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Abstract
Human	gut	microbiome	dysbiosis	 has	been	associated	with	 the	onset	of	metabolic	
diseases	and	disorders.	However,	 the	critical	 factors	 leading	to	dysbiosis	are	poorly	
understood.	 In	this	study,	we	provide	increasing	evidence	of	the	association	of	diet	
type	 and	 body	mass	 index	 (BMI)	 and	 how	 they	 relatively	 influence	 the	 taxonomic	
structure	of	the	gut	microbiota	with	respect	to	the	causation	of	gut	microbiome	dys-
biosis.	The	study	included	randomly	selected	Alabama	residents	(n	=	81),	including	fe-
males	(n	=	45)	and	males	(n	=	36).	The	demographics	data	included	age	(33	±	13.3	years),	
height	(1.7	±	0.11	meters),	and	weight	(82.3	±	20.6	kg).	The	mean	BMI	was	28.3	±	7.01,	
equating	to	an	overweight	BMI	category.	A	cross-	sectional	case–control	design	en-
compassing	the	newly	recognized	effect	size	approach	to	bioinformatics	analysis	was	
used	to	analyze	data	from	donated	stool	samples	and	accompanying	nutrition	surveys.	
We	investigated	the	microbiome	variations	in	the	Bacteroidetes-Firmicutes	ratio	rela-
tive	to	BMI,	food	categories,	and	dietary	groups	at	stratified	abundance	percentages	
of	<20%,	20%,	30%,	40%,	50%,	60%,	and	≥70%.	We	further	investigated	variation	in	
the Firmicutes	and	Bacteroidetes	phyla	composition	(at	the	genus	and	species	level)	in	
relation	 to	BMI,	 food	 categories,	 and	dietary	 groups	 (Westernized	or	 healthy).	 The	
Pearson	Correlation	coefficient	as	an	indication	of	effect	size	across	Alpha	diversity	
indices	was	used	to	test	the	hypothesis	(H0):	increased	BMI	has	greater	effect	on	taxo-
nomic	 diversity	 than	Westernized	 diet	 type,	 (Ha):	 increased	 BMI	 does	 not	 have	 a	
greater	effect	on	taxonomic	diversity	than	Westernized	diet	type.	In	conclusion,	we	
rejected	the	(H0)	as	our	results	demonstrated	that	Westernized	diet	type	had	an	effect	
size	 of	 0.22	posing	 a	 greater	 impact	 upon	 the	 gut	microbiota	 diversity	 than	 an	 in-
creased	BMI	with	an	effect	size	of	0.16.	This	 implied	Westernized	diet	as	a	critical	
factor	in	causing	dysbiosis	as	compared	to	an	overweight	or	obese	body	mass	index.
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1  | INTRODUCTION

Scientific	investigations	have	demonstrated	that	the	development	of	
many	metabolically	based	human	diseases	such	as	obesity,	is	associ-
ated	with	taxonomic	changes	occurring	among	the	particular	species	
of	bacteria	constituting	the	gut	microbiota.	This	residential	population	
permanently	resides	within	the	distal	large	intestines	of	all	humans	and	
other	animals.	Their	primary	role,	among	an	array	of	other	life	sustain-
ing	biological	functions,	is	that	of	a	dietary	energy	extractor	assisting	
the	human	host	 in	gaining	nutrients	 from	the	otherwise	 indigestible	
components	 of	 fresh,	 plant-	based	 foods	 (Diamant,	 Blaak,	&	 de	Vos,	
2011;	Kau,	Ahern,	Griffin,	Goodman,	&	Gordon,	2011).	The	gut	mi-
crobiota	are	highly	susceptible	 to	both	biological	and	environmental	
influences.	To	varying	degrees,	 several	 factors	 including	 the	method	
of	 fetal	delivery,	neonate	 feeding,	human	genetics	and	disease,	 cer-
tain	medical	interventions	and	environmental	exposures,	such	as	hav-
ing	an	abundant	access	to	and	the	regular	consumption	of	processed	
foods,	are	all	known	contributors	to	the	taxonomic	shifts	within	the	
microbiota	 populations.	This	 occurrence	 is	 a	 disorder	 referred	 to	 as	
gut	microbiome	dysbiosis,	and	one	that	has	been	associated	with	the	
onset	of	many	human	diseases	and	disorders	(Backhed,	2005;	Cordain	
et	al.,	2005;	Dalal	&	Chang,	2014;	Davis,	Barrow,	Javan,	&	Robertson,	
2015;	Davis,	Ogunbi,	Ogunbi,	&	Robertson,	 2015;	De	 Filippo	 et	al.,	
2010;	 Flint,	Duncan,	 Scott,	&	 Louis,	 2014;	Moreno-	Indias,	Cardona,	
Tinahones,	&	Queipo-	Ortuño,	2014;	Ramezani	&	Raj,	2013;	Truswell,	
2013;	Xu	&	Knight,	2014).

Within	the	past	decade,	investigators	have	reported	that	the	tax-
onomic	diversity	among	 the	 species	 constituting	 the	gut	microbiota	
as	well	as	the	ratio	of	two	major	bacterial	phyla	commonly	abundant	
within	 the	 community,	 the	 Bacteroidetes	 and	 Firmicutes,	 is	 closely	
associated	 with	 both	 gut	 microbiota	 and	 human	 health.	 However,	
much	information	 is	still	widely	unknown	in	terms	of	gut	microbiota	
health,	 including	 how	 a	 ‘healthy’	 gut	 microbiome	 (e.g.,	 the	 specific	
species	 as	well	 as	 their	 expressed	byproducts	 and	genes)	 is	 charac-
terized	 and	 alternately,	 how	 gut	microbiome	 dysbiosis	 is	 related	 to	
human	 disease	 causation	 and	 vice	 versa.	 Human	 studies	 including	
overweight	and	obese	participants	have	shown	an	association	with	a	
decrease	in	the	abundance	of	Bacteroidetes,	an	 increase	in	the	abun-
dance	of	Firmicutes,	and	with	an	overall	decrease	in	the	diversity	of	the	
gut	microbiota	population	(Bäckhed	et	al.,	2012;	Clarke	et	al.,	2012).	
Other	investigations	have	provided	no	proof	of	these	occurrences	or	
have	 shown	 conflicting	 results	 (Duncan,	 Sadanand,	 Davachi,	 2012).	
Therefore,	 there	 is	 a	 fundamental	 need	 for	 more	 taxonomic-	based	
studies	investigating	the	structural	characteristics	of	the	gut	microbi-
ota	in	association	with	healthy	and	diseased	(e.g.,	overweight,	obese)	
participants	as	well	 as	 the	 incorporation	of	a	 systemic	approach	 for	
evaluating	 various	 biological	 and	 environmental	 factors	 that	 impact	
the	taxonomic	profile	and	ultimately,	the	functionality	of	the	gut	mi-
crobiome	(DiBaise,	Frank,	&	Mathur,	2012;	Walker	et	al.,	2015).

While the p-	value	is	statistically	informative,	it	does	not	measure	
the	 size	or	 the	magnitude	of	 the	 effect	 between	 the	 factors	 being	
investigated	 and	 or	 compared	 to	 a	 disease	 state.	 The	 effect size 
(ES)	 calculation	 (SDpooled	 =	 √((SD1

2 + SD2
2)	 ⁄	 2),	 does	 provide	 such	

statistically	valuable	information.	Specifically	within	gut	microbiome	
taxonomic-	based	studies,	ES	is	a	measure	of	the	distance	in	the	vec-
tor	of	 taxa	frequencies	 (e.g.,	how	far	apart	π1	and	π2	are	from	each	
other).	Understanding	that	the	ES	value	allows	for	the	universal	com-
parisons	across	experiments,	gut	microbiome-	based	studies	are	now	
rapidly	 shifting	 to	 include	 the	 statistic	 to	measure	 the	 associations	
between	participant	demographics	and	health	status,	with	the	func-
tionality	 of	 the	 gut	 microbiota	 and	 disease	 causation	 (Chen	 et	al.,	
2016;	Ravel	et	al.,	2014;	Song	et	al.,	2016).	It	has	been	reported	that	
future	 gut	microbiome	 research	will	 also	 include	 localized	 strategic	
collaborations	 among	 microbiologists,	 clinicians,	 bioinformaticians	
and	the	community	as	more	human	inclusive	studies	are	needed	to	
better	understand	the	gut	microbiota	within	their	natural	habitat;	a	
concept	referred	to	as	citizen science	(Dave,	Higgins,	Middha,	&	Rioux,	
2012;	Borel,	2014).

In	the	present	study,	we	specifically	aimed	to	investigate	variation	
in	the	abundance	of	the	Firmicutes	and	Bacteroidetes	phyla	composi-
tion	at	the	genus	and	species	level	in	relation	to	BMI,	food	categories,	
and	dietary	groups	(Westernized	or	healthy).	We	also	investigated	mi-
crobiome	variations	 in	 the	Firmicutes:Bacteroidetes	 ratio	 relative	 to	
BMI,	food	categories,	and	dietary	groups	at	stratified	abundance	per-
centages	of	<20%,	20%,	30%,	40%,	50%,	60%,	and	≥70%.	The	Pearson	
Correlation	coefficient	as	an	indication	of	effect	size	across	Alpha	di-
versity	indices	was	used	to	test	the	hypothesis	(H0):	increased	BMI	has	
greater	effect	on	taxonomic	diversity	than	Westernized	diet	type,	(Ha):	
increased	BMI	does	not	have	a	greater	effect	on	taxonomic	diversity	
than	Westernized	diet	type.

2  | MATERIALS & METHODS

2.1 | Study ethics statement

This	 study	 was	 implemented	 within	 the	 state	 of	 Alabama	 and	 ap-
proved	by	the	Alabama	State	University	 Institutional	Review	Board,	
approval	 number	 2014CSMT002A.	 The	 study	 materials	 including	
dietary	surveys	and	accompanying	stool	sample	collection	kits	were	
randomly	 distributed	 among	 and	 collected	 from	only	Alabama	 resi-
dents,	May	2015	through	December	2015.

2.2 | Study design

A	cross-	sectional	case–control	study	design	was	used	to	investigate	
study	aims.	Through	this	model,	we	were	able	to	directly	investigate	
known	factors	of	gut	microbiome	dysbiosis	causation	to	determine	
if	a	Westernized	dietary	regime	had	a	greater	association	with	lower	
gut	microbiota	 diversity	more	 so	 than	 the	 obese	BMI	 group	 com-
pared	 to	 nonobese	 and	 the	 healthy	 diet	 group	 (Yardley	&	Bishop,	
2015).

2.3 | Study population and sample size

Without	 regard	 to	 weight	 status,	 race,	 sex,	 or	 geographic	 location	
within	 the	 state,	 noninstitutionalized,	 otherwise	 healthy	 Alabama	
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residents,	≥19	years	of	age,	capable	of	understanding	‘informed	con-
sent’	on	their	own	accord	were	randomly	selected	for	study	inclusion.	
The	target	sample	size	was	determined	based	upon	a	fully	parametric,	
bio-	statistical	 methodology	 derived	 from	 the	 Dirichlet-	multinomial	
distribution	 model	 recently	 presented	 by	 human	 microbiome	 re-
searchers	using	a	case–control	study	model	similar	to	present	study	
where	researchers	also	incorporated	the	use	of	the	effect size	equa-
tion.	As	reported,	to	obtain	a	standard	5.0%	significance	level	and	a	
99.99%	power	 in	accurately	detecting	a	small	effect	size	across	our	
study	groups,	present	study	required	a	target	sample	size	of	at	least	
fifty	(n	=	50)	participants	and	at	least	≥20,000	DNA	sequencing	reads	
per	sample	(La	Rosa	et	al.,	2012).	Present	study	included	a	total	study	
population	of	81	participants	and	the	taxonomic	data	were	analyzed	
at	≥22,000	reads/sample.

2.4 | Dietary surveys

Using	 a	 blended survey format	 allowed	 for	 the	 direct	 investigation	
into	 the	 specific	 foods	 (e.g.,	 processed	and	 fresh)	being	consumed	
by	participants	 and	 the	 frequency	of	 consumption	 as	well	 as	 their	
BMI	 status	 (Yardley	 &	 Bishop,	 2015).	 The	 specific	 questions	 that	
were	 used	 in	 the	 survey	 were	 formatted	 based	 upon	 nationally	
known	food	and	health	surveys	including,	(i)	the	Harvard	University	
Health	Professionals	Follow-	up	Study	Questionnaire,	(ii)	the	2013–
2014	Centers	 for	Disease	Control	 and	Prevention	National	Health	
and	 Nutrition	 Examination	 Survey	 and	 (iii)	 the	 Dish-	based	 Semi-	
quantitative	 Food	 Frequency	 Questionnaire	 for	 Assessment	 of	
Dietary	Intakes	(Centers	for	Disease	Control	and	Prevention,	2015;	
Keshteli	et	al.,	2014;	Willett,	2014).	Broad	survey	categories	included	
questions	relating	to	participant	demographics,	physical	symptoms,	
eating	 behaviors,	 health	 status,	 and	 food	 consumption	 frequency.	
Descriptions	of	these	categories	are	summarized	in	Table	1.	To	spe-
cifically	assess	 the	participant’s	overall	diet	 type	as	well	as	 the	ac-
tual	 foods	 they	consumed,	 the	survey	 included	a	section	 for	24-hr 
dietary recall	(e.g.,	all	foods	eaten	the	day	before	stool	collection),	a	
participant	generated	list	of	their	favorite foods	(e.g.,	consumed	over	
a	month),	and	an	assessment	of	the	frequency of consumption	of	pre-
determined	processed	and	fresh	foods	that	were	consumed	by	the	
participant	on	a	weekly	basis.

2.5 | Metadata collection and transformation

The	responses	provided	by	the	participants	were	numerically	coded	
and	transformed	using	a	standard	qualitative–quantitative	approach	
(Bower,	2013;	Nollet,	2004;	Srnka	&	Koeszegi,	2014).	The	responses	
related	to	the	questions	of	consumption	frequency	including	(never,	
monthly,	1–2	Week,	3–4	Week,	5–6	Week,	7–8	Week,	9–10	Week,	
>11	Week)	 were	 coded	 as	 (0.05,	 1.05,	 20.00,	 30.00,	 50.00,	 80.00,	
90.00,	100.00),	respectively.

A	degree of difference line scale	was	utilized	to	numerically	differen-
tiate	the	food	items	reported	by	the	participants	within	the	24-	hr	diet	
and	favorite	foods	survey	sections	(Davis,	Barrow,	et	al.,	2015;	Davis,	,	
Ogunbi,	et	al.,	2015).	As	shown	in	Figure	1,	a	100-	point	scale	was	used	
to	first	categorize	the	individual	food	item	as	either	processed	(−100	
scale)	or	fresh	(+100	scale).	Using	the	10-	point	increments	within	each	
side	of	 the	 scale,	 the	 food	was	 further	 categorized	based	upon	 the	
degree	of	processing	or	freshness	by	using	known	food	markers	at	the	
−100	and	+100-	point	scale	ends,	(e.g.,	fast	food	bacon	double	cheese-
burger	=	−100;	raw	fruit	or	water	=	+100).	Overall,	the	degree	of	dif-
ference	line	scale	allowed	for	a	truer	representation	of	the	participants’	
diet	type	compared	to	what	they	initially	reported.	This	scale	also	al-
lowed	 for	 assessing	of	 the	 food	quality	with	 the	negative	 and	posi-
tive	values	representing	the	degree	of	food	processing	or	freshness.	
Lastly,	we	also	derived	a	total food score	for	each	participant	equating	
to	the	summation	of	the	values	for	all	food-	related	survey	categories.	
The	highest	positive	total	food	score	a	participant	could	receive	was	
2650.00.	This	score	implied	that	the	participant	only	consumed	a	nat-
ural,	fresh	diet	and	that	they	did	not	consume	any	processed	foods	or	
sugared	beverages.	The	total	food	scores	for	study	population	ranged	
from	+1656.45	to	−1116.50.

2.6 | Stool samples collection and transport

Study	participants	were	provided	with	an	at-	home	stool	collection	kit.	
Each	 kit	 contained	 a	 copy	 of	 our	 research	 brochure,	 an	 instruction	
sheet,	informed	consent,	the	dietary	survey	as	well	as	the	necessary	
accessories	for	the	participant	to	carry	out	an	aseptic	stool	sample	col-
lection.	Fresh	stool	was	collected	using	the	Fisher	Scientific	Commode	
Specimen	Collection	System	(Cat#	02-	544-	208).	The	collected	sample	

TABLE  1 Summary	of	nutrition	and	health	categories	included	in	study	survey

Question category (n  =  number of questions) Description

Participant	demographics	(n	=	10): Age,	race,	sex,	zip	code,	medical	history,	diet	type

Food	cravings	(n	=	5): Frequency	of	experiencing	fat,	salty	and	sweet	food	cravings,	overall	frequency	of	
cravings	and	experiencing	moods	that	lead	to	cravings

Eating	behaviors	(n	=	6): Frequency	of	excessive	eating,	food	addiction,	craving	and	mood	induced	eating,	visually	
induced	eating.

Physical	symptoms	(n	=	13): Frequent	abdominal	cramping,	bloat,	constipation,	diarrhea,	hunger	after	eating,	midday	
fatigue,	regular	bowel	movement,	high	energy

Food	consumption	(n	=	20): 24	hr	dietary	recall,	listed	favorite	foods,	frequency	of	consumption	of	selected	fresh	and	
processed	foods

Participant	opinions	(n	=	6): Food	access,	food	cost,	preference	in	types	of	foods	consumed,	feeling	of	wellbeing
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was	 then	 placed	 into	 a	 Fisher	 Scientific	 C	 &	 S	 ParaPak	 (Culture	 &	
Sensitivity)	Transport	Vial	(Cat#	23-	290-	147)	(Fisher	Scientific,	2015).	
Upon	completion	of	sample	collection,	participants	were	instructed	to	
place	the	vial	 into	the	 liner	bag	contained	within	the	Fisher	Science	
Therapak™	Biological	Substance	Category	B	Ambient	Shipping	System	
(Cat#	22-	130-	025),	and	to	then	follow	the	instructions	printed	on	the	
box	for	proper	marking	and	sealing.

In	 accordance	 with	 the	 United	 States	 Postal	 Service,	 Mailing	
Standards-	Division	6.2	 Infectious	Substances,	 the	Therapak	contain-
ing	the	ParaPak	C&S	specimen	vial	along	with	the	signed	consent	form	
and	completed	survey,	were	mailed	in	a	premetered	U.S.	Priority	Mail	
(2–3	day)	enforced	envelope	directly	 from	the	participant’s	home	to	
our	laboratory	(United	States	Postal	Service,	2015).	To	further	protect	
the	 identity	of	 the	participant,	 the	outer	U.S.	Priority	Mail	envelope	
was	preaddressed	 from	our	 laboratory,	 as	well	 as	 to	our	 laboratory.	
After	an	initial	quality	assurance	inspection,	the	signed	consent	forms	
were	removed	and	stored	separately	from	the	dietary	assessments	and	
stool	samples.	Each	sample	and	associated	survey	were	assigned	a	cor-
responding	laboratory	ID	code	consisting	of	the	consecutive	number	
in	line	of	intake	at	the	laboratory,	the	day-	month	of	signing	the	con-
sent	form	and	the	reported	dietary	group	as	either	Westernized	diet	
group,	healthy	diet	group	or	obese	group	(e.g.,	ID:	113-	07/22-	WD).

3  | MICROBIAL DNA EXTRACTION AND 
ILLUMINA NEXTGEN SEQUENCING

3.1 | Fecal microbial DNA extraction

Following	the	manufacturer’s	protocol,	an	aliquot	(200	μl)	of	homog-
enized	stool	 sample	was	used	 for	microbial	DNA	extraction	using	a	
Zymo	ZR	Fecal	DNA	MiniPrep™	Isolation	Kit	(Cat#	D6010).	The	DNA	

extract	was	 immediately	 stored	 at	 −20°C	 (Zymo	 Inc,	 2016).	 In	 this	
bead-	beating	based	protocol,	an	example	of	a	lysed	stool	sample	from	
a	high	fat	diet	showing	thick	lipid	layer	along	the	top	(left	sample),	and	
another	from	a	high	fat	diet	with	smaller	 lipid	film,	but	containing	a	
more	mucoid	consistency	(right	sample)	are	depicted	within	the	sup-
plemental	material	(see	Attachment	1).

3.2 | 16S rRNA gene polymerase chain reaction (16S 
PCR)

The	NEB	LongAmp	Taq	PCR	kit	 (Cat#	E5200S)	was	used	 to	carry	
out	 the	 PCR	 reactions.	 The	 unique	 degenerate	 barcoded	 prim-
ers	used	 in	 the	PCR	reaction	 to	amplify	 the	V4	region	of	 the	16S	
rRNA	 gene,	 are	 shown	 in	 Figure	2.	 The	 original	 primer	 stocks	
(50	nmol	 scale	with	 a	 desalting	 purification)	were	 sequentially	 di-
luted	with	10	mmol/L	Tris.Cl	pH	8	first	to	100	μmol/L	and	then	to	
10 μmol/L	(working	stock)	for	use	in	the	PCR	reactions.	The	3′	de-
generate	primer	also	contained	a	(6-	bp)	“barcoded”	index	sequence	
(NNNNNN)	to	distinguish	the	individual	samples	and	study	groups	
postsequencing.	 The	 PCR	 products	were	 examined	 for	 specificity	
using	1.0%	agarose/Tris-	borate-	EDTA	gel	electrophoresis	and	vis-
ualized	by	UV	 	illumination	and	photography	at	 (300-380	bp).	The	
Qiagen	QIAquick	Gel	Extraction	Kit	was	then	used	to	purify	the	am-
plicons	(Kumar	et	al.,	2014).

3.3 | DNA sequencing and bioinformatic analysis

The	Illumina	MiSeq	2000	nextgen	sequencing	platform	was	used	for	
sequencing	of	the	amplicons	generated	from	the	stool	microbial	DNA	
(Illumina,	 Inc.,	 2016).	 Quantitative	 Insights	 Into	 Microbial	 Ecology	
(QIIME),	 an	 open	 source	 bioinformatics	 pipeline,	 was	 used	 for	 the	

F IGURE  1 Degree	of	difference	scale	used	for	coding	reported	food	items.	Individual	food	items	reported	by	the	participant	were	first	
categorized	as	either	processed	(−		)	or	fresh	(+).	Using	10-	point	increments,	the	food	was	further	categorized	based	upon	the	degree	of	
processing	or	freshness	by	using	known	foods	as	comparative	markers	at	−	100	and	+100	ends	of	the	scale	as	shown	on	the	schematic.	Overall,	
using	such	scale	provided	a	truer	representation	of	the	participants’	diet	type	compared	to	what	they	initially	reported	and	it	also	allowed	for	
assessing	of	the	quality	of	foods	as	the	negative	and	positive	values	representing	the	degree	of	food	processing	or	freshness
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analysis	 of	 the	 sequenced	DNA	 sequencing	 data.	QIIME	 generated	
operational	taxonomic	units	(OTUs)	were	deduced	at	standard	97.0%	
accuracy	from	the	microbial	DNA	sequencing	data	and	included	both	
alpha	and	beta	diversities.

4  | INTEGRATED 
ANALYSIS OF METADATA AND MICROBIAL 
TAXONOMIC INFORMATION

4.1 | Metadata scores

We	 analyzed	 the	 participant	 scores	 associated	 with	 categories	 of	
Fresh	Food	Consumption	Frequency,	Processed	Food	Consumption	
Frequency,	 24-	hr	 Dietary	 Recall,	 Favorite	 Foods	 Report,	 and	 Total	
Food	Score.	Multiple	sources	of	information	such	as	these	allowed	for	
a	deeper	investigation	into	the	relationships	between	the	gut	micro-
biota,	diet,	and	disease	including	overweight,	obesity,	and	gut	micro-
biome dysbiosis.

4.2 | Beta taxonomic indices

The	 abundance	 percentages	 for	 the	 Bacteroidetes-Firmicutes (B-F)	
phyla	 were	 determined	 for	 each	 participant	 at	 abundances	 of	
≤19.99%,	20%,	30%,	40%,	50%,	and	>70%;	the	high	and	low	cut-	offs	
were	derived	based	upon	the	natural	cut-	offs	across	the	study	popula-
tion	that	allowed	for	meeting	statistical	analysis	requirements.	At	each	
stratified	percentage,	we	compared	the	B-	F	ratio	with	factors	of	BMI	
and	diet	type	along	with	the	various	food	scores.

4.3 | Alpha taxonomic indices

The	second	study	aim	included	the	incorporation	of	the	effect	size	
value	determined	based	upon	the	results	of	the	Pearson	coefficient	
and	traditional	(p-	values).	While	we	did	not	expect	to	find	large	ef-
fect	sizes,	the	specific	parameters	for	determination	of	the	hypoth-
esis	were	defined	as,	 large	effect	values	 ranged	 from	0.4	 to	≥0.8,	
and	a	small	effect	size	values	ranged	from	≤0.2	to	0.3	(La	Rosa	et	al.,	
2012).

4.4 | Statistical analysis

Descriptive	 statistical	 analyses	 were	 conducted	 using	 IBM® SPSS® 
Statistics	software	package	version	22,	supplied	through	Information	
Technology,	Department	of	Alabama	State	University.

5  | RESULTS

5.1 | Study population demographics

Values	 for	 different	 demographic	 parameters	 (expressed	 as	 means	
and	standard	deviations)	were	as	follows:	age	(33	±13.3	years),	height	 
(1.7	 ±0.11	meters),	 weight	 (82.3	 ±20.6	kg),	 and	 BMI	 (28.3	±	7.01),	
which	 equated	 to	 an	 overall	 overweight	 BMI.	 Sixty	 percent	 of	 the	
participants	were	of	Caucasian	 race	 followed	by	African	Americans	
with	 28.0%,	 Hispanics	 6.0%,	 mixed	 races	 6.0%,	 and	 Korean	 with	
3.0%.	Assigned	dietary	categories	included	53.0%	participants	in	the	
Westernized	Diet	 (normal)	 group,	 16%	 in	Westernized	 diet	 (obese)	
group,	and	31.0%	in	the	healthy	diet	group.	A	total	of	49.1%	were	resi-
dents	of	Montgomery	County.	Other	counties	represented	in	present	
study	 included	 Autauga,	 Bullock,	 Chilton,	 Coffee,	 Cullman,	 Elmore,	
Geneva,	Jefferson,	Russell,	St.	Claire,	Shelby,	Tuscaloosa,	Marion	and	
Mobile.	The	study	participants’	detailed	demographic	data	are	sum-
marized	in	Table	2.

5.2 | Bacteroidetes:Firmicutes ratio

Initial	 investigations	into	the	abundance	of	the	B-	F	phyla	across	the	
total	study	population	revealed	a	greater	abundance	of	Firmicutes with 
a	mean	of	53.0	±	0.18,	compared	 to	 the	Bacteroidetes	 (38.0	±	0.18).	
This	finding	was	expected	as	53.0%	of	the	study	population	consumed	
a	Westernized	Diet	and	overall,	the	study	population	had	an	average	
overweight	BMI.	Both	factors	of	increased	BMI	and	Westernized	diet	
consumption	have	previously	been	associated	with	an	increase	in	the	
Firmicutes	 (Kim,	Gu,	Lee,	Joh,	&	Kim,	2012;	Sonnenburg	&	Bäckhed,	
2016).	 However,	 as	 shown	 in	 Figure	3	 the	 abundance	 distribution	
plots	of	the	B	and	F	phyla	provided	evidence	that	both	were	overall	
normally	distributed	across	the	population.

F IGURE  2 16S	rRNA	gene	V4	region	
5′	and	3′	primers	used	in	PCR	reactions.	
Highlighted	in	black	and	gray	are	the	
unique	degenerate	primer	sequences	used	
in	the	PCR	reactions.	As	shown,	5′	and	3′	
sequences	contain	an	adaptor	sequence,	a	
link	and	pad	sequence,	and	the	degenerate	
sequences.	The	3′	degenerate	primer	also	
contains	a	6-	bp	“barcoded”	index	sequence	
(NNNNNN)	to	distinguish	the	separate	
samples	and	study	groups	postsequencing	
reactions.	Adapted	from	Kumar	et	al.,	2014	
with	permission	from	author	and	publisher.	
All	Rights	Reserved.

16S rRNA gene V4 region 5′ and 3′ primers used in PCR reactions
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An	ANOVA	analysis	was	used	to	compare	the	means	of	B-	F	phyla	
at	each	of	the	abundance	percentages	ranging	from	≤19.99%	to	70.0%,	
in	relationship	to	the	normal-	underweight	group	and	overweight-	obese	
group.	Only	 two	ANOVA	tests	were	statistically	significant	as	shown	
in	Table	3.	The	first	test	showing	significance	was	that	of	Firmicutes	at	
the	≥40%	midrange	which	was	found	among	the	normal-	underweight	
group (F	=	8.73	 df(1);	 p	=	.02).	 The	 second	 test	 showing	 statistically	
significant	 difference	 was	 also	 the	 Firmicutes	 at	 the	 lowest	 range	
(≤19.99%)	among	the	overweight-	obese	group	(F	=	6.26;	df(1);	p	=	.05).

ANOVA	tests	were	used	to	further	investigate	the	B-	F	abundance	
at	the	various	abundance	percentages	in	relation	to	the	survey	cate-
gories	including	those	of	fresh	food	and	processed	food	consumption	
scores,	24-	hr	diet,	and	favorite	food	scores.	At	each	abundance	per-
centage	(e.g.,	70.0%	range),	an	ANOVA	was	calculated	for	the	B	or	F	
using	all	of	the	food	scores	for	each	category	(e.g.,	processed,	fresh	
foods).	These	results	are	summarized	in	Tables	5	and	6,	showing	the	

phylum	with	 the	higher	mean	within	 the	 table.	Overall,	each	of	 the	
ANOVA	tests	was	statistically	significant	(p	=	.001).	In	Table	4,	the	B-	F	
phyla	are	compared	to	fresh	and	processed	foods.	As	shown,	at	the	
abundance	percentage	of	≥70.0%,	the	Bacteroidetes	phylum	had	the	
higher	total	food	score	mean	(−244.2	±	127.4)	in	association	with	pro-
cessed	foods,	and	the	Firmicutes	were	associated	with	the	higher	fresh	
food	mean	(382.7	±	148.0).	At	the	60.0%	range,	the	opposite	occurred	
with the Firmicutes	having	the	greater	processed	food	score	mean	and	
Bacteroidetes	having	the	greater	fresh	food	score	mean.	Additionally,	
at	the	40.0%	and	50.0%	abundance	percentages	the	Firmicutes were 
found	 in	association	with	higher	fresh	food	means	as	well	as	within	
the	 lower	abundance	 ranges	of	20.0%	 to	≤19.99%.	Alternately,	 the	
Bacteroidetes	 had	 the	 highest	 processed	 food	means	 at	 abundance	
percentages	of	50.0%,	40.0%,	 and	30.0%.	While	our	 initial	 findings	
showed	 that	 the	 Firmicutes	 were	 more	 prevalent	 across	 the	 study	
population,	these	results	provided	evidence	that	both	Firmicutes	and	
Bacteroidetes	are	associated	with	the	consumption	of	processed	and	
fresh	foods	and	that	the	ratio	of	the	phyla	varies	at	different	abun-
dance	percentages.

The	 continued	 ANOVA	 results	 showing	 the	 means	 of	 the	 B-	F	
phyla	in	relation	to	the	24-	hr	diet	and	favorite	food	scores	are	sum-
marized	in	Table	5.	Each	test	was	statistically	significant	at	p = .001. 
The	highest	available	 food	score	available	across	 the	related	survey	
categories	was	2650.00.	The	value	 implies	 that	all	 foods	consumed	
by	the	individual	were	fresh	and	that	they	did	not	consume	any	pro-
cessed	foods	or	sugared	beverages.	By	using	this	parameter,	one	can	
determine	 the	degree	of	 food	processing	or	 freshness	of	 the	 foods	
reported	in	the	24-	hr	diet	and	favorite	foods	categories	by	evaluation	
of	the	means	associated	with	each	food	category.	Overall,	the	means	
at	each	of	abundance	percentages	were	low,	which	implied	the	con-
sumption	of	processed	foods.	As	shown	 in	Table	5,	at	 the	50.0%	to	
70.0%	range	the	Bacteroidetes	were	associated	with	the	highest	nega-
tive	means	in	the	24-	hr	diet	category	and	despite	the	Firmicutes being 
associated	with	higher	positive	means	at	the	same	abundance	range	
within	the	favorite	foods	category,	the	means	are	very	low	in	terms	of	
the	total	available	food	score	(2650.00).	At	the	midrange	and	lowest	
abundances	ranging	from	30.0%	to	<19.99%,	the	Firmicutes	were	as-
sociated	with	lower	(negative)	means,	which	again	implies	processed	
food	consumption.

5.3 | Gut microbiome genus/species level diversity

Investigations	into	the	B	and	F	at	the	genus	and	species	level	in	relation	
to	food	type	(e.g.,	fresh	or	processed)	and	BMI	categories	(e.g.,	normal,	
overweight,	obese)	are	summarized	in	Table	6	Using	QIIME-	generated	
abundance	data,	the	most	prevalent	gut	microbiome	species	in	associa-
tion	with	each	BMI	group	and	food	type	along	with	the	related	total	
food	 scores	 were	 determined	 for	 each	 of	 the	 categories.	 As	 shown	
within	 the	 table,	 there	 were	 four	 phyla	 including	 the	 Bacteroidetes, 
Firmicutes, Proteobacteria,	 and	Actinobacteria	 found	 among	 the	 most	
abundant	microbial	groups	in	relation	to	food	type	and	BMI	group.	The	
specific	genera	and	species	per	phyla	were	as	 follows:	Actinobacteria 
(Collinsella aerofaciens),	Bacteroidetes (Bacteroides plebeius, Odoribacter 

TABLE  2 Summarization	of	study	participant	demographics

Demographic (n)%

Gender

Male (36)	44

Female (45)	56

Age	groups

19–22 (18)	22

23–29 (28)	35

30–39 (9)	11

40–59 (18)	22

60–70 (8)	10

Dietary	categories

West	diet	group-	normal (43)	53

West diet group- obese (13)	16

Healthy	diet	group (25)	31

Race

African	American (23)	28

Caucasian (49)	60

Hispanic (4)	6

Other	(Mixed	Race,	Korean) (5)	6

BMI	categories

Obese (27)	33

Overweight (27)	33

Normal-	underweight (27)	33

Medical	History

Medical	condition	causing	obesity	(YES) (6)	7

Mom	obese	(YES) (54)	67

Fiber	supplement	(NO) (69)	85

Overall,	the	study	population	was	characterized	by	the	following	mean	de-
mographic	 parameters:	 mean	 height	 1.7	±	0.11	 meters,	 mean	 weight	
82.3	±	20.62	kg,	 mean	 age	 33	±	13.3	years,	 and	 mean	 BMI	 28.3	±	7.01.	
Average	BMI	across	the	study	population	equated	to	overweight.	Two	par-
ticipants	were	excluded	due	to	recent	antibiotic	usage.	No	participant	re-
ported	the	use	of	probiotic;	85%	participants	used	no	fiber	supplements.
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sp.), Firmicutes (Blautia obeum, Acidaminococcus sp., Catenibacterium sp., 
Dialister sp.),	and	the	Proteobacteria (Succinivibrio sp., Proteus sp.).	Closer	
investigations	revealed	that	the	abundance	was	tied	between	the	obese	
BMI	and	processed	food	groups.	For	example,	the	Collinsella aerofaciens 
were	abundant	among	the	obese	BMI	and	within	processed	food	cat-
egory	equating	in	both	groups	to	a	total	of	6.5%	of	the	gut	microbiota	
population	of	 the	 individuals	 in	 the	group.	However,	 as	 indicated	by	
the	high	negative	 total	 food	scores	within	 the	BMI	weight	groups,	 it	
is	apparent	the	species	has	a	greater	relationship	with	processed	food	
consumption	than	with	an	increased	BMI.	Considering	each	species	in	
the	same	manner,	collectively	 the	evidence	further	suggests	 that	 the	
Westernized	diet	type	drives	gut	microbiota	species	selection	more	so	
than	an	obese	BMI.	These	findings	suggest	that	the	previously	known	
associations	between	increased	Firmicutes	and	an	increased	BMI,	may	
be	 occurring	 because	 the	 overweight	 or	 obese	 person	 is	 consuming	
a	processed	to	highly	processed	diet	type	as	found	among	this	study	
population.

Figure	4	provides	an	overview	of	the	most	abundant	gut	microbi-
ome	species	(identifiable	at	species-	,	genus-	,	family-	,	or	order-		 level)	

found	across	the	study	population.	As	shown,	the	majority	of	the	spe-
cies	are	from	the	Bacteroidetes	and	Firmicutes	phyla.	However,	at	that	
genus/species	level,	the	most	abundant	gut	microbe	type	found	was	
the Bacteroidetes genus Bacteroides	at	18%,	followed	by	the	Firmicutes 
species Faecalibacterium prausnitzii	 at	 9.0%.	 The	 other	 species	 are	
shown	within	Figure	4.

Albeit,	deeper	participant	level	investigations	into	the	top	five	spe-
cies	provided	further	evidence	that	diet	type	is	a	major	factor	contrib-
uting	to	defining	the	taxonomic	characteristics	of	the	gut	microbiota.	
The	findings	are	summarized	within	Table	7	with	each	of	 the	organ-
isms	cross	referenced	to	the	top	three	participants	they	are	found	in,	
along	with	the	participants’	BMI	category	and	their	total	food	score.	As	
shown,	the	Bacteroides	constituted	a	total	of	50.9%	of	the	gut	micro-
biota	of	an	overweight	(OW)	individual	who	had	a	total	food	score	of	
−70.0.	The	genus	also	constituted	40.3%	of	an	obese	OB	participants’	
microbiota	who	had	a	total	food	score	of	−70.0	and	38.3%	of	the	gut	
microbiota	of	an	OW	person	with	a	food	score	of	262.85.	The	other	
four	 species	 are	 represented	 in	 the	 same	manner	within	 the	 table.	
While	the	obese	(OB)	and	OW	BMIs	predominated	the	weight	groups	
within	the	top	genus/species,	the	OW	and	OB	participants	also	had	
low	total	food	scores	implying	that	they	consumed	processed	to	highly	
processed	foods	on	a	daily	basis.

Figure	5	provides	a	graphic	 representation	of	 the	distribution	of	
the	most	abundant	species	of	the	phyla	Actinobacteria,	Bacteroidetes, 
Firmicutes, Proteobacteria, and Verrucomicrobia	 in	relationship	to	food	
types	 and	 BMI	 categories.	 The	 fresh food group is represented by 
blue	bars	 (10–20	 range	on	X-	axis), processed food group	 by	 red	bars	
(20–30	range),	normal weight	BMI	by	green	bars	(30–40	range),	over-
weight group	 by	 purple	 bars	 (40–50	 range),	 and	 the	 obese group by 
teal	blue	bars	(50–70	range).	The	top	abundance	percentages	ranged	
from	 1.0%	 to	 58.6%.	While	 the	 majority	 of	 the	 identified	 genera/
species	were	from	the	Bacteroidetes	and	Firmicutes	phyla,	some	were	
also	 from	the	other	 three	major	phyla	Actinobacteria,	Proteobacteria, 
and	 Verrucomicrobia.	 The	 most	 abundant	 genera	 (with	 unidentifi-
able	 species)	 were	Actinobacteria (Bifidobacterium sp.),	 Bacteroidetes 
(Bacteroides sp., Odoribacter sp., Parabacteroides sp.,	 Prevotella sp.), 
Firmicutes (Phascolarctobacterium sp., Oscillospira sp., Megasphaera sp., 
Lachnospira sp., Dorea sp., Dialister sp., Coprococcus sp., Catenibacterium 
sp., Ruminococcus sp., Blautia sp., Acidaminococcus sp.),	 and	
Proteobacteria (RF32, Sutterella sp., Succinivibrio sp., Proteus sp.). The 

F IGURE  3 Distribution	plots	of	the	Bacteroidetes	and	Firmicutes	phyla	across	the	study	population.	Distribution	plots	of	abundance	
percentages	for	B-	F	phyla	show	both	data	sets	are	normally	distributed	with	little	variance	total	abundance	across	the	study	population.	These	
findings	suggest	both	B&F	phyla	are	equally	distributed	across	the	population	without	regard	to	specific	BMI	category

TABLE  3 Variation	in	abundance	percentages	of	Bacteroidetes 
and	Firmicutes	in	relationship	to	BMI	categories

Normal- underweight 
Group (p- value)

Overweight- obese 
group (p- value)

≥70% [p = .926] [p = .735]

≥60% [p = .490] [p = .741]

≥50% [p = .405] [p = .759]

≥40% [p = .016]a [p = .753]

≥30% [p = .617] [p = .654]

≥20% [p = .200] [p = .567]

≤19.99% [p = .311] [p = .046]a

Individual	 ANOVA	 tests	 comparing	 the	 total	 percentages	 of	 B-	F	 abun-
dance	were	used	to	determine	variation	 in	prevalence	between	the	two	
phyla	 at	 stratified	 percentages	 in	 relation	 to	 BMI	 categories	 of	 normal-	
underweight	and	overweight-	obese.
aOnly	 two	 tests	 were	 of	 significance.	 The	 first	 among	 the	 normal-	
underweight	 group	 [f(1)=8.73;	 p	=	.02],	 with	 a	 greater	 percentage	 of	
Firmicutes	at	the	≥40%	range.	The	second	test	[f(1)=6.26;	p	=	.05],	show-
ing	 greater	 percentage	 of	 Firmicutes	 at	 the	 ≤19.99%	 range	 among	 the	
overweight- obese group.



8 of 17  |     DAVIS et Al.

most	 abundant	 identifiable	 species	 were	 as	 follows	 Actinobacteria 
(Collinsella aerofaciens), Bacteroidetes (Bacteroides caccae, Prevotella 
copri, Bacteroides plebeius, Prevotella stercorea, Bacteroides ovatus, 
Bacteroides uniformis), Firmicutes (Faecalibacterium prausnitzii, Blautia 
obeum, Ruminococcus gnavus, Roseburia faecis),	 and	 Verrucomicrobia 
(Akkermansia muciniphila).

Viewing	Figure	5,	overall	there	were	more	genera/species	found	
among	 the	 processed	 food	 group	 (represented	 by	 red	 bars),	 com-
pared	 to	 the	obese	BMI	 (in	 teal	blue	bars)	 and	 the	majority	of	 the	
genera/species	 found	 specifically	 among	 the	 obese	BMI	were	 also	
found	among	 the	processed	 food	group.	The	processed	 food	cate-
gory	had	a	greater	association	with	species	of	the	phylum	Firmicutes 
including Blautia sp., Coprococcus sp., Dialister sp., Blautia obeum, 
Megasphaera sp., Lachnospira sp., Oscillospira sp., Roseburia sp.,	 and	
Faecalibacterium prausnitzii.	Within	the	obese	BMI,	there	was	an	as-
sociation	with	the	species	of	the	Firmicutes	phylum	namely,	Dialister 
sp., Ruminococcus gnavus, Blautia obeum Megasphaera sp., Oscillospira 

sp.,	and	the	phylum	Verrucomicrobia	species	namely	Akkermansia mu-
ciniphila.	However,	 as	 there	were	more	 red	 bars	 (processed	 foods)	
and	blue	bars	(fresh	foods)	compared	to	purple	bars	(overweight	BMI)	
and	teal	blue	bars	(obese	BMI)	found	in	relation	to	certain	gut	micro-
biota	species,	we	surmised	again	 that	dietary	 regime	more	so	 than	
BMI	is	driving	the	gut	microbiota	species	selection	within	this	study	
population.

5.4 | Alpha & beta diversity indices

Bray–Curtis	 Test	 results	 associated	with	 gut	microbiota	 beta	 diver-
sity	are	visualized	within	the	principal	coordinates	analysis	plot	shown	
in	Figure	6.	These	revealed	there	was	statistically	significant	(p	=	.05)	
taxonomic	dissimilarity	across	the	dietary	groups	(healthy	diet	group,	
Westernized	diet-	normal,	and	Westernized	diet-	obese).	Considering	
the	cluster	pattern	however,	it	is	indicated	that	the	samples	are	group-
ing	in	relation	to	diet	type	as	they	are	aligning	along	with	the	healthy	

TABLE  5 Bacteroidetes	and	Firmicutes	abundance	in	relationship	to	24-	hr	diet	and	favorite	foods	categories

Bacteroidetes Firmicutes

24- hr diet Favorite foods 24- hr diet Favorite foods

≥70% [−139.1	±	311.3]a [72.6	±	345.0]

≥60% [−133.2	±	202.0] [42.0	±	159.6]

≥50% [−164.0	±	282.3] [21.0	±	250.0]

≥40% [−35.5	±	153.0] [−135.0	±	307.8]

≥30% [104.5	±	270.4] [−229.8	±	238.2]

≥20% [−42.2	±	317.3] [92.5	±	151.2]

≤19.99% [−186.2	±	381.8] [15.8	±	379.9]

ANOVA	tests	of	the	B-	F	abundance	percentages	across	the	24-	hr	Diet	and	Favorite	Foods	categories	were	significant	[p = .001].
aValues	represent	the	mean	and	SD	of	the	total	food	scores	within	the	category.	At	the	50.0%	to	70.0%	range,	the	Bacteroidetes	were	associated	with	the	
higher	negative	means	and	despite	the	Firmicutes	being	associated	with	higher	positive	means	at	the	same	abundance	range,	the	means	are	very	low	(rep-
resenting	consumption	of	processed	foods)	 in	terms	of	the	total	available	food	score	(2650.00).	At	the	midrange	and	lowest	abundances	ranging	from	
30.0%	to	19%,	the	Firmicutes	were	associated	with	lower	(negative)	means,	which	again	implies	processed	food	consumption.	Overall,	the	Bacteroidetes 
were	associated	with	the	highest	negative	means	at	greater	abundances.

TABLE  4 Bacteroidetes	and	Firmicutes	abundance	in	relationship	to	process	and	fresh	food	categories

Bacteroidetes Firmicutes

Fresh foods Processed foods Fresh foods Processed foods

≥70% [−244.2	±	127.4]a [382.7	±	148.0]

≥60% [421.9	±	250.3] [−277.7	±	215.2]

≥50% [−354.9	±	218.0] [383.3	±	154.9]

≥40% [−286.4	±	223.4] [309.8	±	142.7]

≥30% [402.1	±	160.8] [−333.5	±	250.8]

≥20% [419.9	±	148.8] [−335.5	±	184.3]

≤19.99% [299.0	±	71.8] [−263.6	±	159.8]

aValues	represent	the	mean	and	SD	of	the	total	food	score	at	the	stratified	abundance	percentage	of	the	Bacteroidetes or Firmicutes.	ANOVA	test	for	both	
the	B-	F	groups	was	significant	(p	=	.001).	Overall,	results	suggest	that	despite	the	initial	finding	of	an	overall	greater	prevalence	of	Firmicutes	across	the	
study	population,	there	is	also	evidence	of	association	between	the	presence	of	Bacteroidetes	and	the	consumption	of	both	processed	and	fresh	foods	more	
so	than	the	Firmicutes.
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diet	group	(red	dots)	and	there	is	no	distinct	cluttering	by	BMI.	This	
finding	provided	further	indication	that	diet	type	may	be	driving	the	
diversity	 of	 gut	 microbiota	 populations	 more	 so	 than	 an	 increased	
BMI.

An	ANOVA	test	using	the	means	of	the	Alpha	diversity	Shannon	
Index	 ENS	 (effective	 number	 of	 species)	 associated	with	 processed	
food,	fresh	food,	and	BMI	categories	did	not	reveal	any	statistical	dif-
ference	 between	 the	 groups	 (p	=	.53).	The	 highest	 ENS	mean	value	

TABLE  6 Most	abundant	species	in	relation	to	BMI	and	food	type

↑ (%) Top 25 category BMI, Abundance % & total food score

Actinobacteria

Collinsella aerofaciens 6.5%	[OB-	PF]a OB	[6.5;	-	1116.50],	OW	[5.10;	−477.35],	NW	[2.1;	−289.80]

Bacteroidetes

Odoribacter	sp. 9.3%	[OB-	PF]a OB	[9.3;	22.15],	OW	[NA],	NW	[1.2;	-	289.80]

Bacteroides plebeius 17.2%	[OB-	PF]a OB	[17.2;	−289.23],	OW	[3.6;	1142.75],	NW	[1.9;	−63.96]

Firmicutes

Acidaminococcus	sp 8.5%	[NW-	PF]a OB	[4.5;	399.56],	OW	[5.3;	249.40],	NW	[8.5;	−900.72]

Catenibacterium	sp. 4.8%	[OW]a OB	[2.3;	−731.82],	OW	[4.8;	409.39],	NW	[2.1;	−63.96]

Dialister	sp. 24.3%	[OB-	PF]a OB	[24.3;	−1116.50],	OW	[5.1;	−477.35],	NW	[4.8;	−124.17]

Blautia obeum 8.4%	[OB-	PF]a OB	[8.4;	−620.95],	OW	[2.8;	1025.65],	NW	[2.2;	924.53]

Proteobacteria

Succinivibrio sp. 15.0%	[OW-	FF]a OB	[NA],	OW	[15.0;	601.10],	NW	[10.9;	169.70]

Proteus sp. 13.90%	[NW-	FF]a OB	[2.3;	−731.82],	OW	[4.8;	409.39],	NW	[13.9;	767.85]

aDenotes	equal	abundance	percentages	between	the	two	survey	categories.	Overall,	there	is	indication	of	Westernized	diet	type	driving	selection	more	so	
than	obese	BMI.	As	indicated	by	the	high	negative	total	food	scores	within	the	BMI	weight	groups,	it	is	apparent	the	species	has	a	greater	relationship	with	
processed	food	consumption	than	with	an	increased	BMI.

F IGURE  4 Top 20 gut microbiome 
species	across	total	study	population.	The	
most	abundant	gut	microbiome	species	
(identifiable	at	species-	,	genus-	,	family-	,	
or	order-		level)	found	across	the	study	
population	with	the	majority	from	the	
Bacteroidetes	and	Firmicutes	phyla.	As	
shown,	the	most	abundant	gut	microbe	
found	was	the	Bacteroides spp.	at	18%,	
followed	by	Faecalibacterium prausnitzii	at	
9.0%
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was	found	in	association	with	the	obese	BMI	(228.2	±	134.1).	ENS	val-
ues	for	the	other	categories	included	the	normal	BMI	(179.9	±	103.1),	
overweight	BMI	(218.1	±	134.),	fresh	food	group	(220.0	±	134.2),	and	
processed	food	group	 (90.2	±	109.7).	As	shown	 in	Figure	7	 the	ENS	
increases	with	an	obese	BMI	and	decreases	with	the	consumption	of	
processed	foods.

5.5 | Effect size- based hypothesis testing

Here,	effect	size	(ES)	was	used	to	test	the	proposed	hypothesis.	To	ac-
complish	this,	Pearson’s	Correlation	statistics	was	performed	for	each	
alpha	diversity	matrix	including	those	of	the	Shannon	Index,	Simpson’s	
Index	of	Diversity,	Chao1,	 and	 the	whole	 tree	diversity	 (Meehan	&	
Beiko,	2014).	These	results	are	summarized	in	Table	8.	As	shown,	no	
test	resulted	 in	a	p-	value	of	any	statistical	significance	with	the	val-
ues	ranging	from	0.06	to	0.74.	However,	 there	was	variation	found	
between	correlations	in	terms	of	ES,	ranging	from	0.04	to	0.23.	The	
effect	size	of	the	total	food	score,	fresh	foods,	processed	foods,	24-	hr	

diet,	and	favorite	foods	survey	categories	ranged	from	0.16	to	0.31	
with	 a	 total	 average	 of	 0.22.	 The	 average	 effect	 size	 of	 obese	 and	
overweight	BMI	equated	to	0.16.	Considering	the	study	hypothesis,	
we	failed	to	accept	the	(H0),	and	concluded	that	the	processed	food	
type	with	an	ES	of	0.22	had	a	greater	effect	upon	the	overall	diver-
sity	of	the	gut	microbiota	than	an	increased	BMI	with	an	average	ES	
of	 0.16.	 Through	 alpha	 and	 beta	 taxonomic	 investigations,	we	 also	
demonstrated	that	the	total	abundance	percentage	chosen	by	an	in-
vestigator	could	potentially	influence	the	interpretation	of	their	find-
ings.	We	also	demonstrated	that	using	just	one	abundance	percentage	
value	without	 incorporation	 of	metadata	might	 not	 truly	 represent	
the	nature	of	the	B-	F	ratio	within	the	population	or	individuals	being	
investigated.

The	 Pearson	 correlation	 results	 of	 the	 association	 between	
Shannon	 Index	ENS	 (X-	axis)	and	BMI	 (Y-	axis)	are	shown	 in	Figure	8.	
While	 the	 highest	 diversity	 (>500	 ENS)	 is	 found	 at	 lower	 weights,	
there	 are	 also	 obese	 and	 normal	weight	 individuals	with	 high	 ENS.	
Highlighted	within	the	box	outline,	the	lowest	diversity	(≤250	ENS)	is	
also	associated	with	a	range	of	weights	from	the	highest	and	lowest	
among	the	study	population.

The	Pearson	correlation	between	a	decreased	total	food	score	and	
Shannon	Index	ENS	was	not	statistically	significant	(p	=	.10),	as	shown	
in	 Figure	9.	As	 highlighted	within	 the	 box,	 there	 is	 more	 clustering	
around	the	lowest	negative	food	scores	and	lower	ENS.	While	there	
are	positive	food	scores	associated	with	lower	ENS	(≤350),	the	fresh	
food	scores	are	primarily	low	indicating	the	consumption	of	minimally	
processed	foods.

As	highlighted	within	Figure	10,	the	fresh	foods	score	 is	shown	
along	the	Y-	axis.	As	highlighted	within	the	boxed	area,	the	lower	ENS	
(≤250)	 is	again	associated	with	 less	frequent	fresh	foods	consump-
tion.	As	shown	within	the	boxed	area	of	Figure	11,	there	 is	greater	
clustering	 around	 lower	 ENS	 and	 increased	 consumption	 of	 highly	
processed	foods.	As	demonstrated	between	both	of	these	tests,	the	
higher	ENS	or	microbial	diversity	is	associated	with	less	consumption	
of	 processed	 foods	 and	 an	 increased	 consumption	 of	 fresh,	whole	
foods.

Pearson’s	correlations	between	the	24-	hr	diet,	favorite	food	cat-
egories,	and	Shannon	Index	ENS	are	shown	in	Figures	12	&	13.	The	
negative	and	positive	values	along	the	Y-	axis	in	both	figures	are	indic-
ative	of	the	degree	of	food	processing.	To	gain	a	perspective	of	how	
fresh	 the	 foods	were	 in	positive	 range,	 the	highest	obtainable	 fresh	
food	score	within	present	study	(e.g.,	implying	only	fresh,	whole	foods,	
and	 no	 processed	 foods	 are	 consumed)	 was	 2650.00.	 The	 highest	
fresh	food	score	here	was	≈950.	As	shown	in	Figure	12,	the	majority	
of	participants	consumed	a	minimally	processed	to	highly	processed	
meal	24	hr	prior	to	the	stool	sample	collection.	Again,	the	lowest	ENS	
is	associated	with	the	consumption	of	processed	foods	 indicated	by	
the	area	highlighted	by	the	outline.

The	 same	 was	 found	 when	 investigating	 the	 association	 be-
tween	ENS	 and	 favorites	 foods	 (e.g.,	 consumed	over	 a	month)	 as	
depicted	 within	 Figure	13.	 As	 before,	 the	 lowest	 ENS	 was	 also	
found	associated	with	processed	food	types.	Collectively,	we	con-
cluded	 that	 diet	 type	 has	 a	 greater	 effect	 upon	 the	 diversity	 of	

TABLE  7 Percentage	of	the	most	abundant	microbial	species	
shown	in	relation	to	the	top	three	participants	and	their	BMI	and	
total	food	scores

% of the microbe 
constituting the 
gut microbiota of 
participant

BMI 
group

Total food 
score

Bacteroides sp.a 50.9 OW −70.0

40.3 OB −70.0

38.3 OW 262.85

Faecalibacterium 
prausnitzii

22.0 OW −284.85

21.1 OW 485.0

21.0 OW −407.8

Blautia sp. 20.2 OW −199.8

19.2 OW −1425.0

17.1 NW −38.20

Lachnospiraceae species 15.0 OB −550.0

11.5 OW −1424.95

11.0 OB −58.75

Prevotella copri 56.2 NW −50.0

43.0 NW −829.35

42.0 NW 649.0

aThe Bacteroidetes genus Bacteroides	represented	the	most	abundant	gut	
microbiota	group	with	a	total	abundance	of	18.0%	across	the	study	popu-
lation.	The	second	most	abundant	gut	microbe	species	F. prausnitzii consti-
tuted	 9.0%,	 followed	 by	 the	 genus	 Blautia	 at	 6.4%,	 the	 family	
Lachnospiraceae	at	5.1%,	and	the	species	P. copri	at	4.6%	abundance.	As	
shown,	the	Bacteroides	was	the	most	abundant	genus	within	the	gut	micro-
biota	population	of	an	overweight	(OW)	individual	constituting	a	total	of	
50.9%	of	the	individuals’	gut	microbiota	with	a	total	food	score	of	−70.0.	
The	genus	also	constituted	40.3%	of	an	obese	(OB)	participant	microbiota	
who	had	a	total	food	score	of	−70.0	and	38.3%	of	the	gut	microbiota	of	an	
OW	with	food	score	of	262.85.	Despite	the	Firmicutes phylum being the 
most	 predominate	 across	 the	 study	 population,	 at	 the	 genus	 level	 the	
Bacteroides	prevailed.
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the	 gut	 microbiota	 than	 an	 increased	 BMI.	 Despite	 the	 Person’s	
Correlation	 p-values	 not	 being	 statistically	 significant,	 the	 effect	
size	of	 processed	 food	 consumption	upon	 the	overall	 diversity	of	

F IGURE  5 Distribution	of	the	most	
abundant	species	associated	with	food	
types	&	BMI	categories.	The	top	species	
are	represented	along	Y-	axis	and	the	
survey	category	code	along	X-	axis;	[fresh	
food	=	(blue),	processed	food	=	(red),	
normal	weight	=	(green),	overweight	=	
(purple)	and	obese	=	(teal	blue)].	As	there	
were	more	species	found	(among	the	Top	
25)	for	the	food	types	as	indicated	by	
red	bars	(processed	foods)	and	blue	bars	
(fresh	foods)	compared	to	increased	BMI	
as	indicated	by	purple	bars	(overweight	
BMI)	and	teal	blue	bars	(obese	BMI),	we	
surmised	again	that	diet	type	more	so	than	
BMI	is	driving	the	gut	microbiota	species	
selection	within	this	study	population

F IGURE  7 Variation	in	Shannon	Index	ENS	values	across	BMI	
categories	and	food	types.	Shannon	Index	ENS	means	and	SD	
per	category	were	normal	BMI	(179.9	±	103.1),	overweight	BMI	
(218.1	±	134.2),	obese	BMI	(228.2	±	134.1),	Total	Food	Scores-		Fresh 
(220.0	±	134.2),	and	Total	Food	Scores-	Processed	(190.2	±	109.7).	No	
statistical	variation	across	groups	was	found	with	a	p	=	.53.	However,	
as	shown	the	obese	BMI	was	associated	with	an	increase	in	ENS	and	
processed	foods	with	a	decrease

F IGURE  6 Bray–Curtis	test	results	for	the	dietary	groups.	
Bray–Curtis	Test	result	revealed	statistically	significant	[p	<	.05]	
dissimilarity	across	the	dietary	groups.	The	healthy	diet	group	is	
shown	in	red,	the	West	diet-	obese	group	shown	in	blue	and	the	West	
diet-	normal	weight	group	shown	in	orange.	Considering	the	cluster	
pattern,	it	is	initially	indicated	that	diet	type,	more	so	than	BMI,	may	
possibly	be	driving	the	diversity	of	gut	microbiota	populations	as	the	
Westernized	diet	groups	are	aligning	along	with	the	healthy	group	
(red)	and	there	is	no	distinct	cluttering	by	BMI
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gut	microbiota	was	greater	than	that	of	an	obese	BMI	(See	Table	9	
for	reference).

6  | DISCUSSION

It	 is	 increasingly	 being	 recognized	 that	 diet	 may	 be	 an	 important	
modulator	of	 gut	microbiota	 (Sonnenburg	&	Bäckhed,	2016).	While	
perturbations	associated	with	small	dietary	changes	on	a	day-	to-	day	
basis	 may	 be	 reversible,	 long-	term	 dietary	 habits	 may	 cause	 more	
long-	lasting	 microbiota	 changes.	 For	 instance,	 long-	term	 intake	 of	
traditional	fiber-	rich	diets	versus	Westernized	fat-	rich	diet	may	have	
more	irreversible	changes,	which	may	be	transferred	over	generations	
(Sonnenburg	et	al.,	2016).	 In	 this	context,	 researchers	are	still	eluci-
dating	the	taxonomic	characteristics	of	a	 ‘healthy’	gut	microbiota	as	
well	as	seeking	to	determine	the	primary	factor,	such	as	the	regular	
consumption	of	processed	food	or	having	an	obese	BMI	that	contrib-
utes	to	gut	microbiome	dysbiosis	and	ultimately	human	disease	causa-
tion	(Sonnenburg	et	al.,	2016).).	Understanding	that	processed	foods	
contain	 an	 excess	 amount	 of	 energy	 and	 that	 such	 foods	 have	 the	
propensity	to	cause	inflammatory	responses,	the	gut	microbiota	genus	
and	species	that	were	once	thought	to	be	‘healthy’,	may	in	fact	be	uti-
lizing	alternative	metabolic	pathways	and	or	inducing	negative	host	or	
gut	microbiota	inflammatory	responses	as	the	host	diet	evolves	from	a	
fresh,	whole	food	diet	to	a	Westernized	diet	type.	Because	gut	micro-
biome	dysbiosis	is	initially	asymptomatic,	these	subtle	changes	within	
the	gut	microbiome	go	unnoticed	by	the	human	host	and	or	their	pri-
mary	care	physicians	until	metabolic	disorders	such	as	overweight	and	
eventually	obesity	occur.	While	many	future	studies	are	necessary	to	
make	any	definitive	conclusions,	our	overall	 findings	suggested	that	
the	specific	dietary	regime	imparts	a	greater	impact	upon	the	B-F	ratio	
and	ultimately	the	collective	diversity	of	the	gut	microbiota	population	
compared	to	an	obese	BMI	(see	Figure	5).	Additionally,	several	find-
ings	gleaned	from	present	study	are	of	significance	to	the	scientific	
community	 in	 fulfilling	 research	gaps	as	our	data	have	 illustrated	 in	
some	instances	contradictory	results	from	those	previously	published,	
and	 in	other	cases	have	helped	move	 forward	 in	understanding	gut	
microbiome	dysbiosis	causation.

6.1 | Species- level investigations

As	 commonly	 found	 among	 individuals	 who	 consume	 a	 diet	 type	
rich	 in	 processed	 foods	 as	well	 as	 in	 those	with	 an	 increased	BMI,	
our	initial	investigations	revealed	that	the	Firmicutes phylum predomi-
nated	the	study	population	at	52.4%	compared	to	the	Bacteroidetes	at	
39.0%	(Sun	&	Chang,	2014).	Contrary	to	published	findings	however,	
we	found	that	the	B	and	F	phyla	were	evenly	distributed	across	the	
study	population.	Additionally,	we	found	the	Firmicutes	phylum	was	
only	statistically	significant	at	the	40.0%	abundance	range	among	the	
normal	weight	BMI,	and	at	the	≤19.99%	abundance	range	within	the	
obese	BMI	group	(see	Table	3)	(Conlon	&	Bird,	2014).	However	at	the	
genus/species	level,	the	Bacteroides spp.	prevailed	with	a	total	abun-
dance	of	18.0%.	While	a	gut	microbiota	population	consisting	of	pre-
dominately	the	Bacteroidetes	phylum	is	considered	to	be	healthy,	here	
we	found	this	phylum	was	most	prevalent	among	OW	or	OB	persons	
who	consumed	a	Westernized	diet	type	(see	Table	7).

Fundamentally,	all	gut	microbiota	possess	the	ability	to	utilize	vari-
ous	dietary-	derived	substrates	in	the	production	of	energy.	Therefore,	
it	was	realized	that	the	abundance	of	a	species	and	or	genus	that	 is	
generally	associated	with	a	healthy	gut	microbiota	population,	could	
in	fact	be	representative	of	an	early	symptom	of	gut	microbiome	dys-
biosis	instead	of	gut	microbiome	health.	Processed	foods	contain	high	
amounts	of	refined	sugars,	fats,	and	carbohydrates,	chemical	additives,	
and	are	low	in	natural	plant	fiber.	These	foods	are	also	disproportionally	
balanced	providing	excess	energy	and	little	nutrition	or	no	nutrition	to	
both	the	gut	microbiota	and	human	host	(Moss,	2013).	Consumption	
of	 such	diet	 type	 is	directly	 associated	with	 the	onset	of	gut micro-
biome endotoxemia	 (Parekh,	Arusi,	Vinik,	&	Johnson,	2014).	With	the	
consumption	of	processed	foods,	gut	microbiome	endotoxemia	is	an	
in vivo	inflammatory	response	occurring	as	the	endotoxin	lipopolysac-
charide	 (LPS),	 releases	 from	the	cell	walls	of	gram-	negative	bacteria	
within	the	gut	microbiota	population	(Darzi,	Frost,	&	Robertson,	2011;	
Puertollano,	Kolida,	&	Yaqoob,	2014;	Rahat-	Rozenbloom,	Fernandes,	
Gloor,	&	Wolever,	2014).	With	these	understandings,	the	abundance	
of	 the	genera/species	shown	 in	Figure	5	and	Table	7	may	 in	part	be	
due	to	the	increased	dietary	energy	associated	with	the	regular	or	over	
consumption	of	processed	food	products.

TABLE  8 Effect	sizes	of	correlations	between	BMI,	Westernized	diet,	and	Alpha	diversity	indices

Shannon ENS Simpson diversity Chao1 Whole tree

Effect Size p - Value Effect Size p - Value Effect Size p - Value Effect Size p - Value
Average Effect 
Size

BMI	 −0.10 .21 0.15 .22 0.06 .53 −0.09 .44 0.16

Total	food	 0.20 .10 −0.14 .23 0.10 .43 0.14 .24 0.16

Fresh	food	 0.22 .06 −0.20 .1 0.08 .51 0.09 .50 0.17

Processed 0.21 .08 −0.18 .14 0.12 .33 0.07 .60 0.17

24 hr 0.08 .51 0.04 .73 0.05 .70 0.14 .25 0.30

Fav	foods	 0.22 .06 0.04 .74 0.04 .74 0.07 .56 0.31

Pearson’s	Correlation	statistics	was	performed	for	each	alpha	diversity	matrix	to	determine	the	correlation	between	increased	BMI,	food	scores,	and	de-
creased	ENS.	As	indicated,	no	test	resulted	in	a	p	-	value	of	any	statistical	significance	with	the	values	ranging	from	0.06	to	0.74.	However,	there	was	vari-
ation	found	between	correlations	in	terms	of	effect	size,	ranging	from	0.04	to	0.23.
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Specifically,	 the	Bacteroidetes	 are	 exceptional	 dietary	 energy	 ex-
tractors	with	the	capability	to	degrade	both	plant	and	refined	carbohy-
drates	by	using	carbohydrate-	processing	enzymes	(CAZymes)	(Thomas	
et	al.,	2011).	The	higher	abundance	of	the	Bacteroides spp.	found	here,	
may	be	occurring	because	despite	of	the	increased	BMI	the	majority	of	
study	participants	are	consuming	a	diet	of	energy	dense,	carbohydrate	
rich	processed	foods,	as	indicated	by	their	low	total	food	scores.	The	
F. prausnitzii	 is	also	thought	to	be	a	beneficial	probiotic	species	as	 it	
stimulates	the	expression	of	the	anti-	inflammatory	cytokine	interleukin	

10	(Walker	et	al.,	2010).	The	F. prausnitzii	prevalence	here	could	poten-
tially	be	contributing	to	human	health	 through	 its	anti-	inflammatory	
capabilities	 as	 the	 consumption	of	 a	Westernized	diet	 type	 induces	
the	onset	of	gut microbiome endotoxemia	which	involves	the	activation	
of	many	host	and	or	gut	microbiota	inflammatory	responses	(Bäckhed	
et	al.,	 2012;	Heinken	 et	al.,	 2014;	Tremaroli	 &	 Bäckhed,	 2012).	The	
genus Blautia	 is	 an	 acetogen	 bacterium	 that	 can	 utilize	 a	variety	 of	
substrates	including	sugars	or	other	organic	substrates	(Muller,	2003).	
Again,	 the	 individuals	 harboring	 this	 group	 all	 have	 negative	 food	
scores,	with	one	participant	having	a	total	food	score	of	−1425.0;	this	
score	indicating	that	the	participant	consumed	highly	processed	foods	
and	sugared	beverages	>11/week	as	their	primary	diet.	The	presence	

F IGURE  8 Pearson	correlation	between	increased	BMI	and	
increased	Shannon	Index	ENS.	Pearson	Correlation	[p	=	.213].	Even	
though the test p-	value	was	not	statistically	significant,	the	cluster	
pattern	of	the	results	provided	valuable	evidence	of	the	relationship	
between	BMI	and	ENS.	As	highlighted	within	the	box	outline,	the	
lowest	ENS	diversity	(≈40	to	250	ENS)	is	associated	with	the	lowest	
and	highest	weights.	These	findings	suggest	that	a	factor	other	than	
weight	(BMI)	could	be	driving	total	population	diversity	of	the	gut	
microbiota

F IGURE  9 Pearson	correlation	between	total	food	scores	and	
Shannon	Index	ENS.	Pearson	Correlation	[p	=	.10].	As	highlighted,	
there	is	more	clustering	around	a	negative	food	score	and	lower	
ENS.	While	there	are	positive	food	scores	associated	with	lower	ENS	
(≤350),	the	fresh	food	scores	are	primarily	low	which	indicated	the	
consumption	of	minimally	processed	foods	and	within	this	particular	
study	population,	the	higher	fresh	food	scores	(>1000)	are	not	
indicative	of	a	completely	fresh	diet	type

F IGURE  10 Pearson	correlation	between	frequency	of	fresh	
food	consumption	and	Shannon	Index	ENSPearson	Correlation	
[p	=	.06].	The	fresh	food	consumption	scores	shown	along	Y-	axis	are	
low	indicating	low	frequency	of	consumption	of	fresh,	whole	foods.	
As	highlighted,	the	lower	ENS	of	≤250	is	associated	with	lower	
consumption	of	fresh	food.	Alternately,	the	higher	ENS	is	associated	
with	an	increased	consumption	of	fresh,	whole	foods

F IGURE  11 Pearson	Correlation	between	frequency	of	processed	
food	consumption	and	Shannon	Index	ENS.	Pearson Correlation 
[p = .077].	As	shown	within	the	boxed	area,	frequent	processed	food	
consumption	indicated	by	the	low	negative	values	ranging	from	-	350	
to	-	875	along	the	Y-	axis,	is	associated	with	lower	ENS	(≤250).
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of	Blautia	could	be	an	indication	of	increased	consumption	of	refined	
sugars	and	or	refined	carbohydrates.	In	terms	of	human	health,	could	
also	be	an	indication	of	gut	microbiome	dysbiosis.

The Lachnospiraceae	family	and	Prevotella copri	species	have	both	
been	 associated	 with	 human	 disease	 including	 overweight,	 obe-
sity,	and	 intestinal	disorders	 (Meehan	&	Beiko,	2014).	Nevertheless,	

species	of	the	Lachnospiraceae	family	are	also	thought	to	be	beneficial	
to	 the	 human	 host	 through	 the	 production	 of	 the	 short-	chain	 fatty	
acid	butyric	acid	 (as	butyrate),	 reported	to	reduce	chronic	 inflamma-
tory	conditions	and	the	risk	of	colon	cancer.	While	the	Lachnospiraceae 
family	has	been	associated	with	 an	obese	BMI,	here	we	 found	 that	
the	OW	and	OB	participants	in	this	group	consumed	highly	processed	
foods	as	indicated	by	the	total	food	scores	of	−1424.95,	−550.0,	and	
−58.75.	The	presence	of	Lachnospiraceae	among	these	individuals	may	
be	indicative	of	the	response	to	the	increased	consumption	of	highly	
processed	foods	resulting	in	a	need	by	human	and	or	gut	microbiota	to	
reduce	the	inflammatory	conditions	within	the	host	(Butyrates,	2016).	
Lastly,	 it	has	been	reported	that	the	presence	of	the	species	P. copri 
is	 associated	with	 a	 reduction	 in	 the	 prevalence	 of	 the	Bacteroides 
and	other	beneficial	gut	microbiota	as	well	as	with	the	pathogenesis	
of	human	disease	 (Scher	et	al.,	2013).	 Individuals	 in	 this	group	were	
normal	weight	 (NW),	all	with	 low	total	food	scores.	The	presence	of	
species	such	as	P. copri,	 could	be	 indicative	of	early	gut	microbiome	
dysbiosis	occurring	as	the	 individuals’	diet	evolves	to	a	Westernized	
diet	type,	but	before	systemic	adiposity	manifests	as	overweight	and	
eventually	obesity.

6.2 | Hypothesis testing

Through	the	use	of	an	effect	size-	based	hypothesis	test	investigation,	
we	found	concluding	evidence	suggesting	that	a	Westernized	dietary	
regime	had	a	greater	influence	upon	the	taxonomic	characteristics	of	
the	gut	microbiota	more	so	than	an	overweight	or	obese	BMI	(Chan,	
Estaki,	 &	 Gibson,	 2013;	 Davenport	 et	al.,	 2015;	 Festi	 et	al.,	 2014).	
Initial	Pearson’s	Correlation	test	p-	values	did	not	provide	any	statis-
tically	significant	results	when	comparing	the	association	of	a	 lower	
Shannon	Index	effective	number	of	species	with	an	increased	(obese)	
BMI	 and	 processed	 food	 consumption.	 However,	 testing	 the	 study	
hypothesis	we	concluded	that	Westernized	diet	type	with	an	effect	
size	of	0.22	had	a	greater	effect	upon	gut	microbiota	diversity	than	
increased	 BMI	with	 effect	 size	 of	 0.16.	 Collectively,	 study	 findings	
suggested	that	using	such	parameter	provides	a	more	accurate	rep-
resentation	 in	 investigating	bioinformatics	 and	participant	metadata	
as	well	as	how	some	of	these	factors	in	turn,	contribute	to	the	causa-
tion	of	gut	microbiome	dysbiosis	(Debelius,	2015;	Greenhalgh,	Meyer,	
Aagaard,	 &	 Wilmes,	 2016;	 Morgan	 &	 Huttenhower,	 2012;	 Shetty,	
Marathe,	&	Shouche,	2013).

6.3 | Study limitations

As	 the	 Westernized	 dietary	 regime	 has	 become	 a	 common	 staple	
within	the	United	States,	there	is	increasing	interest	in	understanding	
the	role	of	diet	in	gut	microbiome	in	human	disease	causation	as	well	
as	a	factor	that	can	potentially	impact	future	gut	microbiome	studies	
(Debelius,	 2015).	However,	 it	 is	 a	 challenge	 to	 identify	 appropriate	
comparison	groups	 to	 investigate	 the	effects	of	 a	Westernized	die-
tary	regime.	The	Amish	population	who	reside	within	the	small	town	
of	Faunsdale,	Alabama	 (total	 town	population	of	95)	 is	one	promis-
ing	 group	 that	 has	 a	 unique	 lifestyle	 compared	 to	 the	 general	 U.S.	

F IGURE  12 Pearson	correlation	between	24-	hr	diet	and	
Shannon	Index	effective	number	of	species.	Pearson	Correlation	
[0.079; p	=	.507].	As	indicated	by	the	area	highlighted	by	the	outline,	
the	lowest	effective	number	of	species	is	associated	with	the	
consumption	of	processed	foods.	To	gain	a	perspective	of	how	fresh	
the	foods	were	in	positive	range,	the	highest	obtainable	fresh	food	
score	within	present	study	(e.g.,	implying	only	fresh,	whole	foods	and	
no	processed	foods	are	consumed)	was	2650.00

F IGURE  13 Pearson	correlation	between	favorite	foods	and	
Shannon	Index	effective	number	of	species.	Pearson	Correlation	
[p	=	.06].	As	other	results	have	shown,	the	lowest	ENS	has	a	greater	
association	with	the	consumption	of	processed	foods	than	with	
fresher	foods.	This	is	further	evident	considering	that	the	highest	
food	score	here	of	990	indicates	the	consumption	of	more	minimally	
processed	foods	than	fresh,	whole	foods	as	the	highest	obtainable	
fresh	food	score	across	the	food	categories	(>2000).	The	highest	
obtainable	fresh	food	score	within	present	study	was	2650.00	
implying	only	fresh,	whole	foods	and	no	processed	foods	are	
consumed
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population.	While	 Amish	 group	 was	 reluctant	 to	 participate	 in	 this	
study,	as	shown	in	supplemental	material	Attachment	2,	a	family	from	
that	group	was	willing	to	discuss	with	us	their	traditions	and	lifestyle.	
As	we	spoke	over	lunch	however,	it	was	apparent	that	consumption	of	
processed	foods	is	inevitable	even	among	groups	who	have	tradition-
ally	refrained	from	consuming	such	foods	(Cuyun	Carter	et	al.,	2011).	
In	general,	the	larger	the	sample	size,	the	better	will	be	the	interpreta-
tion	of	the	reported	effects.	Importantly,	to	realize	the	power	of	both	
the	effect	size	and	p-	value	in	interpretation	of	reported	effects,	future	
extension	of	this	initial	study	to	a	larger	cohort,	which	may	help	im-
prove the p-	values,	may	be	pursued.

Another	major	 challenge	within	 present	 study	was	 the	 fact	 that	
gut	microbiome-	based	studies	have	historically	been	technologically	
driven	with	stool	sample	data	being	gathered	and	analyzed	without	re-
gard	for	inclusion	of	participant	metadata	and	a	standardized	approach,	
making	 cross-	comparison	 and	 investigations	 into	 disease	 causation	
difficult.	Therefore,	it	has	been	suggested	that	future	gut	microbiome	
studies	capture	more	metadata	that	can	be	used	to	better	understand	
the	overall	functionally	of	the	gut	microbiota	and	to	assist	scientists	
in	 gaining	 applicable	 bioinformatics	 data	 in	 terms	 of	 human	 health	
and	or	gut	microbiome	dysbiosis	 causation	 (Gevers,	Pop,	Schloss,	&	
Huttenhower,	2012;	Marchesi,	2014;	Morgan	&	Huttenhower,	2012;	
Nguyen,	Vieira-	Silva,	Liston,	&	Raes,	2015).	 In	this	context,	we	tried	
to	collect	as	much	metadata	as	was	 feasible.	However,	 the	greatest	
limiting	factor	of	gut	microbiome	studies	still	 lies	within	overcoming	
the	quantum	physics	observer	effect	theory,	suggesting	that	the	very	
act	of	observation	affects	the	reality	of	that	which	is	being	observed.	
This	theory	applies	to	present	study,	as	it	is	difficult	to	obtain	a	sample	
of	the	gut	microbiome	of	an	individual	without	the	use	of	an	invasive	
method	that	potentially	disturbs	the	biofilms	encasing	gut	microbiota	
that	are	attached	to	the	intestinal	walls.	While	obtaining	a	stool	sam-
ple	is	noninvasive	and	easily	carried	out	by	the	participant,	researchers	
are	ultimately	getting	only	limited	insight	into	the	true	dynamics	of	the	
core	gut	microbiota	(Staley,	1997).

7  | CONCLUSIONS

The	study	demonstrates	that	the	Bacteroidetes-	Firmicutes	abundance	
percentage	 chosen	by	 an	 investigator	 could	 influence	 the	overall	 in-
terpretation	 of	 the	 findings,	 considering	 that	 both	Bacteroidetes	 and	
Firmicutes	phyla	were	associated	with	processed	and	fresh	food	con-
sumption	as	well	as	with	an	increased	BMI.	To	better	understand	which	
of	these	factors	(e.g.,	processed	food	or	obese	BMI)	is	influencing	the	
taxonomic	structure	of	the	gut	microbiota,	the	use	of	the	effect	size	sta-
tistic	proved	necessary.	Overall,	we	also	demonstrated	that	without	the	
incorporation	of	participant	metadata	and	universal	effect	size	values,	
it	is	difficult	to	hone	in	upon	what	biological	or	environmental	factors	
are	actually	impacting	the	gut	microbiota.	The	use	of	these	methodolo-
gies	within	this	study	 led	to	the	final	conclusion	that	processed	food	
consumption	has	a	greater	influence	upon	the	gut	microbiota	structure	
and	was	associated	with	lower	ENS	diversity	of	the	population,	more	so	
than	an	increased	BMI	(Ravel	et	al.,	2014;	Faloney	et	al.,	2016;	Forum	1,	

2013).	Additionally,	present	study	has	provided	a	deeper	understand-
ing	of	gut	microbiome	dysbiosis	and	human	obesity	causation	and	our	
findings	 along	with	 subsequent	 future	 studies	may	 set	 the	 stage	 for	
streamlining	 gut	microbiome	 investigations	 through	use	of	 standard-
ized	 approaches	 and	 methodologies;	 such	 developments	 would	 be	
serving	as	a	springboard	to	reaching	the	next	level	of	understanding	of	
role	of	gut	microbiome	in	causation	of	human	disease.
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