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Sepsis is a clinical syndrome that resulting from a dysregulated inflammatory response to
infection that leads to organ dysfunction. The dysregulated inflammatory response transitions
from a hyper-inflammatory phase to a hypo-inflammatory or immunosuppressive phase.
Currently, no phase-specific molecular-based therapies are available for monitoring the
complex immune response and treating sepsis due to individual variations in the timing and
overlap of the dysregulated immune response in most patients. Glucocorticoid-induced
leucine zipper (GILZ), is broadly present in multiple tissues and circumvent glucocorticoid
resistance (GCR) or unwanted side effects. Recently, the characteristics of GILZ
downregulation during acute hyperinflammation and GILZ upregulation during the
immunosuppressive phase in various inflammatory diseases have been well documented,
and the protective effects of GILZ have gained attention in the field of sepsis. However,
whether GILZ could be a promising candidate biomarker for monitoring and treating septic
patients remains unknown. Here, we discuss the effect of GILZ in sepsis and sepsis-
induced immunosuppression.

Keywords: sepsis, glucocorticoid-induced leucine zipper, glucocorticoids, sepsis-induced immunosuppression,
anti-inflammatory
INTRODUCTION

Sepsis is a complex disease that causes life-threatening organ dysfunction due to uncontrolled
infection (1). The global burden of sepsis is estimated to be 30 million patient episodes, with a
mortality rate approaching 30%–50% annually. Notably, most data are derived from the developed
countries, and the true global burden of sepsis is much greater than suggested by these figures (2, 3).
The World Health Organization (WHO) rendered sepsis a global health priority in 2017 to improve
prevention, diagnosis, and management. Concomitant with early hemodynamic and respiratory
support and appropriate antibiotic administration, corticosteroids have been widely used for the
management of sepsis as adjuvant therapy to control the immune response to invading pathogens.

Glucocorticoids (GCs) constitute are a class of corticosteroids widely used clinically as anti-
inflammatory and anti-shock drugs. The therapeutic glucocorticoids include hydrocortisone,
prednisolone and dexamethasone. Several studies and meta-analyses have indicated that
org December 2020 | Volume 11 | Article 6066491
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low-dose hydrocortisone reduced mortality in patients with
septic shock in the intensive care unit (ICU). However, the
recent adjunctive corticosteroid treatment in critically ill
patients with septic shock (ADRENAL) trial did not show a
significantly reduced risk of mortality (4). Mortality is likely
associated with the timing of treatment and multiple side effects
due to the wide spectrum of effects induced by glucocorticoids
(GCs) in addition to the complicated immunopathology of sepsis
(5). GCs bind the GC receptor (GR), which belongs to the
nuclear receptor superfamily of transcription factors to exert
their broad physiological and therapeutic effects.

Glucocorticoid-induced leucine zipper (GILZ or TSC22D3),
which is a GC-inducible molecule, has emerged as a GCmediator
due to its anti-inflammatory effects and theoretically lacks the
side effects of GCs (6). Recently, the potential effect of GILZ in
sepsis has gained attention, and GILZ has been recognized as a
more promising therapy for polymicrobial sepsis than GCs.
Hence, notably, that GILZ may be a checkpoint or even a
biomarker of innovative therapies for sepsis-mediated immune
responses and is regarded as an actionable target. Here, we
review the specific role of GILZ in sepsis.
IMMUNOPATHOLOGY OF SEPSIS

Sepsis induces a complex immune response and this excessive
pro-inflammatory response easily elicits the dysregulation of
signaling pathways, resulting in tissue damage and organ
dysfunction, and induces an immunosuppressive environment,
which could increase susceptibility to secondary infections
associated with poor outcomes and subsequent mortality (7),
although immunosuppressive responses occur simultaneously
upon the initiation of innate immune response (8–10).

Increasing evidence suggests that immune cell apoptosis,
autophagy, broad metabolic defects, endotoxin tolerance, T cell
exhaustion and epigenetic regulation are all contributors, and
aerobic glycolysis is crucial for maintaining the function of the
immune system (11). For instance, immune cells, including
monocytes and T cells, undergo metabolic reprogramming and
shift from oxidative phosphorylation (OXPHOS) to aerobic
glycolysis when the host is infected (11). Both glycolysis and
oxidative metabolism are apparently defective in leukocytes during
sepsis-induced immunosuppression. The phosphorylation of
extracellular signal regulated kinase (ERK) promotes B-cell
death in sepsis (12). The delayed state of neutrophil apoptosis is
the most significant change in innate immunity and contributes to
the deficits in of bacterial eradication and ongoing continuous
dysfunction (13). In addition, a deficit in the capacity to activate
nuclear factor-kB (NF-kB) or deacetylation of p65 is closely
related to the macrophage reprogramming (14, 15) and sepsis-
induced immunosuppression (16).

Identifying treatment and diagnosis guidelines is essential for
survival during sepsis. A rich profile of transcriptional shifts occurs
in leukocytes within a few hours of exposure to endotoxins (17).
Patients withmultiple traumas exhibit an immunosuppressed state
with large quantities of danger-associated molecular patterns
Frontiers in Immunology | www.frontiersin.org 2
shortly after trauma (18). Similarly, a reduction HLA-DR in
monocytes occurs early and is thought to be a marker of an
altered immune state (19). Multiple studies exploring sepsis-
associated survival also focused on this immunopathology. For
instance, studies have focused on antiapoptotic strategies that could
reduce mortality in septic mice (20), and immunomodulation with
thymosin a1, IFN-g, IL-7, GM-CSF, interferon-g and the immune
checkpoint inhibitor PD-1 in the clinic (11). However, the timing
of treatment and side effects associated with suppressing excessive
inflammation or enhancing host immunity have not been
fully elucidated. Consequently, more timely, suitable and
precise therapy is necessary to reduce cell and tissue damage
in sepsis.
SEPSIS AND GLUCOCORTICOIDS/
ENDOGENOUS GLUCOCORTICOIDS

In 1976, William Schumer’s study showed that septic shock
patients could benefit from glucocorticoid drugs, and thus, GCs
have attracted much interest in the treatment of sepsis (21).
Glucocorticoids represent a type of steroid hormones secreted by
the renicapsule that play key roles in the regulation of
reproduction, metabolism, and immunization by binding the
GR. To date, more than 37 randomized clinical trials have
investigated the treatment effect of steroids in sepsis. While
steroid administration reverses shock in some sepsis patients,
which patients could benefit from this treatment remains unclear
(22, 23). The European Society of Intensive Care Medicine and
the Society of Critical Care Medicine suggest that some benefit of
using corticosteroids in sepsis occurs only if shock is present
(24). Recently, the APPROCHSS trial involving 1241 patients
evaluated the effect of hydrocortisone plus fludrocortisone
therapy and revealed a lower all-cause 90-day mortality and
higher vasopressor-free days in the hydrocortisone plus
fludrocortisone group than the placebo group (25). However,
the ADRENAL trial, which included 3800 patients, showed that
septic patients who were treated with low-dose hydrocortisone
did not exhibit reductions in 90-day mortality compared with the
patients in the placebo group (4). Given the number of cases
included, the difference of these two large-scale trials is likely
associated with their broad physiological molecular mechanisms
of GCs and sepsis.

Actually, sepsis also involves in neuroendocrine mechanisms
(26). The neuroendocrine system is triggered once the body is
infected or traumatized to restore dynamic balance and fight
noxious stimulation, thus to promote tolerance (27). Cortisol,
which is a product of neuroendocrine signaling and a
glucocorticoid, is the executor of neuroendocrine responses.
The high level of plasma cortisol concentrations may be
associated with the severity of sepsis because cortisol is not
only an essential response for survival but also mediates
endotoxin tolerance (28, 29). Furthermore, the molecules that
mediates cortisol clearance including the corticosteroid-binding
globulin (CBG), cortisol carrier albumin, A-ring reductases, and
11b-hydroxysteroid dehydrogenase type 2(11b-HSD2), are
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reduced during in early phase of sepsis (30–32). Notably, when
was inhibited by cortisol generation with hypophysectomy, the
mortality of lipopolysaccharide (LPS)-induced septic shock was
significant increased (27). Thus, functioning endogenous GCs
are very important for the regulation of the immune mechanism
of sepsis.

However, inadequate cellular corticosteroid activity has been
described as critical illness-related corticosteroid insufficiency
(CIRCI) and manifests as insufficient glucocorticoid receptor
(GR)-mediated downregulation of proinflammatory transcription
factors (33). The following three major pathophysiological theories
associated with CIRCI: dysregulation of the hypothalamic–
pituitary–adrenal (HPA) axis, altered cortisol metabolism (33)
Frontiers in Immunology | www.frontiersin.org 3
and glucocorticoid resistance (GCR), which limits the activity of
endogenous GCs’ and GCs’ therapeutic effects (34) (Figure 1).

The GR is encoded by a single genetic locus, but alternative
splicing of the gene product generates the following four distinct
messenger RNAs (mRNAs): GRa, GRb, GRg, and GR-A. Each of
these intracytoplasmic GRa subtypes can bind GCs and, when in
the dimer form, can activate gene expression. The GRa protein
normally resides in the cytoplasm, and GRa isoforms directly
bind GC response elements (GREs) to induce the transcription of
multiple genes, including IL-10, IL-1 receptor antagonists, and
GILZ (35). GRa expression significantly decreases in patients
suffering sepsis, while GRb is upregulated and cannot bind GCs
in septic patients (36). GRb located in the nucleus could be
FIGURE 1 | Changes in glucocorticoid production, metabolism, and regulation in sepsis. ① The HPA axis is activated by stress (both physically and mentally), tissue
damage, and infection. The paraventricular nucleus of the hypothalamus secretes CRH, and the anterior pituitary gland secretes ACTH or corticotropin; then GC is
secreted by the adrenal cortex. Cytokines such as IL-1b, TNF-a, and IL-6 can be projected in the hypothalamus through neuroafferent projections. DAMPs and
PAMPs can also directly stimulate adrenocortical cells with toll receptors (TLR), leading to the synthesis of ACTH dependent cortisol. Circulating inflammatory
mediators break the brain barrier and act on the hypothalamus. GC exerts negative feedback on both CRH and ACTH production when GC exceeds the threshold.
② Then 5% GC that is free and activated binds the GR and enters the nucleus to influence gene expression. The inactive GC could be reactivated by 11b-HSD1. GR
binds promoters to promote metabolic genes and anti-inflammation genes. Additionally, GR binds negative GRE elements (nGRE) on DNA or some transcription
factors (TF) to inhibit the expression of target genes. ③75% GC bound to CBG is transported to various tissue. During sepsis, the host protein production is reduced
and the CBG in the inflammatory site is cleaved by neutrophil elastases. Cortisol is cleared mainly through A-ring reductases in the liver and through 11b-HSD2 in the
kidneys. These enzymes are limited in sepsis resulting in reduced clearance of GC. PAMPs: pathogen-associated molecular patterns; DAMPs: damage-associated
molecular patterns; HPA: hypothalamic–pituitary–adrenal axis; CRH: corticotropin-releasing hormone; ACTH: adrenocorticotropic hormone; CBG: corticosteroid-
binding globulin; 11b-HSD2: 11b-hydroxysteroid dehydrogenase type 2; 11b-HSD1: 11b-hydroxysteroid dehydrogenase type 1.
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induced by several proinflammatory cytokines, such as IL-2,
IL-4, IL-17A, IL-17F, IL-23, and TNF-a (37, 38),and is thought
to be a negative regulator of GC activity. The overexpression of
GRb inhibits GRa-mediated gene transcription (39, 40). Thus,
clearly, high GRb levels seem to be associated with GCR in sepsis.

There are other forms of GRs, leading to different variants of
GR proteins in addition to GRa and GRb. GR isoforms and
associated subtypes within organs may explain sepsis-induced
alterations in GC responses, revealing different clinical
responses in septic patients (41). Investigators have identified
27 splice variants of the GR gene and hundreds of single
nucleotide polymorphisms (SNPs), insertions and deletions,
which could lead to different variants of GR proteins (42).
Recently, ANP32E has been shown to correlate with GCR. This
protein has been linked to the exchange of H2A. z histone and
promotes GR-induced transcription (43). The mechanisms of
GC-mediated hypo-responsiveness are heterogeneous due to
the various cell types and cytokines involved, and further
studies of GR biology may be an important step in promoting
GC-based therapies. Hence, supplementing active GCs and
activating downstream target molecules are critical for this
treatment. Consequently, the identification of a potential
treatment that can replace GCs and mediate effective anti-
inflammatory effects and endotoxin tolerance without causing
Frontiers in Immunology | www.frontiersin.org 4
GC-associated adverse effects has become the main focus of
current studies.
ANTI-INFLAMMATORY/
IMMUNOSUPPRESSIVE EFFECTS OF
GLUCOCORTICOIDS AND GILZ

Glucocorticoids function at physiological and pharmacological
levels and are mediated by the GR. Following glucocorticoid
exposure, the GC/GR complex translocates into the nucleus and
directly binds to glucocorticoid response elements (GREs) to
promote downstream transcription factors, including GILZ (44).
In turn, GILZ binds NF-kB and prevents its nuclear
translocation to elicit anti-inflammatory effects. GILZ can also
directly bind c-Jun and c-Fos, which are two constituents of AP-
1, to inhibit their transcriptional activity and gene expression of
proinflammatory molecules (Figure 2). Additionally, GILZ
interacts directly with Ras and Raf, thereby inhibiting the
downstream activation of mitogen-activated protein kinase 1
(MAPK1), to mediate antiproliferative effects (45, 46).

GILZ, which is widely expressed in various human and mouse
organs and is most highly expressed in the lungs (47, 48), was
FIGURE 2 | Major signaling pathways of GILZ. GILZ can regulate cell activation, apoptosis, proliferation, and inflammation mainly through several signaling
pathways. GILZ directly binds p65 and p52 to inhibit NF-kB signaling to reduce the production of proinflammatory factors and macrophage phagocytosis. GILZ can
directly bind Ras and inhibit downstream pathways. (1) inhibits the PI3K–Akt pathway to regulate apoptosis and cell survival; GILZ inhibits FOXO3A-mediated
transcription, such as the pro-apoptotic protein, Bim. (2) The direct binding of GILZ to Ras and Raf leads to reduced activation of MEK, ERK, and MAPK, which
inhibits cell growth and proliferation. (3) GILZ can directly bind c-Fos and c-Jun to inhibit AP-1 signaling, which prevents cell growth, cell differentiation, and
inflammation. NF-kB, nuclear factor kB; AP-1, activator protein 1; FoxO3, forkhead box protein O3; ERK, extracellular signal-regulated kinase; MAPK, mitogen-
activated protein kinase; PI3K, phosphoinositide 3-kinase; AKT: Protein kinase B (PKB), also known as Akt.
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originally identified in 1997 (49). GILZ contains the following
three main regions: an N-terminal domain (1–75 amino acids)
with a tuberous sclerosis complex (TSC) domain, a leucine
zipper (76–97 amino acids) that largely mediates the
homodimerization of GILZ, and a proline-rich C-terminal
domain (98–137 amino acids) and at least three typical GREs (50)
at transcriptional initiation site. GILZ mediates the endogenous and
exogenous anti-inflammatory and immunosuppressive effects of
GCs in various types of cells, including lymphoid cells, in which
it may regulate the activation and apoptosis of cells, which
is an important pathophysiological characteristic of the
immunopathology of sepsis (6, 51).

GILZ inhibits T lymphocyte activation, apoptosis, and cell
proliferation either directly or through antigen-presenting cells
(APCs) (52, 53), and inhibit IL-2 withdrawal-induced apoptosis
by inhibiting Forkhead Box O3 (FoxO3) transcriptional activity
and the proapoptotic gene Bim (54). GILZ also preventsTh-1 and
promotes Th-2 differentiation by inhibiting NF-kB activation
and nuclear translocation. Transgenic GILZ-overexpressing
(GILZ-Tg) mice are less susceptible to Th-1-mediated
experimental dinitrobenzene sulfonic acid- (DNBS-) colitis and
spinal cord injury. Regulatory T Cells (Tregs) constitute are a
subpopulation of T cells that accumulates in the bone marrow
and can modulate the immune system, maintain tolerance to
self-antigens and control autoimmune disorders. GILZ
expression in bone marrow-derived mesenchymal stem cells
(BMSCs) and DCs exerts anti-inflammatory effects depending
on IL-10-producing Treg and activity. Additionally, GILZ
promotes Treg differentiation by activating TGF-b signaling,
which is a typical anti-inflammatory factor (55). However,
GILZ-KO mice did not have worse collagen-induced arthritis
(CIA) compared with WT mice, although the GILZ-KO mice
displayed higher T cell proliferation. Furthermore, replenishing
GILZ reduces inflammation but does not affect T cell
proliferation. Consequently, as a key modulator of Tregs, GILZ
plays an anti-inflammatory role in most experimental settings,
but the actual role of GILZ in T cells is complex and requires
more exploration.

GILZ exerts suppressive effects on B cells by inhibiting cell
activation, proliferation, differentiation, apoptosis and IgG
production (56). The accumulation of B cell precursors in the
bone marrow and peripheral lymphoid organs with elevated Bcl-
2 and NF-kB activity has been shown in GILZ-deficient mice
(57). The deletion of GILZ increased IFN-g and AP-1 activity in
B cells in a colitis mouse model (58). Furthermore, the above
effects were all reversed by the compensation of the GILZ
protein, demonstrating the potential therapeutic role of GILZ
in regulating B cell-dependent diseases (58).

GILZ not only plays an important role in adaptive immunity,
but also inhibits the activity of the innate immune system. In DCs,
GILZ and GCs are critical for balancing the anti-inflammatory
response and tolerance phenotypes (59, 60), which are closely
related to sepsis-induced immunosuppression. GILZ could
mediate the downregulation of MHC class II molecules,
costimulatory factors, and Treg cell generation (61). Some pro-
inflammatory factors including IL-1a, IL-1b, IL-6, and IL-23, were
Frontiers in Immunology | www.frontiersin.org 5
strongly increased in GILZ-KO bone marrow-derived DCs
(BMDCs) following upon TLR4 and TLR7 stimulation (62, 63).
GILZ prevents DCs from activating the antigen-specific T
lymphocyte response. GILZ-/- DCs increased IFN-g and IL-17
secretion in CD4+ T cells and CD8+ T cells (64, 65). Moreover,
GILZ could regulate antigen capture and cross-presentation by DCs
and limits antigen internalization in DCs from GILZ-/- mice (62,
66). Dexamethasone enhanced antigen capture by DCs (67, 68),
which does not different from the roles of GILZ. Additionally, GILZ
can inhibit DC maturation, which could increase the production of
IL-10 and promote the development of tolerant DC phenotypes
(65, 69).

The GILZ protein and mRNA levels were obviously
decreased in alveolar macrophages (AMs) and THP-1 cells
exposed to LPS (6, 46, 70). GILZ could decrease macrophage
sensitivity to LPS and proinflammatory cytokines expression
(71). GILZ deficiency enhances NF-kB pathway-mediated
macrophage phagocytosis. Consistent with this result,
GILZ-KO macrophages were observed to have increased NO
production (45). Interestingly, GC exerts the opposite effect to
promote macrophage phagocytosis (72).

GILZ also inhibits neutrophil migration to inflammatory sites
via annexin A1 (73) and alleviates the proinflammatory response
by inhibiting reactive oxygen species (ROS) generation and the
accumulation of leukocytes at the site of inflammation or
inducing neutrophil apoptosis (57, 74). Neutrophils derived
from GILZ-KO mice showed a stronger capacity to clear
pathogens in a candida albicans intraperitoneal infection
model. Although the role of GILZ is extensive, it has not been
deeply studied in sepsis patients. Furthermore, few studies
investigated about the immune response associated with GILZ
in myeloid-derived suppressor cells, which perform potent
immunosuppressive functions and act on both innate and
adaptive immunity.
GILZ IN SEPSIS

GILZ has been studied in septic patients and CLPmodels (Table 1).
During the hyperinflammatory stage of sepsis, GILZ regulation
is contrary to inflammatory release. GILZ mRNA was reduced
by 50% in peripheral polymorphonuclear cells from critically
ill patients (75, 80). In an experimental model of CLP, the
GILZ expression level was also downregulated in both blood
cells and the liver after two hours of the CLP procedure (75).
Human alveolar macrophages (AMs) were treated with LPS,
upon TLR4 activation, both the mRNA and protein levels of
GILZ rapidly decreased, while the TNF and IL-6 mRNA levels
increased (70, 77).

The inbred mouse strain SPRET/Ei has been shown to exhibit
marked resistance to LPS that depending at least partially on the
GR levels and GILZ mRNA was higher than that in C57BL/6
mice (78, 81). In addition, the TAT-GILZ fusion protein, which
is a synthetic fusion construct containing the TAT peptide
followed by the GILZ cDNA sequence from C57BL/6 and
SPRET/Ei, has been shown to reduce mortality [58]. The
December 2020 | Volume 11 | Article 606649

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


He et al. Role of GILZ in Sepsis
recombinant GILZ protein was first demonstrated to attenuate
colon inflammation in DNBS-induced colitis in 2009 (82). The
administration of the TAT-GILZ fusion protein could reduce
tissue edema and increase perfusion of the ischemic/reperfused
kidney in mice with acute kidney injury (AKI), and improve the
disruption of mitochondrial membrane potential and cell death
in vitro (83, 84). GILZ-Tg mice had a lower mortality and blood
bacterial load than GILZ-WT mice in a CLP model (75).
Peritoneal leukocytes in GILZ-Tg mice are more likely have a
higher phagocytic capacity, which may be mediated in
inflammatory resolution due to neutrophils apoptosis or M2
−type macrophages polarization (74, 85, 86) In addition, mice
with GILZ overexpress mononuclear macrophages (M/M)
exhibited an increased survival rate and reduced levels of
plasma inflammatory cytokines and blood bacterial load (76).
It is likely that overexpression of GILZ elicits an increase in
macrophages phagocytosis. A recent study found that the
management of short-chain alcohols protects mice from LPS
septic shock by increasing peripheral blood GILZ in a dose-
dependent manner and suppressing IkB phosphorylation, which
is a mechanisms that promoting immune tolerance (16, 79).

Although the upregulation of GILZ can alleviate inflammatory
storms and improve survival during the early stage of sepsis, but not
endotoxin tolerance (77), the downregulation of GILZ expression
independent of GR activation abrogated LPS tolerance and
increased responsiveness to LPS by enhancing ERK activity and
rescuing MAPK signals, which was independent of GR activation
(77). Meanwhile, Wang et al. (87) found that the elevated
level of GCs or GILZ is related to late stage inflammation in
sepsis, and artesunate can inhibit the upregulation of GILZ
mRNA and increase bacterial clearance of hydrocortisone-
induced immunosuppression peritoneal macrophages.

Immune phenotypes of infection, especially in sepsis, have
many similarities with those in cancer (88). GILZ is a crucial
immunosuppressive molecule mediated by GCs in the
immunosuppressive tumor environment. Recently, GILZ was
shown to be highly expressed in the immunosuppressive tumor
microenvironment, which was sufficient to abolish the
therapeutic control of tumors (89). DC-specific GILZ deletion
or GR antagonists could reverse these negative effects. An online
survival analysis suggested that the GILZ level was negatively
correlated with prognosis in lung cancer patients (90, 91). These
Frontiers in Immunology | www.frontiersin.org 6
seemingly conflicting data may indicate the cell-specific nature
and different stages of the regulation of GILZ in sepsis, which is
similar to GCs. As mentioned above, GILZ may play a pivotal
role in the immune tolerance of sepsis, although only a few
related researches. Of note is, GCs are responsible for
osteoporosis though osteoblast formation after long-term GC
treatment. In contrast, GILZ increases osteogenic differentiation
and inhibits adipocyte formation in mesenchymal stem cells
(MSCs) (92). Consistently, cell-specific GILZ overexpression in
osteoblasts induced high bone mass and increased bone
formation and the osteoblast number (93). Whether GILZ
exerts the opposite effect on other GC side effects remains
unclear, although the latest published data indicate that GILZ
is a critical mediator leading to statin-induced myopathy (90).

Collectively, the potential significance of GILZ in the
potential diagnosis, treatment, and prediction of sepsis is worth
discussing. To date, few studies investigated the mechanism and
therapeutic applications of GILZ in inflammatory diseases and
sepsis, and more studies are needed to determine its efficacy
and safety.
PROSPECTS OF GILZ IN SEPSIS

Sepsis and septic shock are both severe diseases that should be
treated and resuscitated immediately. Evidence increasingly
suggests that the early treatment of sepsis increases the chances
of survival, and no study has shown that treatment works better
when applied later (94). Although the immune system changes as
sepsis progresses, GILZ expression is stable during the late stage
of inflammation, especially during immunosuppression, which is
probably due to GILZ acting as a downstream molecule and
regulation by endogenous cortisol in vivo. Hence, GILZ might
become a potential monitoring molecule under the regulation
of endogenous glucocorticoids or guide treatment with
glucocorticoids. Currently, studies are exploring the key role of
GILZ in sepsis and whether it can be a critical marker, such as the
Rapid Recognition of Corticosteroid Resistant or Sensitive Sepsis
(RECORDS) trial (NCT04280497) (95).

According to the current study, GILZ overexpression mice or
using GILZ peptides all simulated the effect of early anti-
inflammatory agents in acute sepsis. Recombinant GILZ, which
TABLE 1 | A Summary of Preclinical Evidence that revealing the Involvement of glucocorticoid-induced leucine zipper (GILZ) in the pathogenesis of sepsis.

Reference Mouse Model of sepsis GILZ-dependent Effects Treatment

Ballegeer et al. (75) C57BL/6 and GILZ-Tg mice; CLP induced
septic peritonitis.

GILZ-Tg peritoneal leukocytes (CD45+) displayed a
significantly higher phagocytic capacity than GILZ-WT cells

N/A

Ellouze et al. (76) C57BL/6 and GILZ-Tg mice; CLP induced
septic peritonitis.

Monocytes and macrophages from GILZ-Tg mice showed
greater phagocytic capacity and faster bacterial clearance.

N/A

Hoppstadter et al. (77) C57BL/6J and myeloid-specific GILZ
knockout (KO) mice; LPS induced
endotoxin tolerance.

GILZ-deficient macrophages displayed increased TNF-a and
IL-1b expression due to the activation of ERK signaling
pathways.

N/A

Pinheiro et al. (78) C57BL/6 and SPRET/Ei mice; LPS-
induced lethal inflammation.

Macrophages transfected with TAT-GILZ, containing either the
C57BL/6 or SPRET/Ei sequence, showed reduced cytokine
production.

TAT-GILZ administration reduced
mortality and IL6 serum
concentrations

Hang et al. (79) C57BL/6 mice; LPS-induced septic shock. Suppression of NF-kB signaling pathways Short-Chain Alcohols Protect
Mice from LPS-induced Septic
Shock
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couples GILZ to membrane-penetrating sequences, is an attractive
prospect, although further studies are needed to demonstrate the
feasibility and safety of GILZ in clinical setting. Alternatively, the
targeted activation of GILZ expression using the CRISPR/dCas9
activator complex specifically inmacrophages could be used (96). It
should be noted that a peptide targeting the C-terminal region of
GILZ 115-137 aa in the mouse GILZ sequence has demonstrated a
potential therapeutic effect in experimental autoimmune
encephalitis (EAE) (97), which suggesting that diverse regions of
GILZ can bind different partner proteins. It may be necessary to
further determine the optional GILZ peptide that binds
specific targets.
SUMMARY

Sepsis is a syndrome associated with an immune system
disorder in response to infection. Currently, the mechanism
underlying sepsis development is unclear, further limiting
treatment. Clinical studies have shown that the earlier sepsis is
resolved, the more likely the patient is to survive. GILZ, which is
downstream of the GR, has powerful anti-inflammatory effects
similar to GCs and might circumvent GCR in sepsis. Proof-
of-concept studies have shown that GILZ has significant
therapeut ic effects in CLP-induced sept ic models .
Additionally, cell-specific targeting of GILZ may circumvent
side effects, which could be of particular interest in sepsis models
or other experimental models. Cortisol is essential for
Frontiers in Immunology | www.frontiersin.org 7
inflammatory responses, and endogenous and exogenous GCs
induce GILZ to change dynamically. Detection of GILZ
expression over time can guide the use of GCs and evaluate
the timeline of sepsis, which is of great importance for the
treatment of sepsis. As a potential alternative treatment to
GCs, further research concerning the role of GILZ in sepsis
is needed to identify its powerful regulatory role and
molecular mechanisms.
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