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Abstract: Dehydration beyond 2% bodyweight loss should be monitored to reduce the risk of heat-
related injuries during exercise. However, assessments of hydration in athletic settings can be limited
in their accuracy and accessibility. In this study, we sought to develop a data-driven noninvasive
approach to measure hydration status, leveraging wearable sensors and normal orthostatic move-
ments. Twenty participants (10 males, 25.0 ± 6.6 years; 10 females, 27.8 ± 4.3 years) completed two
exercise sessions in a heated environment: one session was completed without fluid replacement.
Before and after exercise, participants performed 12 postural movements that varied in length (up
to 2 min). Logistic regression models were trained to estimate dehydration status given their heart
rate responses to these postural movements. The area under the receiver operating characteristic
curve (AUROC) was used to parameterize the model’s discriminative ability. Models achieved an
AUROC of 0.79 (IQR: 0.75, 0.91) when discriminating 2% bodyweight loss. The AUROC for the longer
supine-to-stand postural movements and shorter toe-touches were similar (0.89, IQR: 0.89, 1.00).
Shorter orthostatic tests achieved similar accuracy to clinical tests. The findings suggest that data
from wearable sensors can be used to accurately estimate mild dehydration in athletes. In practice,
this method may provide an additional measurement for early intervention of severe dehydration.

Keywords: dehydration; machine learning; dehydration; heart rate; exercise; orthostatic hypotension

1. Introduction

Exercise-induced dehydration is typically a result of insufficient replenishment of
fluids lost mainly to sweat. Dehydration of up to 2 to 3% of one’s body weight in athletic
settings is common for healthy individuals, especially when performing in the heat [1].
Dehydration can predispose individuals to a variety of heat illnesses, including heat stroke
and heat exhaustion [2–5]. Heat stroke for example, is the third leading cause of death in
high school athletes and is regularly reported among other occupations that encounter heat
stress [5].

To lower the potential risk of heat-related injuries, it is important to monitor hydration
status and rehydrate during exercise [6–8] (e.g., drinking to thirst [9–11] or planned drink-
ing programs to minimize bodyweight loss [6,7,10,12,13]. Laboratory-based approaches
for monitoring dehydration status (e.g., serum chemistry panels), while accurate, require
specialized equipment and can be difficult to administer during athletic activities due to
inadequate portability [10,14,15]. Multiple types of wearable sensors have been used to
estimate hydration status within research settings. For example, dehydration has been
accurately estimated using sensors that analyze different biomarkers of sweat secretion or
properties of the skin (e.g., temperature and impedance) that are correlated with hydration
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status [16–18]. Measuring changes in bodyweight is one of the most common means of
assessing hydration status, primarily due to its simplicity and low cost [10,15,19]. However,
in athletic settings, it is often difficult to accurately assess fluid loss without nude body-
weight measurements. Clothed bodyweight measurements may be rendered inaccurate
over time due to sweat captured in clothes and other parts of the body [10,20–22]. Other
confounders affecting bodyweight measurements include the time of day, respiratory water
loss, and substrate oxidation [22,23]. Therefore, to improve hydration assessments during
exercise, there is a need to develop complementary approaches to current field-based
bodyweight measurements [23].

There exists a potential opportunity to leverage the data that are already collected in
athletic contexts for estimating hydration status. Many professional and collegiate athletes
are equipped with wearable technologies in the field that inform training and performance;
examples of collegiate teams include Duke and University of Michigan Basketball. Devices
like the Catapult OptimEye (catapultsports.com) can continuously collect data such as heart
rate and position during games and practices [24–26]. The specific types of data and their
accessibility create a promising opportunity for developing a noninvasive, complementary
approach for assessing hydration status.

In this study, we explored a potential approach for using data from existing wearables
to detect early levels of dehydration. In particular, we explored wearable devices that
measured heart rate and postural orientation over an extended period of time. Using these
data, we leveraged the relationship between hydration and cardiovascular responses to
orthostatic changes for assessing hydration status: when an individual is dehydrated, heart
rate increases significantly as part of an overall compensatory response to a decreased
cardiovascular return due to orthostatic changes [27,28].

Previous work has investigated orthostatic movements to measure exercise-induced
dehydration. However, prior work only used summary statistics (e.g., peak heart rate
response) [29], considered the delayed effects of exercise-induced dehydration [30], or
focused on standard postural movements (e.g., supine-to-stand or sit-to-stand) [30,31],
leading to only modest results and a limited capacity for field applications. In a study by
Cheuvront et al. [29], the difference between the average heart response of the final 10 s
of 3 min of sitting and 1 min of standing provided fair discrimination of dehydration of
3% bodyweight loss. Owen et al. [30] aimed to estimate 2% bodyweight loss and achieved
moderate accuracy by measuring the heart rate change 1 min after standing from a supine
position. Though, participants in both studies performed the post-dehydration postural
tests the day following their exercise session, which raises further uncertainty as to how
such methods translate to a field application. In contrast, in this study, we leveraged the
longitudinal heart rate response, monitored hydration immediately after exercise, and
considered non-standard and shorter postural movements (e.g., toe-touches)—ultimately
with a goal to develop an approach for field applications. We hypothesized that we could
accurately detect exercise-induced dehydration using a combination of wearable technology
that currently exists in the field and a varied set of postural movements, especially those
more amenable to athletic environments (e.g., toe-touches).

2. Materials and Methods
2.1. Study Design and Setting

This study employed a controlled crossover design. The protocol was reviewed and
approved by the University of Michigan Institutional Review Board (HUM00011582). Each
participant provided written informed consent and the study was conducted in accordance
with the Declaration of Helsinki.

2.2. Study Population

Physically active volunteers (10 males, 25.0 ± 6.6 years; 10 females, 27.8 ± 4.3 years)
were recruited using the University of Michigan’s online recruitment tool
(https://umhealthresearch.org, accessed on 6 May 2019) from May 2019 to February 2020.

https://umhealthresearch.org
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Using the area under the receiver operating curve (AUROC), a sample size calculation
determined that 20 samples would be sufficient for detecting hydration status with a dis-
criminative performance of at least AUROC = 0.74 (α = 0.05, β = 0.2) [32]. Given a randomly
selected pair of positive and negative examples, the AUROC represents the probability of
ranking the positive example higher than the negative example. For reference, an AUROC
of 0.5 describes a model with discriminative performance no better than random chance,
whereas an AUROC of 1.0 represents perfect discrimination. Healthy volunteers were
screened for any history of cardiovascular, gastrointestinal, or musculoskeletal pathologies
prior to enrollment. Volunteers were included if they were between ages 18 and 45, had
a body mass index (BMI) below 30, and were not taking blood pressure or diuretic medi-
cation. Volunteers were screened for a minimum level of fitness and weekly activity; the
inclusion criteria required an estimated VO2 max rating above the 70th percentile for adults
of their age and sex [33]. We estimated VO2 based on a previously validated approach
that relies on self-reported BMI, Perceived Functional Ability (PFA), the Physical Activity
Rating Questionnaires (PAR-Q), and sex [34].

2.3. Study Interventions

Participants completed two experimental sessions scheduled 1–2 weeks apart within
in a laboratory setting. To ensure euhydration upon arrival, participants were instructed
to drink a prescribed amount of water before their session (7 mL/kg of bodyweight
4 h before the experiment, and 5 mL/kg of bodyweight 2 h before the experiment) [7].
Additionally, participants were instructed to fast by avoiding solid foods 2 h before the
session. Participants voided upon arrival and a urine strip was used to measure urine
specific gravity and verify hydration status. Nude bodyweight was then captured to the
nearest 50 g using a Seca 703 (Hamburg, Germany) scale. Participants were provided a set
of loose, moisture-wicking, athletic clothing.

During the first session, no fluids were provided during exercise. Using a Monark
928e (Vansbro, Sweden) cycle ergometer, participants warmed up for 5 min at 70 watts
and subsequently exercised in 15-min bouts (with ~1 min between bouts) inside an en-
closed, heated environment until they either (1) lost 2% of their initial nude bodyweight,
or (2) completed 90 min of total exercise. Changes to bodyweight were repeatedly mea-
sured after each 15-min bout to track the percentage of bodyweight lost due to exercise.
Participants toweled off and wore clothing during weight measurements until they lost
roughly 1% of bodyweight, after which nude bodyweight measurements were taken until
exercise ended. During the second session, participants exercised for the same number of
bouts, and losses in bodyweight were measured and replenished with a prescribed amount
of commercially available sports drink (Gatorade, Chicago, IL, USA). After drinking, par-
ticipants’ bodyweights were measured again to verify that they attained their original
bodyweights. Participants were asked to maintain a heart rate equivalent to 75% of their es-
timated maximum heart rate throughout exercise. Maximum heart rate for each participant
was estimated by subtracting their age from 220 [35]. The heated environment consisted of
a 6.5′ × 10′ walk-in greenhouse with a 1500-watt commercial feedback-controlled space
heater (Patron™, Cheektowaga, NY, USA) set to 86 ◦F.

Prior to and following the exercise portion of the study, participants performed a series
of five scripted postural movements (i.e., “pre-exercise” and “post-exercise” movements)
(Figure 1) outside of the heated environment. Each repetition of a postural movement
consisted of two distinct positions, and a transition between the two positions. In order,
they were:

• supine-to-stand test (2 min supine, 1 min standing; three repetitions),
• short supine-to-stand test (1 min supine, 1 min standing; one repetition),
• toe-touch stretch (2 min stretching, 1 min standing; two repetitions),
• short toe-touch stretch (30 s stretching, 30 s standing; three repetitions)
• “tired runner” pose (bending down with hands on knees, 30 s stretching, 30 s standing;

three repetitions)
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Figure 1. Scripted postural movements. Overall, 11 postural movements were performed before and after exercise
(2% dehydration) during the dehydrated sessions with a varying number of repetitions. For the hydrated sessions,
participants performed the postural movements following an equivalent amount of exercise needed to lose 2% bodyweight
during the respective dehydrated sessions. The timing of the full postural movement sequence and the number of repetitions
are shown in the top panel. The bottom panel shows the timing of the postural movements relative to the exercise component
of the protocol. After transitioning to a standing position and completing a repetition, participants sat for 1 min.

The supine-to-stand test was chosen because of its prominent use as a clinical tool
for grossly screening dehydration [36]. We included the canonical version of the test, as
well as a variation where we reduced the amount of time participants laid in the supine
position. Other postural tests (i.e., toe-touch and “tired runner” pose) were included as
they represented postures that are typical within an athletic setting.

For supine-to-stand movements, participants transitioned from a supine position to
an upright position. For toe-touches, participants began by standing upright and then
bent at the hip and reached for their toes. For the runner’s pose, participants leaned
forward and rested their hands on their knees (we did not specify a specific angle and
encouraged participants to assume a forward lean that felt natural). Between repetitions,
participants sat on a chair for 1 min to allow their heart rate to return to the level prior
to the postural movement. Afterwards, participants stood up and remained in the initial
standing position for a few seconds before performing the next postural test. Participants
completed the series of scripted postural movements in approximately 40 min. Throughout
the scripted postural movements, participants were instrumented with a chest strap heart
rate monitor (Polar H10, Polar, Kempele, Finland) to monitor heart rate and a wearable
inertial measurement unit (Catapult OptimEye S5, Catapult, Melbourne, Australia) to
measure postural orientation at 100 Hz.

2.4. Data Processing

We framed the hydration estimation task as a binary classification problem, where
an accurate model would map the heart rate response during a postural movement to
an estimate of the participant’s hydration status. Postural movements were labeled “de-
hydrated” if they were performed after exercise during the first session (no fluids). All
other postural movements were labeled “euhydrated” given that they were performed
either before exercise, or after an exercise session with fluid replenishment. To develop
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our model, we focused on the relative change in heart rate evoked by the transitions to
standing during the postural movements.

To compute relative change in heart rate, we started by smoothing the heart rate
signal using a moving average (4-s window), and then divided the heart rate signal into a
pre-transition response and a post-transition response. The transitions between postural
positions were automatically detected based on the velocity of the pitch of the trunk
during the postural movement. We then segmented the post-transition heart rate into three
segments of equal length (e.g., divide 30 s of standing into three 10-s segments). As seen in
Figure 2, the features used in our model were based on the difference between the average
heart rate within each post-transition segment and the average pre-transition heart rate
(i.e., average heart rate during 10 s prior to transition). This scheme effectively adjusted for
inter-individual variances in resting heart rate and captured orthostatic effects rather than
effects of exercise and recovery.

Figure 2. Feature extraction from a single postural movement. The heart rate response to the transition in the postural
movement was calculated using differences between the mean heart rate for each segment and the mean pre-transition
heart rate.

2.5. Model Training and Validation Scheme

To train and evaluate a model for assessing dehydration status based on extracted
features, we iteratively split the data into training and testing sets. In each iteration, we
reserved one participant’s postural movements for the test set, and the postural movements
of all other participants were used to train the model. Compared to a random split, this
approach estimated how the model would generalize to new participants. As postural
movements that were labeled “dehydrated” only occurred after bouts of exercise, we
focused our evaluation on post-exercise postural movements to ensure that the model was
learning the effect of dehydration rather than exercise. For completeness, we also consid-
ered evaluating on pre-exercise and post-exercise postural movements and stratifying the
analysis on male and female participants separately (see Supplementary Materials) [37,38].

To construct our model, we used L2 regularized logistic regression to learn a map-
ping from our computed features of heart rate to an estimate of hydration status. We
considered other non-linear classifiers for the task of detecting hydration status as well
but pursued the logistic regression model due to its superior cross-validation results,
ease of training due to minimal hyperparameters, and its simplicity and interpretability
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(Supplementary Materials). We selected model hyperparameters based on the training
data by maximizing the leave-one-out cross-validation AUROC [39].

Applied to each held-out participant, we evaluated the model’s ability to distinguish
between hydrated and dehydrated examples based on the AUROC. We reported the AU-
ROC averaged across participants, along with the interquartile range (IQR). To qualitatively
evaluate the AUROC of our model, we referred to the descriptors outlined by Obuchowski
et al. [40]. In addition to evaluating on all post-exercise postural movements, we evalu-
ated on subsets of postural movements (e.g., toe touches only). Finally, we explored the
importance of each feature by calculating Shapley values with respect to all post-exercise
postural movements, using AUROC as the value function [41]. We reported the average
and standard deviation of the Shapley values across all held-out participants. A larger
Shapley value indicates a more important feature. To visualize these different segments,
we computed and illustrated the heart rate responses for the post-exercise toe-touches
between the hydrated and dehydrated sessions. We averaged the heart rate measurements
at each sample (every 0.01 s) across all participants. Furthermore, we subtracted the av-
erage heart rate measured at the time of transition from the dehydrated and hydrated
signal. Consequently, the signals were aligned at the time of transition, which facilitated
fair comparisons between the post-transition responses. We specifically chose to present
the post-exercise toe-touches to show the potential of shorter postural movements.

3. Results
3.1. Participant Characteristics

Participants lost 2.0% ± 0.3% of their bodyweight following exercise without replen-
ishing fluids. Male participants weighed 75.4 ± 9.9 kg before exercise and 73.9 ± 9.7 kg
after exercise (dehydrated sessions); female participants weighed 63.8 ± 5.5 kg before exer-
cise and 62.5 ± 5.4 kg after exercise (dehydrated sessions). Self-reported PFA-1, PFA-2, and
PAR-Q are shown in Table 1. Using a published regression formula [34], the average VO2
max for males and females were 53.4 ± 2.11 and 46.6 ± 3.61 mL·kg−1·min−1, respectively.

Table 1. Characteristics for each participant.

ID Age [yrs.] Sex Height [cm] Initial BW,
DEH [kg]

Bodyweight
Lost [%]

Initial BW,
HYD [kg]

BMI
[kg·m−2] PFA [1, 2] PAR-Q VO2max

[ml·kg−1·min−1]

1 23 M 182 85.60 1.52 88.50 25.8 11, 9 9 51.7
2 25 M 195 98.10 2.14 98.40 25.3 11, 10 7 51.4
3 27 F 165 66.10 1.21 65.00 23.8 11, 9 7 51.9
4 27 M 172 66.40 1.58 66.30 22.9 12, 9 7 54.1
5 23 M 182 70.45 2.20 70.60 21.7 13, 11 8 57.3
6 19 M 163 70.85 1.98 70.50 26.6 11, 10 7 50.4
7 27 F 178 65.95 2.43 65.00 20.8 11, 10 7 48.1
8 25 M 165 76.50 2.09 76.15 25.5 11, 11 9 53.4
9 42 M 195 76.80 2.28 75.75 22.1 11, 11 8 55.5

10 24 F 175 75.80 2.31 75.65 24.4 10, 8 7 42.9
11 27 F 155 59.45 1.93 59.35 25.3 9, 9 7 42.2
12 23 F 167 66.50 2.03 67.50 24.2 11, 10 7 45.3
13 28 F 170 59.00 2.03 59.35 20.8 12, 12 8 51.0
14 38 F 160 58.55 2.04 57.60 22.7 9, 7 7 42.8
15 18 M 180 75.20 2.53 75.10 24.0 11, 9 7 51.8
16 30 F 170 59.95 1.83 59.25 20.4 9, 9 7 46.2
17 26 M 178 67.35 2.15 65.95 20.8 11, 9 7 54.4
18 22 M 163 66.75 1.95 68.25 24.9 12, 11 8 53.9
19 30 F 170 67.10 2.01 67.10 23.8 11, 9 7 44.9
20 24 F 170 59.70 2.09 59.80 19.6 11, 11 8 50.5

Abbreviations: BMI = Body Mass Index, BW = Nude Bodyweight, PFA-1 = Perceived Functional Ability First Rating (assesses ability to
run 1 mile), PFA-2 = Perceived Functional Ability Second Rating (assesses ability to run 3 miles), PAR-Q= Physical Activity Readiness
Questionnaire, DEH = Dehydrated Session, HYD = Hydrated Session.
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3.2. Model Performance

We selected a regularization strength of 1 for each model based on the leave-one-
out cross-validation performance. Our model achieved an average AUROC of 0.79 (IQR:
0.75, 0.91) when evaluating on post-exercise postural movements (Figure 3). Applied to
the 2-min post-exercise supine-to-stand movements for the full population, performance
improved (mean AUROC: 0.89, IQR: 0.89–1.0) (Table 2). Applied to the shorter 30 s toe-
touches, the model achieved similarly strong discriminative performance (mean AUROC:
0.89, IQR: 0.89–1.0). In comparison, performance decreased slightly for the 2-min toe-
touches (mean AUROC: 0.82, IQR: 0.81–1.0). For the 1-min supine-to-stand movement, the
model achieved a mean AUROC of 0.79 (IQR: 1.0–1.0). Lastly, the 30-s “tired runner’s” pose
achieved the lowest discriminative performance among the individual postural movements
(mean AUROC: 0.77, IQR: 0.67–1.0).

Figure 3. AUROC curve for the model when evaluating on post-exercise postural movements. The
results were averaged across all participants as the test set. The shaded portion represents the IQR of
the performance across the test participants.

Table 2. Distribution of classification performance when evaluating on specific postural movements
post-exercise.

Evaluated Postural Movements Mean AUROC (IQR)

All 0.79 (0.75, 0.91)
2-min Supine-to-Stand 0.89 (0.89, 1.00)
1-min Supine-to-Stand 0.79 (1.00, 1.00)

2-min Toe-Touch 0.82 (0.81, 1.00)
30-s Toe-Touch 0.89 (0.89, 1.00)

30-s Runner’s Pose 0.77 (0.67, 1.00)
Abbreviations: AUROC = Area Under Receiver-Operating-Curve, IQR = Interquartile Range.

3.3. Feature Importance

The Shapley values for the first, second, and third heart rate segments were 0.02 ± 0.05,
0.11 ± 0.07, and 0.15 ± 0.10, respectively. The heart rate responses during the first segment
of the post-transition were similar during the hydrated and dehydrated sessions (Figure 4).
The difference between the two heart rate responses was most pronounced during the
final segment.
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Figure 4. Average heart rate response to post-exercise toe-touches. The hydration session and
dehydration session heart rate responses are shown, averaged across all participants and post-
exercise trials. The vertical dashed line is halfway between the toe-touch and standing positions.
Standard error is shown for each signal.

4. Discussion

Our results demonstrate that mild dehydration of at least 2% body weight loss can
be detected noninvasively using readily available data from commercial wearables (i.e.,
heart rate and postural data), which is consistent with findings from prior laboratory-
based studies that found orthostatic changes to be sensitive to levels of exercise-induced
dehydration [29,30]. Moreover, accurate assessment did not necessarily require the longer
clinical-based supine-to-stand movement. Instead, postural movements common in athletic
settings, such as shorter toe-touches, could be used to detect mild dehydration.

At a level of 2% bodyweight loss, our model achieved between fair to high average
AUROC for all the postural movements. Notably, the canonical 2-min supine-to-stand
test and the 30-s toe-touches achieved the highest average AUROC (0.89). Although the
30-s “tired runner’s pose” had the lowest average AUROC (0.77, IQR: 0.67–1.00), the
performance would still be considered fair [40]. The model’s performance on the shorter
postural movements (i.e., toe-touches and “tired runner” pose) indicated that postural
changes with movements commonly performed in athletic settings have the potential
to be used for hydration assessments; these postural changes are likely to be seen when
individuals are maximizing their recovery between repeated bouts of activity (e.g., during
games/practices) [42]. The high average performance and tight inter-quartile ranges across
participants also demonstrated the robustness of our model. In fact, the upper bound of
the IQR for each postural test equaled 1.00, indicating a perfect classification for some
individuals. When classifying all 24 post-exercise postural tests for a participant, our
model achieved moderate performance (0.79, IQR: 0.75–0.91), demonstrating that data
from wearables could be used for reliable predictions of mild dehydration.

Few studies have quantified the discriminative ability of the clinical orthostatic test,
and even fewer studies have incorporated varied postural movements for estimating
hydration status [29,30]. Previous work exploring the relationship between postural
movements and post-transition heart rate responses have achieved only modest AUROCs.
At an average dehydration of 2% bodyweight loss, Owen et al. [30] reported an AUROC of
0.66 for their supine-to-stand assessments. However, their dehydration protocol accounted
for effects of exercise by assessing hydration two days after the exercise session. During
this two-day period, participants followed a fluid restriction protocol. As a result, their
participants reached a steady-state whereby orthostatic changes in heart rate may not
have been as useful for discriminating hydration status. In comparison, we calculated
relative changes in heart rate to address the immediate effects of exercise and obtained a
higher AUROC (0.89), while also exploring different postural movements that are more
commonly seen in athletic settings. Moreover, our assessment of hydration following
the end of exercise (especially in heated environments) may be more valuable for early
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interventions of mild dehydration. At 3% bodyweight loss minimum, Cheuvront et al. [29]
reported an AUROC of 0.67 using sit-to-stand movements and measurements of the
absolute difference in the peak heart rate responses. Although our study assessed a lower
percentage of bodyweight loss, our model still achieved a higher AUROC for different
postural movements (i.e., 0.89 for the 30-s toe-touches). Our improved values of AUROC
may be explained by our modified approach, which leveraged the longitudinal heart
rate response to extract useful information and estimate dehydration. Furthermore, we
tested immediately following exercise, which may have decreased the general variability
in heart rate [43]. Cheuvront et al. [29] have cited heart rate variability contributing to the
insensitivity of their approach. Ultimately, it was not possible to make direct comparisons
to these methods as we assessed hydration status immediately following exercise.

The heart rate response closer to the end of the postural tests (which was 1 min after
standing for supine-to-stand movements) influenced the model’s predictions more heavily,
as indicated by the Shapley values. For comparison, some studies measured the change in
participant heart rate 1 min after a supine-to-stand postural transition and similarly found
a significant effect of dehydration [30,31]. For example, Owen et al. [30] reported a change
of 26 ± 12 bpm when participants experienced 2% bodyweight loss, and 14 ± 8 bpm when
hydrated. In an ultramarathon setting, Holtzhausen and Noakes [31] reported the change
in heart rate 30–60 s after standing from supine (17± 8 bpm) to be significantly greater after
the race than before (7 ± 9 bpm) the race. However, their study participants had a greater
bodyweight loss percentage (4.6% ± 1.3%). The severe level of dehydration, intensity of
the exercise, and environmental factors may have factored into the differences in reported
values between the related studies. Overall, these studies’ findings are consistent with the
results of our feature importance analysis; the heart rate response closer to the end of the
postural tests provided the most useful information for classifying mild dehydration of 2%
bodyweight loss.

When evaluating on all postural movements, the model achieved random or worse
than random performance for two participants (9 and 17). We hypothesize that these
differences are due to moderate changes in baseline bodyweight between experimental
sessions (Table 1). Both subjects weighed more at the beginning of their dehydrated session
than their hydrated session by 1.40 kg and 1.05 kg, respectively. Given that they lost 1.75 kg
and 1.45 kg after exercise, their final post-exercise weight during the dehydrated sessions
would have been relatively close to their baseline weight during their hydrated sessions,
which may have led to similar orthostatic responses. Although we restricted fluid and food
intake prior to the experiment, daily mass variability may have factored into the differences
in baseline bodyweight. Our study did not account for participants’ daily mass variability,
which may have introduced some uncertainty to bodyweight measurements as a proxy for
hydration status. However, changes in daily mass have been estimated to be less than 1%
in active men [44].

Laboratory-based detection methods that typically involve samples of bodily fluid,
while accurate, are expensive and may be difficult to collect continuously in a fast-paced
athletic context [10,14,15,23]. In contrast, clothed bodyweight measurements provide one of
the quickest and most accessible assessments of hydration with minimal equipment in the
field (e.g., a scale situated on the sidelines). However, if nude bodyweight measurements
are not feasible, excess sweat in the clothing and on the athlete should be minimized to
obtain the most accurate and precise measurements [45]. In our laboratory-based study,
we used nude bodyweight measurements throughout a cycling exercise to train a model
and make predictions of dehydration. As such, our model learned how to weight features
based on accurate measurements of nude bodyweight, which improved the reliability
of the model predictions. Therefore, our method may potentially complement clothed
bodyweight measurements by leveraging increasingly available data from wearable sensors.
As recommended by Barley et al. [23], combining our approach and gross bodyweight
measurements may therefore lead to an increase in overall reliability. In a practical setting,
our method may inform athletes when they are approaching mild levels of dehydration
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and enable early interventions, such as taking additional informed measurements of
bodyweight, before potentially reaching severe levels of dehydration.

Similar to the capabilities of biometric sensors, our approach has the potential to
continuously gather samples and track hydration status over time, but our approach
requires an individual to make distinct postural movements. On the other hand, our
approach does not require specialized sensors. Other methods for estimating dehydration
including serum analysis (i.e., blood work), urinalysis, saliva analysis, thirst, and dilution
techniques [10,23] vary in cost, time-to-administer, accuracy, portability, and invasiveness.

Our study was not without limitations. First, cycling in a heated environment was
used to dehydrate participants; it is unclear how our results might generalize to other
methods of dehydration, especially passive approaches (e.g., heat exposure) [17,46,47].
Second, we relied on bodyweight to measure the level of dehydration. While blood sample
analysis may be more accurate it is more difficult to obtain. Third, we designed the study
such that the dehydrated session preceded the hydrated session in the case that, if partici-
pants dropped out after the first session, we would still have relevant data on dehydrated
individuals. As a result, this could have caused habituation to the protocol, particularly
for individuals with minimal cycling experience. However, we only included participants
above an estimated level of fitness with no history of cardiovascular disease (though fitness
was not directly measured). Fourth, postural movements were performed in the same order
each time. Thus, heart rate following exercise may have recovered substantially during
the later postural movements (e.g., “tired runner’s pose”). Additionally, participants sat
between repetitions, which may have affected heart rate responses due to the dynamic shift
in body fluids. Finally, fluids were replenished periodically throughout the experiment as
well, meaning that fluids administered near the end of the exercise session may not have
been fully absorbed by the time participants performed the postural tests.

We note that some of these limitations have been present for many past laboratory-
based dehydration studies. For example, in laboratory-based settings, ecologically valid
exercise conditions can be difficult to replicate, which raises some uncertainty when study-
ing the effect of hydration on physical performance [9,48]. Despite these limitations, our
study provided a meaningful step towards potentially automating noninvasive measure-
ments of dehydration, which may eventually improve hydration practices and health
monitoring. In addition to reducing the risk of heat-related injuries, proper hydration
may also maintain physical performance during activity [4,49–51]. In its current form, our
method may not be directly applicable to natural field settings. However, this work illus-
trated the efficacy of using increasingly readily available data from wearable sensors for
detecting hydration status, while also using shorter and more diverse postural movements
than previously considered.

5. Conclusions

Overall, our method produced reliable and accurate predictions of mild dehydration
(2% bodyweight loss) 30 s after a postural transition using wearable sensors to measure
heart rate and postural orientation. Moreover, the approach required minimal, noninvasive,
commonly used wearable sensors. In future implementations, such an approach would
complement existing bodyweight measurements, and potentially allow earlier interven-
tions of dehydration. Future work should incorporate more ecological exercise conditions
to validate the efficacy of such an approach in natural field settings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21134469/s1, Supplementary data S1: Evaluation of model on all postural movements,
stratified by participants’ sex, Table S1: Distribution of classification performance when evaluating on
specific postural movements, Figure S1: AUROC curve for the model evaluated for each evaluation
when including pre-exercise movements, Figure S2: Average heart rate response all toe-touches,
Table S2: Results stratified based on the sex of the held-out test individual.

https://www.mdpi.com/article/10.3390/s21134469/s1
https://www.mdpi.com/article/10.3390/s21134469/s1


Sensors 2021, 21, 4469 11 of 13

Author Contributions: F.K. and V.C.L. contributed equally to this work. Conceptualization, K.H.S.
and J.W.; methodology, F.K., K.H.S., J.W., A.F. and V.C.L.; software, F.K. and V.C.L.; validation, A.F.
and V.C.L.; formal analysis, F.K. and V.C.L.; investigation, A.F. and V.C.L.; resources, K.H.S. and J.W.;
data curation, F.K. and V.C.L.; writing—original draft preparation, F.K. and V.C.L.; writing—review
and editing, K.H.S., J.W. and A.F.; visualization, F.K. and V.C.L.; supervision, K.H.S. and J.W.; project
administration, K.H.S. and J.W.; funding acquisition, K.H.S. and J.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding. This study was financially supported by the
University of Michigan Exercise and Sports Science Initiative.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of the University of
Michigan (HUM00011582).

Informed Consent Statement: Informed consent was obtained from all participants involved in
the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to ongoing analysis.

Acknowledgments: We acknowledge Murat Kalayoglu and Michael Singer for their contributions to
conceptualizing an automated clinical test of orthostatic intolerance; Shruthi Vidyasagar and Jeffrey
Horowitz for their contributions to the study design; Safa Jabri for her assistance with illustrations;
and Caroline Soyars, Mizan Thomas, and Angel Bu for their contributions to data collection.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Galloway, S.D.R. Dehydration, rehydration, and exercise in the heat: Rehydration strategies for athletic competition. Can. J. Appl.

Physiol. 1999, 24, 188–200. [CrossRef] [PubMed]
2. Coris, E.E.; Ramirez, A.M.; Van Durme, D.J. Heat Illness in Athletes: The Dangerous Combination of Heat, Humidity and Exercise.

Sport Med. 2004, 34, 9–16. [CrossRef] [PubMed]
3. Bouchama, A.; Knochel, J.P. Heat stroke. N. Engl. J. Med. 2002, 346, 1978–1988. [CrossRef] [PubMed]
4. Howe, A.S.; Boden, B.P. Heat-related illness in athletes. Am. J. Sports Med. 2007, 35, 1384–1395. [CrossRef] [PubMed]
5. Lee-Chiong, T.L.; Stitt, J.T. Heatstroke and other heat-related illnesses: The maladies of summer. Postgrad. Med. 1995, 98, 26–36.

[CrossRef] [PubMed]
6. McDermott, B.P.; Anderson, S.A.; Armstrong, L.E.; Casa, D.J.; Cheuvront, S.N.; Cooper, L.; Larry Kenney, W.; O’Connor, F.G.;

Roberts, W.O. National athletic trainers’ association position statement: Fluid replacement for the physically active. J. Athl. Train.
2017, 52, 877–895. [CrossRef] [PubMed]

7. Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine
position stand. Exercise and fluid replacement. Med. Sci. Sport Exerc. 2007, 39, 377–390. [CrossRef]

8. Montain, S.J.; Coyle, E.F. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J. Appl.
Physiol. 1992, 73, 1340–1350. [CrossRef]

9. Cotter, J.D.; Thornton, S.N.; Lee, J.K.W.; Laursen, P.B. Are we being drowned in hydration advice? Thirsty for more? Extrem.
Physiol. Med. 2014, 3, 1–16. [CrossRef]

10. Armstrong, L.E. Hydration Assessment Techniques. Nutr. Rev. 2005, 63, S40–S54. [CrossRef]
11. Goulet, E.D.B.; Hoffman, M.D. Impact of Ad Libitum Versus Programmed Drinking on Endurance Performance: A Systematic

Review with Meta-Analysis. Sport Med. 2019, 49, 221–232. [CrossRef]
12. Kenefick, R.W. Drinking Strategies: Planned Drinking Versus Drinking to Thirst. Sport Med. 2018, 48, 31–37. [CrossRef]
13. Armstrong, L.E.; Johnson, E.C.; Bergeron, M.F. COUNTERVIEW: Is Drinking to Thirst Adequate to Appropriately Maintain

Hydration Status during Prolonged Endurance Exercise? No. Wilderness Environ. Med. 2016, 27, 195–198. [CrossRef]
14. Armstrong, L.E. Assessing Hydration Status: The Elusive Gold Standard. J. Am. Coll. Nutr. 2007, 26, 575S–584S. [CrossRef]
15. Cheuvront, S.N.; Sawka, M.N. Hydration Assessment of Athletes. Sport Sci. Exch. 2005, 18, 1–12.
16. Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully

integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [CrossRef]
17. Kabiri Ameri, S.; Ho, R.; Jang, H.; Tao, L.; Wang, Y.; Wang, L.; Schnyer, D.M.; Akinwande, D.; Lu, N. Graphene Electronic Tattoo

Sensors. ACS Nano 2017, 11, 7634–7641. [CrossRef]
18. Hoe, Y.Y.G.; Johari, B.H.; Ju, M.; Kim, S.; Vaidyanathan, K.; Kang, T.G. A microfluidic sensor for human hydration level monitoring.

In Proceedings of the 2011 Defense Science Research Conference and Expo (DSR), Singapore, 3–5 August 2011; pp. 1–4.
19. Harvey, G.; Meir, R.; Brooks, L.; Holloway, K. The use of body mass changes as a practical measure of dehydration in team sports.

J. Sci. Med. Sport 2008, 11, 600–603. [CrossRef]

http://doi.org/10.1139/h99-016
http://www.ncbi.nlm.nih.gov/pubmed/10198144
http://doi.org/10.2165/00007256-200434010-00002
http://www.ncbi.nlm.nih.gov/pubmed/14715036
http://doi.org/10.1056/NEJMra011089
http://www.ncbi.nlm.nih.gov/pubmed/12075060
http://doi.org/10.1177/0363546507305013
http://www.ncbi.nlm.nih.gov/pubmed/17609528
http://doi.org/10.1080/00325481.1995.11946015
http://www.ncbi.nlm.nih.gov/pubmed/29224478
http://doi.org/10.4085/1062-6050-52.9.02
http://www.ncbi.nlm.nih.gov/pubmed/28985128
http://doi.org/10.1249/mss.0b013e31802ca597
http://doi.org/10.1152/jappl.1992.73.4.1340
http://doi.org/10.1186/2046-7648-3-18
http://doi.org/10.1111/j.1753-4887.2005.tb00153.x
http://doi.org/10.1007/s40279-018-01051-z
http://doi.org/10.1007/s40279-017-0844-6
http://doi.org/10.1016/j.wem.2016.03.002
http://doi.org/10.1080/07315724.2007.10719661
http://doi.org/10.1038/nature16521
http://doi.org/10.1021/acsnano.7b02182
http://doi.org/10.1016/j.jsams.2007.05.012


Sensors 2021, 21, 4469 12 of 13

20. Manz, F.; Wentz, A. 24-h hydration status: Parameters, epidemiology and recommendations. Eur. J. Clin. Nutr. 2003, 57, S10–S18.
[CrossRef]

21. Belval, L.N.; Hosokawa, Y.; Casa, D.J.; Adams, W.M.; Armstrong, L.E.; Baker, L.B.; Burke, L.; Cheuvront, S.; Chiampas, G.;
González-Alonso, J.; et al. Practical Hydration Solutions for Sports. Nutrients 2019, 11, 1550. [CrossRef]

22. Maughan, R.J.; Shirreffs, S.M.; Leiper, J.B. Errors in the estimation of hydration status from changes in body mass. J. Sports Sci.
2007, 25, 797–804. [CrossRef] [PubMed]

23. Barley, O.R.; Chapman, D.W.; Abbiss, C.R. Reviewing the current methods of assessing hydration in athletes. J. Int. Soc. Sports
Nutr. 2020, 17, 1–13. [CrossRef] [PubMed]

24. Seshadri, D.R.; Drummond, C.; Craker, J.; Rowbottom, J.R.; Voos, J.E. Wearable Devices for Sports: New Integrated Technologies
Allow Coaches, Physicians, and Trainers to Better Understand the Physical Demands of Athletes in Real time. IEEE Pulse 2017, 8,
38–43. [CrossRef] [PubMed]

25. Li, R.T.; Kling, S.R.; Salata, M.J.; Cupp, S.A.; Sheehan, J.; Voos, J.E. Wearable Performance Devices in Sports Medicine. Sports
Health 2016, 8, 74–78. [CrossRef]

26. Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sport Med. 2014, 44, 139–147. [CrossRef]
27. Bradley, J.G.; Davis, K.A. Orthostatic Hypotension. Am. Fam. Physician 2003, 68, 2393–2398. [CrossRef]
28. Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Montani, J.P. Orthostatic intolerance in older persons: Etiology and counter-

measures. Front. Physiol. 2017, 8, 803. [CrossRef]
29. Cheuvront, S.N.; Ely, B.R.; Kenefick, R.W.; Buller, M.J.; Charkoudian, N.; Sawka, M.N. Hydration assessment using the

cardiovascular response to standing. Eur. J. Appl. Physiol. 2012, 112, 4081–4089. [CrossRef]
30. Owen, J.A.; Fortes, M.B.; Ur Rahman, S.; Jibani, M.; Walsh, N.P.; Oliver, S.J. Hydration marker diagnostic accuracy to identify

mild intracellular and extracellular dehydration. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 604–611. [CrossRef]
31. Holtzhausen, L.M.; Noakes, T.D. The prevalence and significance of post-exercise (postural) hypotension in ultramarathon

runners. Med. Sci. Sport Exerc. 1995, 27, 1595–1601. [CrossRef]
32. Turck, N.; Vutskits, L.; Sanchez-Pena, P.; Robin, X.; Hainard, A.; Gex-Fabry, M.; Fouda, C.; Bassem, H.; Mueller, M.; Lisacek, F.;

et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 8, 12–77.
33. Pescatello, L.S.; Arena, R.; Riebe, D.; Thompson, P.D. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Pescatello,

L.S., Arena, R., Riebe, D., Thompson, P.D., Eds.; Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2014; ISBN
9781609136055.

34. George, J.D.; Stone, W.J.; Burkett, L. Non-exercise VO2max estimation for physically active college students. Med. Sci. Sport Exerc.
1997, 29, 415–423. [CrossRef]

35. Fox, S.M.; Naughton, J.P.; Haskell, W.L. Physical activity and the prevention of coronary heart disease. Ann. Clin. Res. 1971, 3,
404–432. [CrossRef]

36. Tool 3F: Orthostatic Vital Sign Measurement. Available online: https://www.ahrq.gov/professionals/systems/hospital/
fallpxtoolkit/fallpxtk-tool3f.html (accessed on 22 July 2020).

37. Cheng, Y.C.; Vyas, A.; Hymen, E.; Perlmuter, L.C. Gender differences in orthostatic hypotension. Am. J. Med. Sci. 2011, 342,
221–225. [CrossRef]

38. Fu, Q.; Witkowski, S.; Okazaki, K.; Levine, B.D. Effects of gender and hypovolemia on sympathetic neural responses to orthostatic
stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, 109–116. [CrossRef]

39. Picard, R.R.; Cook, R.D. Cross-Validation of Regression Models. J. Am. Stat. Assoc. 1984, 79, 575–583. [CrossRef]
40. Obuchowski, N.A.; Lieber, M.L.; Wians, F.H. ROC curves in Clinical Chemistry: Uses, misuses, and possible solutions. Clin. Chem.

2004, 50, 1118–1125. [CrossRef]
41. Aas, K.; Jullum, M.; Løland, A. Explaining individual predictions when features are dependent: More accurate approximations to

Shapley values. Artif. Intell. 2021, 298, 103502. [CrossRef]
42. Michaelson, J.; Brilla, L.; Suprak, D.; McLaughlin, W.; Dahlquist, D. Effects of Two Different Recovery Postures during High-

Intensity Interval Training. Transl. J. Am. Coll. Sport Med. 2019, 4, 23–27. [CrossRef]
43. Carter, R.; Cheuvront, S.N.; Wray, D.W.; Kolka, M.A.; Stephenson, L.A.; Sawka, M.N. The influence of hydration status on heart

rate variability after exercise heat stress. J. Therm. Biol. 2005, 30, 495–502. [CrossRef]
44. Cheuvront, S.N.; Carter, R.; Montain, S.J.; Sawka, M.N. Daily body mass variability and stability in active men undergoing

exercise-heat stress. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 532–540. [CrossRef] [PubMed]
45. Oppliger, R.A.; Bartok, C. Hydration Testing of Athletes. Sport Med. 2002, 32, 959–971. [CrossRef] [PubMed]
46. Falcone, P.H.; Tai, C.; Carson, L.R.; Joy, J.M.; Mosman, M.M.; Straight, J.L.; Oury, S.L.; Mendez, C.; Loveridge, N.J.; Griffin, J.D.;

et al. Sport-specific reaction time after dehydration varies between sexes. J. Int. Soc. Sports Nutr. 2014, 11, P29. [CrossRef]
47. Greiwe, J.S.; Staffey, K.S.; Melrose, D.R.; Narve, M.D.; Knowlton, R.G. Effects of dehydration on isometric muscular strength and

endurance. Med. Sci. Sport Exerc. 1998, 30, 284–288. [CrossRef]
48. James, L.J.; Funnell, M.P.; James, R.M.; Mears, S.A. Does Hypohydration Really Impair Endurance Performance? Methodological

Considerations for Interpreting Hydration Research. Sport Med. 2019, 49, 103–114. [CrossRef]
49. Judelson, D.A.; Maresh, C.M.; Anderson, J.M.; Armstrong, L.E.; Casa, D.J.; Kraemer, W.J.; Volek, J.S. Hydration and muscular

performance: Does fluid balance affect strength, power and high-intensity endurance? Sport Med. 2007, 37, 907–921. [CrossRef]

http://doi.org/10.1038/sj.ejcn.1601896
http://doi.org/10.3390/nu11071550
http://doi.org/10.1080/02640410600875143
http://www.ncbi.nlm.nih.gov/pubmed/17454547
http://doi.org/10.1186/s12970-020-00381-6
http://www.ncbi.nlm.nih.gov/pubmed/33126891
http://doi.org/10.1109/MPUL.2016.2627240
http://www.ncbi.nlm.nih.gov/pubmed/28129141
http://doi.org/10.1177/1941738115616917
http://doi.org/10.1007/s40279-014-0253-z
http://doi.org/10.35420/jcohns.2019.30.2.157
http://doi.org/10.3389/fphys.2017.00803
http://doi.org/10.1007/s00421-012-2390-0
http://doi.org/10.1123/ijsnem.2019-0022
http://doi.org/10.1249/00005768-199512000-00003
http://doi.org/10.1097/00005768-199703000-00019
http://doi.org/10.1016/0091-7435(72)90079-5
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/fallpxtk-tool3f.html
https://www.ahrq.gov/professionals/systems/hospital/fallpxtoolkit/fallpxtk-tool3f.html
http://doi.org/10.1097/MAJ.0b013e318208752b
http://doi.org/10.1152/ajpregu.00013.2005
http://doi.org/10.1080/01621459.1984.10478083
http://doi.org/10.1373/clinchem.2004.031823
http://doi.org/10.1016/j.artint.2021.103502
http://doi.org/10.1249/TJX.0000000000000079
http://doi.org/10.1016/j.jtherbio.2005.05.006
http://doi.org/10.1123/ijsnem.14.5.532
http://www.ncbi.nlm.nih.gov/pubmed/15673099
http://doi.org/10.2165/00007256-200232150-00001
http://www.ncbi.nlm.nih.gov/pubmed/12457417
http://doi.org/10.1186/1550-2783-11-S1-P29
http://doi.org/10.1097/00005768-199802000-00017
http://doi.org/10.1007/s40279-019-01188-5
http://doi.org/10.2165/00007256-200737100-00006


Sensors 2021, 21, 4469 13 of 13

50. Goulet, E.D. Dehydration and endurance performance in competitive athletes. Nutr. Rev. 2012, 70, S132–S136. [CrossRef]
51. Murray, B. Hydration and Physical Performance. J. Am. Coll. Nutr. 2007, 26, 542S–548S. [CrossRef]

http://doi.org/10.1111/j.1753-4887.2012.00530.x
http://doi.org/10.1080/07315724.2007.10719656

	Introduction 
	Materials and Methods 
	Study Design and Setting 
	Study Population 
	Study Interventions 
	Data Processing 
	Model Training and Validation Scheme 

	Results 
	Participant Characteristics 
	Model Performance 
	Feature Importance 

	Discussion 
	Conclusions 
	References

