon Induces
Aggravated Immune Responses When Subjected

to a Second Inflammatory Insult as Adults
We reported that neonatal colonic inflammation acti-
vates «a;clb gene transcription by up-regulating histone
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Figure 2. First-time Al does not induce aggravated IL13 overexpression when the host is exposed to another episode of
Al later in life. Adult rats were subjected to an intrarectal injection of TNBS and received a second treatment 6 weeks later.
Sham controls received normal saline. Tissue was collected 7 days after the second treatment. (A) MPO activity, (B) IL16
mRNA levels, and (C) IL18 protein expression were quantified in the colon mucosa/submucosa. mRNA was quantified by
quantitative reverse-transcription PCR and protein levels were determined by Western blot and densitometry. Data are given
as means + SEM (n = 8). Analysis of variance. *P < .05 vs Ctl. rRNA, ribosomal RNA.

acetylation on the «;cIb promoter, causing motility
dysfunction in the colon.*® The latter work suggested that
neonatal inflammation could induce sustained epigenetic
changes, which might make the host susceptible to aggra-
vated immune responses when exposed to a secondary
challenge in adult life. To test this hypothesis, we performed
an experiment in vivo with 4 groups of rats (Figure 14).
Notably, TNBS-induced inflammation in adult life caused
significant loss of body weight in both the Ctl + Al and NI +
Al groups, when compared with control rats (n = 12)
(Figure 1B). There was no significant difference between NI
and Ctl rats. Importantly, NI + Al rats showed a significantly
greater decrease in body weight compared with Ctl + Al
rats (P < .05). H&E staining of the colons showed severe
local diffuse destruction, higher histologic scores, and
neutrophil infiltration in NI 4 Al vs Ctl 4 Al rats (Figure 1C).
A significantly greater increase in MPO activity was found in
the colon mucosa/submucosa of NI 4 Al rats vs Ctl + Al rats
(Figure 1D), NI rats, and Ctl rats (P < .01). Immunoblotting
showed a marked up-regulation of mature IL18 protein in
colon mucosa/submucosa of Ctl + Al and NI + Al rats,
compared with Ctl rats (Figure 1E), and this was signifi-
cantly greater for NI + Al vs Ctl + Al rats. There was no
significant difference between NI and Ctl rats.

To investigate transcriptional changes, IL13 mRNA levels
were examined by real-time reverse-transcription PCR in
the colon mucosa/submucosa of rats at 7, 14, and 28 days
after Al (Figure 1F-H). One week after Al, IL13 mRNA levels
were increased by 2.5- and 6-fold in Ctl + Al and NI + Al
rats, respectively, compared with Ctl rats (Figure 1F). The
increase in NI + Al rats was significantly greater than that in
Ctl + Al rats (P < .05). At 2 weeks, IL13 mRNA levels were
increased 1.5- and 2-fold in Ctl + Al and NI 4+ AI rats,
respectively, which was statistically significant compared
with Ctl rats (Figure 1G). IL16 mRNA levels were signifi-
cantly greater in NI + Al rats vs Ctl 4+ Al rats. At 4 weeks
(Figure 1H), IL18 mRNA accumulation remained signifi-
cantly increased for NI + Al rats compared with all other
treatment groups (P < .05). There were no significant

differences between Ctl + Al, NI, and Ctl rats by day 28.
The mRNA levels of 1112 (Figure 1I), tumor necrosis factor
o (Tnfa) (Figure 1J), and interferon vy (Figure 1K), but not
1110 (Figure 1L), also were increased significantly in NI + Al
rats vs all other treatment groups. These findings strongly
support our hypothesis that neonatal inflammation makes
the host vulnerable to aggravated immune responses when
subjected to a secondary insult in adult life.

We next sought to investigate whether NI was a pre-
requisite for the increased susceptibility later in life, or
could be substituted with a delayed first hit as an adult.
Thus, colonic inflammation was first induced with TNBS in
6- to 8-week-old adult rats (Al rats, saline served as con-
trol),*" followed by another dose of TNBS 6 weeks later
(AI + Al rats), and tissue was collected 7 days later. There
was no difference in MPO activities of colon mucosa/
submucosa for Al 4+ Al and Ctl + Al rats (n = 8) (Figure 24),
both being significantly greater than Ctl (P < .05). The second
Al also increased IL13 mRNA (Figure 2B) and protein
(Figure 2C) levels in colon mucosa/submucosa of Ctl + Al
and Al + Al rats, respectively, but no significant differences
were found between Ctl + Al and Al + Al rats. These findings
suggested that a first time Al in adulthood cannot substitute
for NI in exacerbating immune responses when the host is
exposed to an inflammatory challenge later in life.

Exacerbated IL13 Overexpression in the
Colon Mucosa/Submucosa of NI + Al Rats
Is Mediated by NF-«xB

It is well known that NF-«B activation plays an important
role in the production of proinflammatory cytokines, such as
IL16. To investigate whether NF-kB was activated in NI + Al
rats, we first assessed the levels of IkBa. The latter protein
inhibits NF-kB by masking nuclear localization signals on
NF-kB proteins, keeping them sequestered in an inactive
state in the cytoplasm,*” and thereby blocking the ability of
NF-«B transcription factors to tether to DNA.** We found
that IkBa protein levels were significantly attenuated in
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Figure 3. Neonatal inflammation epigenetically aggravates IL13 activation through NF-«kB. (A) IxBa protein expression in
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density ratio between IkBa and g-actin (n = 6). *P < .05 vs Ctl. *P < .05 vs Ctl + Al. (B) Schematic of the rat /L 78 promoter with
2 NF-«B binding motifs. Nucleotide numbering is relative to the transcription start site (TSS). (C) ChlP-quantitative PCR
analysis of RelA (p65) association with the NF-«kB binding sites of the rat IL73 promoter in the colon mucosa/submucosa.
(D) HDACS interaction with the NF-«kB binding motifs at the rat IL78 promoter. (E) Acetylation status of H4K12ac around the
NF-«B binding region of the rat IL78 promoter in colon mucosa/submucosa. (F) Acetylated histone H4K12 at the IL713 core
promoter region. (G) RNAP Il association with the IL78 core promoter in the colon mucosa/submucosa of 4 groups of rats.
Chromatin was immunoprecipitated with specific antibodies, as indicated. Precipitated chromatin was quantified by real-time
PCR using primers specific to the NF-«B binding region, or the core promoter of the rat IL183 gene, and normalized to inputs.
Means + SEM. N = 3 independent experiments. Two-way analysis of variance. *P < .05 vs Ctl. *P < .05 vs Ctl + Al.

colon mucosa/submucosa of both Ctl 4+ Al and NI + Al rats
(Figure 3A). More importantly, down-regulation of IkBa
protein expression was significantly greater in NI + Al vs
Ctl + Al rats (P < .05), suggesting an exacerbated activation
of NF-kB in NI + Al rats. To show a cause-and-effect rela-
tionship between NF-«kB activation and IL18 up-regulation,
we identified 2 NF-kB binding motifs (-419/-410 and
-303/-294) in the rat I[L1I3 promoter (Figure 3B).
ChIP-quantitative PCR assays with RelA (p65) antibody
showed low, constitutive RelA interactions on IL1( for the
Ctl and NI groups (Figure 3C). These interactions were
enhanced significantly in Ctl + Al and NI + Al groups,
compared with Ctl. Notably, RelA interactions with IL16

were increased significantly in NI + Al rats compared with
Ctl + AL There was no significant difference in RelA binding
between NI and Ctl groups (Figure 3C).

Chromatin can exist in open or closed states, depending
on the circumstances,** and chromatin remodeling is
required for the recruitment of NF-xB and subsequent
activation of target genes.””> We investigated the role of
HDAC3, a pivotal HDAC in the colonic epithelium,*® and
H4K12ac status near the NF-«B binding region of the IL18
promoter. In colonic mucosa/submucosa samples, HDAC3
binding was significantly repressed in NI + Al vs Ctl + Al
and control rats (Figure 3D). A significant repression also
was observed in Ctl 4+ Al vs NI and control rats. There was
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no significant difference between Ctl and NI groups. When
histone acetylation was examined for the NF-«B binding
region of IL1(, significantly greater H4K12ac levels were
detected in NI 4+ AI vs Ctl + Al NI, and Ctl groups
(Figure 3E). Levels of H4K12ac in NI + Al and Ctl + Al levels
were significantly higher than in Ctl and NI groups, whereas
Ctl and NI groups did not differ markedly from each other.
We concluded that a reciprocal relationship exists, involving
increased H4K12ac and decreased HDAC3 interactions in
the vicinity of the NF-«B binding region of IL13 in NI + Al vs
Ctl + Al rats.

We also examined H4K12ac and RNA polymerase II (RNAP
II) recruitment near the ILIG core promoter (-141/+42)
(Figure 3B). As with the NF-«B binding region (Figure 3E),
H4K12ac levels were increased significantly in the core pro-
moter of IL13 for NI 4+ Al rats vs Ctl + Al rats, NI rats, and
control rats (Figure 3F). This was interpreted as evidence of
increased chromatin relaxation, and greater accessibility of the
preinitiation complex, on the IL1( promoter. Core promoter
H4K12ac levels were significantly greater in Ctl + Al vs NI and
Ctl rats, but there was no significant difference between NI and
Ctl groups. Concomitantly, RNAP II association with the IL13
core promoter was significantly augmented in NI 4 Al vs Ctl +
Al NI, and Ctl groups (Figure 3G).

Stress Hormones Play an Important Role in the
Aggravated IL13 Activation in NI + Al Rats

Alterations in the brain-gut axis are considered a pillar of
the modern view of irritable bowel syndrome®” and IBD
pathogenesis.48 Stress responses represent a defense against
real or perceived threats, which stimulate the adrenal
medulla to increase plasma levels of norepinephrine and
epinephrine. When blood norepinephrine and epinephrine
levels were examined in the present investigation, we found
that norepinephrine (Figure 44) and epinephrine (Figure 4B)
levels were increased significantly in NI + Al rats compared
with Ctl + Al NI, and Ctl groups, respectively. There were also
increases of norepinephrine (n = 30; P = .068) and
epinephrine (P = .047) in NI vs Ctl rats (Figure 44 and B).
Thus, stress hormones were implicated only in the aggravated
immune responses of rats after NI + Al treatment.

Based on the findings for norepinephrine and epineph-
rine, we postulated that stress hormones mediate the
aggravated immune responses caused by NI + Al exposure.
To test this hypothesis, we treated all 4 groups (Ctl, Ctl + Al,
NI, and NI + AI) with propranolol hydrochloride (2 mg/kg/
day intraperitoneally), a nonselective ¢ blocker, for 7 days,
starting immediately before Al. Propranolol markedly
ameliorated TNBS-induced swelling, cecal enlargement, and
tissue damage in NI + AI rats (Figure 4C). Significant
improvement also was observed in Ctl + Al rats after the
treatment. The exacerbated up-regulation of IL13 mRNA in
the colon mucosa/submucosa of NI + Al rats was signifi-
cantly repressed by propranolol (Figure 4D). Thus, aggra-
vated immune responses in NI + Al rats appear to be
mediated, at least in part, by heightened levels of stress
hormones. Notably, IL18 mRNA levels in Ctl 4+ Al remained
unchanged by propranolol.
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To investigate whether blockade of adrenoceptors by
propranolol mitigates against NI-induced epigenetic modifi-
cations on the IL13 promoter, HDAC3 and H4K12ac levels
were assessed, as described earlier. We found that the
NI-reduced HDAC3 interactions near the NF-«B binding
region of ILI1f3 essentially were reversed by propranolol
treatment in NI 4 Al rats (Figure 4E). Less dramatic increases
in HDAC3 binding also were noted in Ctl, Ctl + Al, and NI
groups treated with propranolol. Accordingly, propranolol
reversed the histone hyperacetylation on IL13 in NI + Al rats
(Figure 4F). No significant changes were detected for
H4K12ac in Ctl + Al, NI, or Ctl rats given propranolol,
compared with the corresponding vehicle controls.

To verify that stress hormones mediate the disease
sensitization, we depleted norepinephrine and epinephrine
by adrenalectomy in Ctl and NI rats, and applied Al when
the animals were 8 weeks old. Ablation of norepinephrine
and epinephrine almost completely abrogated the significant
increases of MPO activity (Figure 54) and IL1( activation
(Figure 5B) by NI and had little effect on control rats, sug-
gesting that high constitutive levels of norepinephrine and
epinephrine are critical to the NI-induced disease suscepti-
bility. To further show that an increase of norepinephrine and
epinephrine increases inflammatory responses after Al, we
administered yohimbine, an «2 antagonist proven to increase
norepinephrine and epinephrine,*? for 6 weeks starting from
postnatal day 10. Serum levels of epinephrine were increased
significantly by yohimbine treatment in naive rats compared
with vehicle-treated rats (P < .05) (Figure 5C). Importantly,
yohimbine-treated animals showed significantly higher levels
of MPO activity (Figure 5D) and IL16 mRNA (Figure 5E) in the
colon mucosa/submucosa after the inflammatory insult with
TNBS, clearly showing sensitization in the colon.

Neonatal Inflammation Sensitizes Macrophages

in the Colon

Macrophages play a critical role in the initiation,
maintenance, and resolution of inflammation, and they
function in both innate immunity and adaptive immunity of
vertebrate animals.”® We hypothesized that neonatal
inflammation sensitizes macrophages in the colonic mucosa,
and makes them more sensitive to inflammatory stimuli. To
test this hypothesis, we isolated macrophages from the
colon mucosa/submucosa by fluorescence-activated cell
sorting, and analyzed IL18 mRNA expression by quantitative
reverse-transcription PCR. IL13 mRNA levels were signifi-
cantly greater in NI + Al rats vs Ctl 4 Al rats, NI rats, and Ctl
rats (Figure 6A4). No significant differences were noted for
IL18 mRNA in the other treatment groups. To corroborate
that NI induced macrophage sensitization in the colon,
we incubated the macrophages of Ctl or NI rats with either
100 ng/mL LPS or a combination of 100 ng/mL LPS and
1 wmol/L Foradil, a selective $2-adrenergic agonist, and
examined /L16 mRNA expression. Real-time PCR analyses
showed that LPS induced a significantly greater increase of
IL16 mRNA in the macrophages isolated from NI rats vs Ctl
rats (Figure 6B), strongly supporting our hypothesis that NI
sensitizes macrophages in the colon. Compared with LPS
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Figure 4. Nl induces exacerbated IL13 activation through stress hormones. (A and B) Plasma norepinephrine (NE) and

epinephrine (Epi) content in 4 groups of rats measured using enzyme immunoassay and enzyme-linked immunosorbent assay
kits, respectively (n = 30). *P < .05 vs Ctl. #P < .05 vs the other 3 groups. (C) Representative images of colons from 4 groups of
rats treated with vehicle or propranolol, a nonselective 3-blocker. Propranolol (2 mg/kg) was dissolved in saline and given to
the animals by daily intraperitoneal injection. Another 4 groups of animals received saline and served as controls. (D) IL13
mRNA levels in the colon mucosa/submucosa quantified by quantitative reverse-transcription PCR; 18S ribosomal RNA
(rBNA) served as an internal control. n = 8. (E) ChlP-quantitative PCR analysis of HDACS binding to the NF-«xB binding sites
at the rat IL18 promoter. (F) ChIP—quantitative PCR data of H4K12ac levels surrounding the NF-«B binding reglon of the
IL1ﬂ promoter. Data are shown as means + SEM. N = 3 independent experiments. Two-way analysis of variance. $p < .05,

& < .05, *P < .05.

alone, a combination of LPS and Foradil resulted in
significantly greater increases of IL13 in both NI and Ctl
rat macrophages, providing additional evidence that
aberrant levels of stress hormones exacerbate immune
responses. The IL13 mRNA levels were significantly greater
in NI vs Ctl rat macrophages after the treatment of
LPS/Foradil (Figure 6B).

LPS-Induced IL183 Activation Is Aggravated
by Epinephrine in Human THP-1-Derived
Macrophages

To further validate that stress hormones aggravate IL13
activation in inflammatory conditions, we used human
THP-1 cells, which differentiate into macrophages after

treatment with PMA. Incubation with LPS dramatically
increased IL1B mRNA expression in THP-1-derived macro-
phages (Figure 7A4), as expected. In the presence of LPS,
epinephrine (1 umol/L) further increased IL1B expression.
Surprisingly, norepinephrine (1 umol/L) had little effect
(data not shown). Propranolol treatment not only
completely abrogated the IL1B overexpression exacerbated
by epinephrine, but also significantly mitigated against
LPS-induced IL1B activation. Similar to epinephrine, Foradil
also further increased IL1B mRNA levels in the presence
of LPS, and the increase was reversed by propranolol
(Figure 7B).

We next incubated THP-1 macrophages with LPS,
epinephrine, or their combination in the presence or
absence of propranolol for 24 hours, and performed
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ChIP-quantitative PCR assays on the human IL1B promoter.
At the NF-xkB binding region, H4K12ac was increased
significantly in cells treated with LPS (Figure 7C), compared
with control cells. Addition of epinephrine plus LPS further
increased H4K12ac levels surrounding the NF-xB binding
motifs; this increase was mitigated significantly by pro-
pranolol. Consistently, we found that the association of RelA
with NF-kB binding motifs (-413/-404 and -297/-288) on
the human IL1B promoter was increased significantly in
LPS-treated cells vs control cells (Figure 7D). The NF-«B
binding was increased further in cells treated with LPS +

A

N W A

111b/18S rRNA

Ctl Ctl+Al NI  NI+Al

epinephrine, compared with LPS alone, and the exacerbated
increase was ameliorated by propranolol. These results
suggest that epinephrine aggravates LPS-induced ILIB
overexpression by enhancing histone acetylation, as in the
preclinical rat model.

Discussion

During the perinatal period, at a time of epigenetic
plasticity, environmental conditions can modulate gene
expression via epigenetic reprogramming.”’ It is believed
that adverse early life events can interfere with the perinatal
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Figure 6. Neonatal colonic inflammation sensitizes the macrophages in the rat colon. (A) /L7383 mRNA expression levels in
the macrophages isolated from the colon mucosa/submucosa of 4 groups of animals by fluorescence-activated cell sorting.
IL73 mRNA was quantified by quantitative reverse-transcription PCR (n = 6). *P < .05 vs the other 3 groups. (B) IL76 mRNA in
macrophages treated with LPS or the combination of LPS and Foradil, a 32-adrenergic agonist. Macrophages were isolated
from the colon mucosa/submucosa of Ctl and NI rats by fluorescence-activated cell sorting and incubated for 24 hours in
complete RPMI 1640 medium containing 100 ng/mL LPS, or 100 ng/mL LPS plus 1 umol/L Foradil. Means + SEM. N = 3
independent experiments. Two-way analysis of variance. *P < .05.
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Figure 7. Propranolol ameliorates the aggravated up-regulation of IL13 by epinephrine or Foradil in human THP-1 cells.
THP-1 cell-derived macrophages were treated with 0.1 ug/mL LPS, 1 umol/L Foradil (For), or their combination for 24 hours.
IL7B mRNA levels were evaluated by quantitative reverse-transcription PCR and normalized to 18S ribosomal RNA (rRNA).
ChlP-quantitative PCR were performed to quantify RelA binding and H4K12ac levels. (A) Propranolol (Prop) markedly
repressed the /L 78 mRNA up-regulation by LPS and Epi (n = 3). *P < .05 vs control, *P < .05 vs LPS, **P < .05 vs LPS + Epi.
(B) Exacerbated /L 1B up-regulation by Foradil was abrogated by propranolol (n = 3). *P < .05 vs control, *P < .05 vs LPS, P <
.05 vs LPS + For. (C) H4K12ac levels at the core promoter of the human /L7B promoter. (D) ChIP-quantitative PCR evaluation
of RelA association with the NF-«B binding sites on the human IL7B promoter. Means + SEM. N = 3 independent experiments.
Two-way analysis of variance. *P < .05 vs Ctl, *P < .05 vs LPS, **P < .05 vs LPS + Epi.

programming and maturation of the immune system,
predisposing the host to complex diseases”’** such as
IBD.2'%'® A major deficiency in the field involves our
understanding of how epigenetic regulation might predis-
pose the host to IBD, and whether this occurs preferen-
tially during the neonatal period. More specifically, it is
unclear whether and how neonatal colonic inflammation
epigenetically interferes with the activation of IL18, which
is highly overexpressed in patients with active IBD, and
animals with experimental colitis. Identification of new
IBD mechanisms, particularly molecules that mediate the
exacerbation of IL18 expression, will facilitate the devel-
opment of novel therapies and interventional strategies
against IBD and/or IBD susceptibility associated with
neonatal injury. In this report, a 2-hit chemical injury
model was used to investigate epigenetic mechanisms
linked to aggravated IL1B overexpression in colonic
epithelium of the rat. We found that neonatal inflamma-
tion, followed by an additional inflammatory insult later in
adult life, caused aberrant increases in colonic MPO
activity, and IL18 overexpression was linked to epigenetic
reprogramming of the ILI@ gene transcription, via

increased histone acetylation (H4K12ac) and RelA binding
coupled to loss of HDAC3.

Recent findings point to a critical window of early
postnatal development during which gene expression
may be persistently re-programed.’ Adversity in the early
stages of development can have a profound impact on
psychological and physical health.”® Indeed, human and
animal studies have provided converging evidence that
adverse early life experiences, such as prenatal exposure to
stress,”*™° nutritional deprivation,”” postnatal neglect and
abuse, and neonatal inflammation,>®°%°? can have a
significant long-term impact with implications for the
emergence of various complex diseases, including IBD. The
underlying mechanisms remain almost as much a mystery
today as they were a century ago.”® It is understandable
that early life adversity might cause a myriad of transient
alterations. However, some durable epigenetic changes
have been identified, which may underlie enduring physio-
logical, neurologic, or pathologic outcomes. DNA methyl-
ation and histone modifications have been examined
after certain early life experiences, with changes noted in
several key genes involved in the regulation of the

58-60
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hypothalamic-pituitary-adrenal axis.”*"®> A key question

that remains unanswered is what mediates those epigenetic
changes.

We found that circulating levels of both norepinephrine
and epinephrine were increased in NI rats, which is
consistent with previous observations,®>°® and there was a
greater increase in NI + Al rats. Norepinephrine is a cate-
cholamine with multiple physiological functions, including
acting as a hormone and a neurotransmitter. It is best
known for its role in the fight-or-flight stress response,
along with epinephrine, but there is accumulating evidence
for the modulation of inflammatory outcomes. In 2007,
Rommelfanger and Weinshenker®” reported that norepi-
nephrine suppresses the expression of proinflammatory
molecules, such as TNF-a and IL13, and increased the
expression of anti-inflammatory molecules, such as IkB, by
signaling through a1-, a2-, and (-adrenergic receptors on
astrocytes and glia. This regulates the expression of
inflammatory genes and nitric oxide, which are thought to
contribute to neurodegenerative diseases. Another study by
Takayanagi et al°® in 2012 found that norepinephrine
regulates intestinal mucosal immune responses. Norepi-
nephrine suppresses the production of interferon-y and
TNF-« in murine intestinal intraepithelial lymphocytes via
the 61 adrenoceptor. A major noradrenergic center of the
brain is the locus coeruleus, which signals to sympathetic
preganglionic cholinergic neurons in the spinal cord.®’
These sympathetic nerve endings release norepinephrine,
which has been found to have anti-inflammatory effects by
interacting with the adrenoceptors expressed on lympho-
cytes and macrophages. In this way, norepinephrine has
activity at both ends of the pathway: initiating signaling
from the locus coeruleus and interacting with immune
adrenoceptors to exert an immunomodulatory effect. In the
case of IBD, it is well known that various stressors can
trigger relapse, or exacerbate the inflammatory condition.”’
Our findings suggest that persistently increased levels of
norepinephrine and epinephrine in NI 4 Al rats sensitize
the IL1@ promoter in intestinal macrophages, resulting in
aggravated IL18 activation; significantly greater increases of
IL16 also were observed in NI rat macrophages incubated
with LPS or LPS plus Foradil, a $2-adrenergic agonist. This
notion is strongly supported by our findings showing that
propranolol, a nonselective § blocker, markedly abrogated
the aberrant overexpression of IL18 in NI + Al rats, and
ameliorated against the heightened inflammatory response
in the colon. Moreover, ablation of norepinephrine/
epinephrine by adrenalectomy abrogated NI-induced sus-
ceptibility, and increase of norepinephrine/epinephrine by
yohimbine sensitized the colon epithelium for exacerbated
immune responses. In addition, incubation of human
THP-1-derived macrophages with epinephrine or Foradil,
but not norepinephrine, aggravated LPS-induced IL18 up-
regulation; the aggravation was completely blocked by
propranolol. These results provide additional evidence that
epinephrine functions as a mediator of IL18 activation, and
B-blockers could be beneficial to IBD patients.

IL13 is produced by a wide range of cells and is a major
player in immune and inflammatory processes.”’ However,
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molecular mechanisms by which epinephrine mediates or
aggravates IL1( activation remain unclear. Epigenetic
sensitization of the IL18 promoter by neonatal inflammation
is virtually unknown. Our hypothesis was that epinephrine
modulates histone modifications to remodel the chromatin
state surrounding the IL16 promoter. ChIP-quantitative PCR
data showed that HDAC3 association with the correspond-
ing NF-«B binding region was repressed significantly in NI +
Al rats vs Ctl + Al rats, although H4K12ac was increased
markedly. Consistently, H4K12Ac and RNAP II binding at
the core promoter of IL13 also were increased significantly,
leading to heightened IL18 overexpression. Importantly,
these epigenetic alterations were reversed by propranolol.
Furthermore, LPS-induced histone acetylation on the human
IL1B promoter in THP-1-derived macrophages was aggra-
vated significantly by epinephrine, and this was alleviated
by propranolol. Our findings show that epinephrine sensi-
tizes the rat IL18 and human IL1B gene promoters via
histone hyperacetylation.

Two NF-«B binding motifs exist in both human ILIB
(-413/-404 and -297/-288) and rat IL13 promoters
(-419/-410 and -303/-294), implicating NF-kB as a key
regulator of IL18 expression in different species. We found
significant down-regulation of IkB« in the colonic epithelia
of NI + Al rats, and the underlying mechanisms are
currently under investigation. It is noteworthy, however,
that NF-«kB alone cannot tether to DNA without chromatin
relaxation, which is regulated by multiple factors generating
and maintaining a cell-specific chromatin landscape.
Although NF-«B is able to influence the chromatin state
through a variety of mechanisms, chromatin remodeling
remains a key determinant for DNA access and NF-xB
binding activity.”' Epigenetic modifications, especially
acetylation of the lysine residues on the N-terminal tails of
histone proteins, are essential to such chromatin dynamics.
The lysine residue at H4K12 can be acetylated but not
methylated, and is part of a backbone of histone modifica-
tions associated with active promoters.72 Thus, histone
hyperacetylation around the NF-«B binding motifs on the
IL1B/IL1G3 promoter becomes critical for NF-xB-mediated
IL18 activation. Indeed, RelA association with the IL1Q
promoter was significantly greater in the colon mucosa/
submucosa of NI + Al rats, compared with the other
3 groups, which strongly correlates with the histone acety-
lation levels. We also observed aggravated RelA binding to
the human IL1B promoter in THP-1-derived macrophages
treated with both LPS and epinephrine. These findings
provide strong evidence that adrenal signaling epigenetically
modulates IL16 expression. Although changes in HDAC3 and
H4K12ac were seen on the IL13 promoter in response to
propranolol, we cannot rule out mechanisms such as up-
regulation of miRNAs that target IL16 for down-regulation,
such as miR-146a, which plays a critical role in gut homeo-
stasis.”® Pyrosequencing showed only subtle changes in DNA
methylation on the IL183 promoter after NI (data not shown);
future studies might focus on long-range genomic in-
teractions impacted by altered chromatin states in IBD.”*

Importantly, rats given the 2-hit chemical insult protocol
only as adults did not recapitulate the findings for NI + Al,
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strongly implicating early epigenetic reprograming in the
neonate as a critical regulator of the exacerbated IL13
overexpression in the colon. Adult rats exposed to NI alone
were normal in appearance, and their levels of MPO activity,
IL13 expression, and H4K12 acetylation at the IL1( pro-
moter were not significantly different from controls. Thus,
individuals subjected to early life adversity might not be
permanently predisposed to increased susceptibility for
IBD. An increase of H4K12ac in NI + Al rats, based on
ChIP-quantitative PCR assays, suggests the need to examine
other epigenetic modifications that might prime the IL1B
promoter for greater NF-xB access, and heightened IL1(3
protein expression. Comprehensive ChIP sequencing
experiments are planned for the future to interrogate the
epigenetic landscapes for IL13, and other key inflammatory
regulators that might be important mediators of NI
responses and IBD susceptibility.

In summary, neonatal colonic inflammation, but not acute
adult inflammation, aggravates the expression of stress
hormones, particularly epinephrine, to induce histone hyper-
acetylation and allow greater access of NF-kB to the IL13
promoter, resulting in IL18 overexpression in the colonic
epithelium. By doing so, NI renders the rat susceptible to an
aggravated immune response, a hallmark of IBD, when they are
exposed to an additional inflammation later in life. Propranolol
ameliorated histone hyperacetylation and the exacerbated
IL18 overexpression induced by NI. Thus, in some patients,
IBD susceptibility might be circumvented via a precision
medicine approach, using 8-blockers and possibly HDAC or
histone acetyltransferase modulators’®’® to target critical
points in disease pathogenesis.
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