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DEFB-TP5 is a novel auspicious health-beneficial peptide derivative from two naturally
occurring peptides, b-Defensin (DEFB) and thymopentin (TP5), and shows strong anti-
inflammatory activity and binds to LPS without cytotoxicity and hemolytic effect.
Furthermore, the application of DEFB-TP5 peptide is inadequate by its high cost. In the
current study, we developed a biocompatible mechanism for expression of the DEFB-TP5
peptide in Pichia pastoris. The transgenic strain of hybrid DEFB-TP5 peptide with a
molecular weight of 6.7kDa as predictable was obtained. The recombinant DEFB-TP5
peptide was purified by Ni-NTA chromatography, estimated 30.41 mg/L was obtained
from the cell culture medium with 98.2% purity. Additionally, The purified DEFB-TP5
peptide significantly (p< 0.05) diminished the release of nitric oxide (NO), TNF-a, IL-6, IL-
1b in LPS-stimulated RAW264.7 macrophages in a dose-dependent manner. This study
will not only help to understand the molecular mechanism of expression that can
potentially be used to develop an anti-endotoxin peptide but also to serve as the basis
for the development of antimicrobial and anti-inflammatory agents as well, which also
provides a potential source for the production of recombinant bioactive DEFB-TP5 at the
industrial level.

Keywords: expression, hybrid peptide, b-defensins, endotoxin, anti-inflammatory
INTRODUCTION

Recently, about 500 antipathogenic natural peptides have been revealed to show potential actions
against microbes. Segregation of these peptides has been done from an extensive variety of
organisms such as vertebrates, invertebrates, bacteria, plants and fungi (Hancock and Chapple,
1999; Shah et al., 2017). Antimicrobial peptides (AMPs) were reflected in one of the exceptional
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preferences to use as a substitute or in combination with
conventional therapeut ics . The l imited number of
antimicrobial, anti-endotoxin, immunomodulatory and anti-
inflammatory agents have prompted and reinforced the urgent
need to search and identify new compounds. These therapeutic
agents’ origin-based antimicrobial peptides work by a novel
mechanism of action (Weinstein, 1998; Jones, 2001).
Antimicrobial peptides (AMPs) are small in size and that are
part of the innate immune system (Zasloff, 2002; Martin et al.,
2015; Brandenburg et al., 2016). AMPs can moderate the host
immune response including the conscription of immune cells to
the s i t e o f in fe c t ion (Hi l ch i e e t a l . , 2013) . The
immunomodulatory, and anti-inflammatory properties of
AMPs can be exploited to treat inflammation and sepsis (Hu
et al., 2014; Martin et al., 2015; Matzneller et al., 2017).

b-defensins (DEFB) are the most important components of
the immune system and constitute an innate immune defense
against an array of enveloped viruses, fungi and bacteria
(Weinstein, 1998; Jones, 2001; Eliopoulos et al., 2003; Yi et al.,
2014). b-defensins also play various functional roles apart from
these common features, including immunomodulatory and
chemotaxis effects to immune cells (Garcı ́a et al., 2001;
Niyonsaba et al., 2002; Brogden et al., 2003). These outcomes
in the obstruction and perforation of the bacterial membrane,
cytoplasmic leakage of organelles and bacterial cell death (Gough
et al., 1996; Hancock and Chapple, 1999). b-defensins may be
acting as ideal candidates for the manufacturing of antibiotics
because of their broad microorganism-killing spectrum. b-
defensins, function as chemotactic agents for activated
neutrophils, macrophages, immature dendritic cells,
monocytes, and memory helper T cells (VanderMeer et al.,
1995; Scott et al., 2000; Bhattacharjya, 2010), as they impart
connection between the innate and adaptive immune system by
providing an immunologic response to microbial infection.

Cationic AMPs are evolutionary antique components that
impart a role in the innate immune system by blocking several of
the actions of LPS (Hancock and Lehrer, 1998). Synthetic and
naturally occurring AMPs have a potential ability to lyse bacteria,
bind the LPS and reduce the production of nitric oxide (NO), IL-
1b, IL-6, TNF-a and other inflammatory mediators (Gough
et al., 1996). Unforeseen, according to previous observations,
DEFBs have reasonably low LPS-neutralization potency (Scott
et al., 2000; Bhattacharjya, 2010; Semple et al., 2010). Therefore,
there is a desire need to hybridize DEFB peptide along with
immunomodulatory peptide TP5 to enhance the efficacy. The
biological activity to thymopentin is reproduced by a synthetic
pentapeptide thymopentin (TP-5) whose amino acid sequence
corresponds to the region 32-36 of the native hormone (Arg-Lys-
Asp-Val-Tyr) (Goldstein et al., 1979). TP5 has been successfully
used in humans for the treatment of Immunological parameters
in neoplasmic, immune deficiency and autoimmune diseases
(Goldstein et al., 1979; Singh et al., 1998). Furthermore, TP5
also contains a particular value in humans with certain recurrent
viral diseases (Sundal and Bertelletti, 1994; Fan et al., 2006).

However, the high expense of peptide construction limits its
synthesis. The development of peptide antibiotics is challenging
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to formulate on a scalable and cost-effective method to produce
active commercially based products. The application of
recombinant heterologous expression methods for peptides is a
solution to this problem. The heterologous protein expression
system methylotrophic Pichia pastoris (P. pastoris) has been used
extensively (Cereghino and Cregg, 2000). P. pastoris is
economical for large scale expression its comprises of alcohol
oxidase-1 (AOX1) gene promoter which is repressed by glucose
and glycerol and induced by methanol (Sreekrishna et al., 1997).

However, to date, there have been no studies in which the
DEFB-TP5 peptide has been expressed in the P. pastoris system.
In the present study, we assumed that the combination of DEFB
(39 amino acid) and TP5 (5 amino acid) may have amplified LPS
neutralization, inhibit the growth of Gram-negative bacteria,
anti-inflammatory action along with minimum cytotoxic
properties. Consequently, we incorporated and expressed the
hybrid peptide DEFB-TP5, in the yeast expression system and
explored its activities.
MATERIALS AND METHODS

Materials
Strains, Vectors, and Reagents
The expression and cloning plasmid pPICZaA, strain E.coli
DH5a, strain Pichia pastoris X-33 and Zeocin™ were bought
form (Invitrogen, Carlsbad, CA, USA). The restriction enzyme
EcoR I, Not I, Sac I (TaKaRa Biotechnology, Dalian, China) and
PCR reagents, DNA Marker (50 and 100 bp) were purchased
from Tiangen Biotech (Beijing, China). The E.coli LPS (O55: B5)
was obtained from Sigma (USA). The Gel Extraction kit, Plasmid
Mini kit, Yeast DNA extraction kit, and Protein markers (Sangon
Biotech, Shanghai, China) were regularly used in our
research laboratory.
Construction of Recombinant Expression
Plasmid pPICZaA-DEFB-TP5
The preferred codons of P.pastoris based on the novel DEFB-TP5
peptide amino acid sequence were selected and optimized via
JAVA codon adaptation tool (JCAT) http://www.jcat.de/Start.
jsp). The two oligonucleotides (184 bp) analogous to the partial
sequence (sense and antisense) strands of the DNA sequence
were synthesized. A restriction site was allowed for the
expression of native N-terminus of DEFB-TP5 and introduced
in-frame cloning into the a-factor secretion signal of the
pPICZa-A expression vector. At the C-terminus stop codon
and Not I restriction site was placed with 6×His-tagged. The full-
length DNA template (DEFB-TP5) was procured by using
primers (P1. (5′ CGCGGATCCAACTGGTACGTTAAGA-3′;
P2. 5′ TCCCCCGGGTCAATGATGATGATG-3′) and PCR (35
cycles 94 ˚C for the 5min; 94 ˚C for the 30s; 55 ˚C for 30s, 72 ˚C
for 50 s) and a final cycle at 72 ˚C for 10 min. The PCR product
which encodes DEFB-TP5 peptide was digested with EcoR I and
Not I enzymes and ligated into the EcoR I/Not I-digested
pPICZa-A. This recombinant expression vector (pPICZaA-
May 2020 | Volume 11 | Article 461
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DEFB-TP5) was transformed into competent E. coli DH5a and
confirmed by sequencing.

Selection and Transformation of pPICZaA-
DEFB-TP5 Into P. pastoris
The P. pastoris X-33 cells were metamorphosed and expression
plasmid was linearized earlier by Sac I followed electroporation
manufacturer’s instructions. An alone pPICZa-A vector was also
inserted into P. pastoris X-33 cells which represented as a
negative control. After transformation, allow to grow zeocin-
resistant colonies in YPDS medium (1% yeast extract, 2%
peptone, 2% dextrose, 1 M sorbitol,2% agar, and 100 μg/ml
Zeocin). Later, PCR and sequencing were used to define the
DEFB-TP5 coding sequence insertion in the genome of host cells
by a screening of the resistant colonies.

Expression of Recombinant Hybrid
DEFB-TP5 Peptide Into P. pastoris
The recombinant hybrid DEFB-TP5 was expressed by applying
the optimal condition (0.5% methanol v/v, pH 5.5, and
temperature 28 ˚C) in Buffered Methanol-Complex medium
(BMMY). The positively transformed yeast cells were cultured
for about 20 h in a shaking flask comprising 50ml Buffered
Glycerol Complex Medium (BMGY, 1% yeast extract,2%
peptone, 100mM potassium phosphate buffer, pH 5.0, 1.34%
YNB, 4 × 10-5% biotin, and 1% glycerol) to OD600 = 4.0. Cells
were garnered by centrifugation at 2000 × g for 8 min at room
temperature and resuspended to an OD600 of 1.0 in BMMY
medium (1% yeast extract, 2% peptone, 100mM potassium
phosphate buffer, pH 5.0, 1.34% YNB, 4 ×10-5% biotin, and
0.5% methanol) to induce expression of the recombinant
peptide. After 144 h methanol induction, 50μL expression
medium was proceeded and analyzed by Tricine-sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-
SDS-PAGE). The concentrations were determined through
Bradford method by using bovine serum albumin as standard
(Bradford protein assay kit, Sangon Biotech, Shanghai, China
(Ausubel et al., 1999).

Purification of Recombinant Hybrid DEFB-
TP5 Peptide
Purification of the recombinant hybrid peptide was done by Ni-
NTA column method with slight modification as previously
described (Wei et al., 2018). The expressed culture medium
centrifuged (12,000 × g for 20 min at 4 ˚C) and the
supernatant was collected. The 0.45mm filter membrane was
used to filter the collected supernatant and dialyzed several times
with 3 volumes of binding buffer (20mMNaH2PO4,
300mMNaCl, 10mM imidazole, pH 7.4) to eliminate the
medium components. The column was equilibrated with a
binding buffer that was earlier charged with NiCl2 and then
filtered supernatant applied to Ni-NTA column overnight at 4
˚C. Furthermore,with the help of washing buffer 1 (20mMNa
H2PO4, 300mMNaCl, 20mMNaCl, 20mMimidazole, pH 7.4)
and washing buffer 2 (20mMNaH2PO4, 300mMNaCl, 60mM
imidazole, pH 7.4), column was rinsed successively. The certain
Frontiers in Pharmacology | www.frontiersin.org 3
peptide was eluted with 1 ml elution buffer (20m NaH2PO4, 300
mM NaCl, 400 mM imidazole and 500 mM imidazole with pH
7.4) for five times. Tricine-SDS-PAGE, silver staining, and
Bandscan 5.0 software were used to analyze the eluted fractions.

Efficacy of Hybrid DEFB-TP5 Peptide on
Gram-Negative Bacteria
The antimicrobial activity of DEFB-TP5 was tested against E.coli
C 84002 by the agar diffusion method. The indicator strain
dilution was spread on Mueller-Hinton broth (MHB) plates.
Cylinders were located on the agar surface and 100 mL of purified
recombinant DEFB-TP5 and D-PBS was added to each cylinder.
Ampicillin (100 U) was used as a positive control and the
inhibition zone was measured after overnight incubation at 37°C.

Determination of Lipopolysaccharide (LPS)
Neutralization
Chromogenic Limulus amebocyte lysate (LAL) assay was used to
evaluate the neutralization of LPS by the parental (TP5) and
hybrid (DEFB-TP5) peptide. LPS (1EU/ml) and different
concentrations of peptides (0 to 60μg/ml) were incubated at
37°C. To the LAL reagent, an equal volume of 50 μL aliquots of
the mixture was added, and then the resulted mixtures were
incubated for 10 min at 37°C. Upon the addition of 100μL of a
chromogenic substrate solution, the development of yellow color
appears. HCl was then added in order to stop the reaction and
absorption was measured at 545 nm (Kim et al., 2011; Ahmad
et al., 2019).

Hemolytic Activity
The hemolytic activity of TP5 and DEFB-TP5 was indomitable
by using heparinized mouse red blood cells (RBCs) as described
earlier (Shahid et al., 2017; Ahmad et al., 2019). The 4mL fresh
mouse RBCs were centrifuged (1500 rpm for 10 min at 4°C) and
washed three times with diluted 10% hematocrit. The
recombinant DEFB-TP5 peptide was dissolved in phosphate-
buffered saline (PBS) with various concentrations (30 to 60μL)
and incubated for 1 h at 37°C. The sample was centrifuged (at
3500 rpm for 5 min) and absorbance (Abs) of the supernatant
was measured at 414 nm.

% hemolysis =
Abs 414 of a sample  –  Abs 414 of negative control  PBSð Þ �  100

Abs 414 of positive control  Triton −  X100ð Þ

Cell Culture
The mouse macrophage (RAW264.7) cells were cultivated in
Dulbecco’s Modified Eagle Medium (DMEM) to amplify with
antibiotics (100 μg/ml streptomycin and 100U/ml penicillin) and
10% fetal calf serum under an atmosphere containing 5% CO2 in
a humified chamber.

Lactate Dehydrogenase Activity (LDH)
Assay
In order to evaluate the cytotoxic influence of LPS, TP5 and
DEFB-TP5 on RAW 264.7, macrophage LDH kit (Dojingdo
Laboratories, Kumamoto, Japan) assay were used. The cells (1
May 2020 | Volume 11 | Article 461
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× 105 cells/mL) were infected by LPS alone (1 μg/ml), TP5+LPS
and DEFB-TP5 + LPS (30 to 60 μg/ml) for about 24 h. After
incubation, the supernatants were collected and analyzed
according to manufacturers’ instructions (Ahmad et al., 2019).
Inhibition of Nitric Oxide (NO) Production
in LPS-Stimulated RAW264.7
Macrophages
The murine RAW264.7 cells were incubated with LPS only (1 μg/
ml) and LPS plus the different concentrations of parental and
hybrid peptides (30 to 60 μg/ml). NO production was
determined by the collected supernatant. A 100 μL aliquot of
the culture medium was mixed with the same volume of Griess
reagent (1%sulfanilamide in 5% phosphoric acid and 0.1%
naphthylethylene diamine dihydrochloride) and further
incubated for 15 min (Green et al., 1982). The secretion of NO
was measured at 550 nm by using an enzyme-linked
immunosorbent assay (ELISA) reader.
Evaluation of Pro-inflammatory Cytokines
in LPS-Induced Murine RAW264.7
Macrophages
After the infection of LPS (1μg/ml) to RAW 264.7 cells (5x105/
well), in the presence or absence of TP5 and hybrid DEFB-TP5
peptide (30 to 60μg/ml). The expression level of a
proinflammatory cytokine TNF-a, IL-1b and IL-6 were
accessed by using ELISA kit (could-clone corp, Houston,
USA). The levels were quantified at 450 nm absorbance.
Statistical Analyses
All the data were presented as mean ± S.D. For statistical
analysis, one-way analysis of variance (ANOVA) and Duncan’s
multiple range tests were used and carried out with SPSS 19.0
(SPSS Inc., Chicago, IL, USA). Differences with a P < 0.05 and P <
0.01 were considered statistically significant.
Frontiers in Pharmacology | www.frontiersin.org 4
RESULTS

Construction of Expression Recombinant
Plasmid pPICZaA-DEFB-TP5
The recombinant DEFB-TP5 gene was amplified by PCR, it was
tagged with 6 × Histadine at C-terminal that facilitate the
upcoming peptide purification. At 5′and 3′end, the restriction
enzyme EcoR I and Not I was attached. The DEFB-TP5 peptide
was synthesized and inserted into pUC57vector after double
digested with EcoR I and Not I. This fragment was cloned in the
frame of the a-factor secretion signal, downstream of the AOX1
promoter of the P. pastoris expression plasmid pPICZaA to
outcome in expression vector named pPICZaA-DEFB-TP5. The
correction of the insertion was then confirmed by PCR and direct
nucleotide sequencing (data not shown). The construction
process of pPICZaA-DEFB-TP5 as shown in (Supplementary
Figure 1).

Expression and Purification of Hybrid
DEFB-TP5 Peptide
The expression plasmid pPICZaA-DEFB-TP5 was linearized
with Sac I and transferred to P. pastoris X-33 by
electroporation. Ninety-two Zeocin-resistant transformants
were screened through colony-PCR. Our results revealed that
all positive transformants had the target DEFB-TP5 sequence
and successfully incorporated into the host cells. These
recombinant DEFB-TP5 positive colonies were induced by
adding 0.5% pure methanol to express peptide for a
continuous six days. The recombinant peptide started to be
detected at 24 h post-induction and the signal peptide had
been removed from the N-terminus and secreted into the
culture medium (Figure 1A). The hybrid DEFB-TP5 peptide
was purified by the NI-NTA chromatography column. The pure
recombinant hybrid peptide was eluted with 400mM and 500
mM imidazole which seemed like a single band with a molecular
weight of approximately 6.7 kDa as expected on SDS-PAGE
followed by silver staining as presented in (Figure 1B). The yield
A B C

FIGURE 1 | Tricine-SDS-PAGE and analysis of recombinant peptide, (A) Tricine-SDS-PAGE of the cell culture media from P.pastoris expressing secreted DEFB-
TP5. Lane M, mass weight markers; Lane C, control (blank PpICZaA and X-33 strain); Lane 1 to 7 (supernatant X33/PpICZaA-DEFB-TP5) peptide expression after
methanol (12 to 144 h) induction and arrow in the lane indicated 6.7 kDa peptide (B) Tricine-SDS-PAGE of Purified secreted recombinant hybrid peptide DEFB-TP5.
Lane M, mass weight markers; Lane C, control (blank PpICZaA and X-33 strain); Lane 1-6 purified X33/DEFB-TP5 extract with different concentrations of imidazole
and arrow in the lane indicated 6.7 kDa (400 and 500mm imidazole) polypeptide. (C) The antimicrobial activity of recombinant DEFB-TP5 against E.coli C 84002, A:
100 U Ampicillin sodium, B: recombinant hybrid DEFB-TP5 peptide (concentration 5mg/L), C: The negative control, sodium phosphate buffer (PBS).
May 2020 | Volume 11 | Article 461

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Ahmad et al. Hybrid DEFB-TP5 peptide bind LPS
of purified peptide was approximately 30.41mg/L assessed by the
BSA method (Supplementary Figure 2). The 200 ml pure
peptide was further subjected to RP-HPLC to determined the
purity of the hybrid peptide. Our results revealed 98.2% purity
and the eluted peaks retention time was 12.631 min
(Supplementary Figure 3). Furthermore, the recombinant
DEFB-TP5 pept ide sequence ident ified by LC-MS
(Supplementary Figure 4).

Antimicrobial Susceptibility Towards
Gram-Negative Bacteria
The hybrid DEFB-TP5 has been evaluated against common
bacterial pathogens by using the agar well diffusion method.
The purified hybrid DEFB-TP5 peptide (5 mg/mL) revealed high
efficacy against E.coli C84002 as compared with ampicillin and
control. These results provide evidence that recombinant hybrid
DEFB-TP5 introverted the growth of Gram-negative bacteria
(Figure 1C).

Neutralization of LPS
We predicted that the recombinant hybrid DEFB-TP5 bind LPS
because under a physical situation it has a positive net charge.
The Chromogenic End-point Tachy plus Amebocyte Lysate (CE
TAL) assay is an immense indicator of the existence of free non-
neutralized endotoxin. We investigated the ability of hybrid
peptide to neutralize LPS by using this assay. Our result
demonstrated that TP5 (50 and 60 μg/ml) was adept at
neutralizing LPS (34.66% ± 0.471, 37.20% ± 0.816%
respectively) and DEFB-TP5 (78.23% ± 3.125 and 98.95% ±
4.136 respectively) in a dose-dependent manner (Figure 2A).
Comparatively, hybrid DEFB-TP5 peptide significantly (p <
0.05) increased the neutralization of LPS than a parental peptide.

Cytotoxicity and Hemolytic Activity
A possible constraint to the development of the recombinant
hybrid DEFB-TP5 peptide as antibiotics is their potential to
cause cytotoxicity and damage the mammalian cells. To assess
Frontiers in Pharmacology | www.frontiersin.org 5
this limitation, we examined their cytotoxic and hemolytic
capability towards LPS-infected murine RAW264 macrophages
and lyse mouse erythrocytes. Our cytotoxicity assay exposed that
only the LPS-infected group released a significantly higher level
of LDH (3.14 ± 0.071) at 24h as compared with the collective
treatment of LPS and DEFB-TP5 peptide (30 to 60 μg/ml), and
control group. This result specifies that LPS seriously damaged
the murine RAW264.7 macrophages but various concentrations
of hybrid DEFB-TP5 peptide significantly neutralized the LPS
and reduced the LDH level (2.33 ± 0.065) at 50μg/ml, (2.03 ±
0.045) at 60μg/ml respectively (Figure 2B). Moreover, the hybrid
peptide reduced LPS-induced cytotoxicity more than
parental peptide.

In case of hemolysis, the hybrid peptide treated cells perceived
significantly (p < 0.001) 0% hemolysis as compared with the
control group (Figure 2C). Notably, these outcomes provide
evidence that parental and hybrid DEFB-TP5 peptide doesn’t
have broadly cytotoxic and hemolytic properties.

Inhibition of NO and Inflammatory
Cytokines Production in LPS-Stimulated
Murine RAW264.7 Macrophages
To further investigate the anti-inflammatory activity of DEFB-
TP5 peptide, we measured the NO production in LPS-infected
RAW264.7 macrophages. As shown in Figure 3A the
recombinant hybrid peptide significantly (p< 0.05) inhibited
NO production (35 μM at 50 μg/ml and 26 μM at 60 μg/ml) in
a dose-dependent manner in LPS-stimulated RAW264.7 cells.
Furthermore, to identify the anti-inflammatory activities of
hybrid DEFB-TP5 peptide, we measured the capability to
diminish proinflammatory cytokines production in LPS-
induced RAW264.7 macrophages. Cells were treated with
recombinant DEFB-TP5 peptide at (30 to 60 μg/ml) and TNF-
a, IL-6, and IL-1b were measured and compared with the
controls group. However, the recombinant hybrid DEFB-TP5
peptide exhibited most proficiently inhibition of TNF-a (701 pg/
ml at 50 μg/ml and 603 pg/ml at 60 μg/ml respectively) shown in
A B C

FIGURE 2 | LPS neutralization, cytotoxicity, and hemolytic activity of parental and recombinant DEFB-TP5 peptide. (A) Endotoxin binding by means of an endotoxin
quantitation kit. Mean values presented; n = 3 ± SD (*p < 0.05, **p < 0.01 and ***p < 0.001 showed comparison of LPS vs. DEFB-TP5. Whereas, #p < 0.05 showed
significant difference compared with parental TP5 peptide). (B) hybrid peptide reduced LDH in the supernatant of LPS-stimulated mouse RAW264.7 macrophages.
Data represented as mean ± standard deviation (SD). While, *p < 0.05 and **p < 0.01 vs. LPS and #p < 0.05 indicates significant difference compared with parental
TP5 peptide. (C) Hemolytic effect of DEFB-TP5 in contradiction of mouse RBCs. The data resemble the mean values of 3-independent experiments and the (% age)
of hemolysis ± standard deviation (***p < 0.001 vs. Triton X-100) While, #p < 0.05 showed a comparison with TP5.
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(Figure 3B). A similar pattern was observed in case of IL-6 and
IL-1b that the only LPS-infected cell as produced a high level of
cytokines but the DEFB-TP5 decreased the level (732 pg/ml at 50
μg/ml and 623 pg/ml at 60 μg/ml respectively) (Figure 3C) and
(645 pg/ml at 50 μg/ml and 584 pg/ml at 60 μg/ml respectively)
presented in (Figure 3D). Our result implying that recombinant
hybrid DEFB-TP5 peptide is a potent anti-inflammatory agent.
Moreover, the hybrid peptide DEFB-TP5 exhibited more anti-
inflammatory activities as compared to parental peptide TP5
(Figures 3A–D).
DISCUSSION

In current years, the researchers have tried to alter the amino
acid sequence of the parental peptides to improve their
expression and efficacy. However, the specific part of the
amino acid sequence of the peptide has an inordinate influence
on the antibacterial and anti-inflammatory activities. The
appropriate replacement of the conserved sequence doesn’t
affect its activity but some suitable substitutions enhance the
efficiency of hybrid peptides (Shah et al., 2017). Hybridization of
various parental peptides and alterations in physicochemical
properties (net charge, a-helix structure, and hydrophobicity)
by reducing the size are the common practices for the
development of potent hybrid peptides (Brown et al., 2008).To
date, there are different systems for the manufacturing of
Frontiers in Pharmacology | www.frontiersin.org 6
peptides such as extraction from natural sources, chemical,
synthesis, and DNA recombinant technology (Van Harten
et al., 2018). Among all of them, the methylotrophic yeast
expression is an economical system for the construction of
recombinant fusion proteins (Jiménez et al., 2015).

In the present study, hybrid peptide DEFB-TP5 was
successfully expressed in P. pastoris. Comparatively, two main
points differentiate the yeast expression from bacterial
expression. Firstly, the yeast expression vector pPICZaA
comprises an alcohol oxidase gene (AOX1) promoter and an
a-factors signal peptide has ability to stably integrate expression
plasmids at specific sites and secrete heterologous proteins.
Secondly, the P.pastoris system operates and promotes
disulfide bonding which would be important for the activation
of disulfide present in DEFD-TP5 recombinant peptide
expressed and secreted into the medium. After expression,
purification was facilitated by a poly-histidine tag that enables
separation of soluble, secreted DEFB-TP5 from host strain
fermentation supernatant by Ni2+ affinity chromatography. As
expected, the target peptide DEFB-TP5 6.7 kDa was detected on
SDS-page and its concentration was 30.41 mg/L. The peptide
yield is greater than earlier described such as T-catesbeianin-1
(Xu et al., 2018), ceropinAD (Jin et al., 2009), and CA-MA (Xu
et al., 2007).

In the current study, purified DEFB-TP5 peptide was further
tested for antimicrobial, LPS neutralization, cytotoxicity, and
hemolytic activity. These features of the recombinant peptide are
A B

C D

FIGURE 3 | Effect of TP5 and recombinant DEFB-TP5 peptide on LPS-infected inflammatory response in mouse RAW264.7 macrophages. (A) Nitric oxide (NO)
production, (B) level of Tumor necrosis factor-a, (C) Interleukin-6, and (D) Interleukin-1b. Standards are means ± SD of three independent experiments. *p < 0.05,
**p < 0.01, ***p < 0.001, showed comparsion with LPS. While, #p < 0.05 and ##p < 0.01 indicates significant difference compared with parental TP5 peptide.
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to be used as beneficial therapeutics. LPS comprises of three parts
i. Lipid A, ii. O antigen iii. Polysaccharide core. Lipid A is a
toxically active part that caused fever, septic shock, and
leukocytosis (Rapicavoli et al., 2018). Lipid A is also
accountable for the stimulation of LAL reagent (Iwanaga et al.,
1992). In the present study, the LAL assay revealed that
recombinant DEFB-TP5 peptide neutralizes endotoxin by
binding lipid A. Higher LPS neutralization activity of hybrid
DEFB-TP5 peptide was observed than that of CA-MA peptide
which was reported previously (Lee et al., 2016). Additionally,
the parental antimicrobial peptides have effective activities
against microbes but also exhibit cytotoxic and hemolytic
effects toward mammalian cells (Zasloff, 1987).

The net charge (+7 to +9) and amphipathicity of the AMPs
permit strong antibacterial and anti-inflammatory activity
(Zhang et al., 2016). Our peptide comprises the N-terminal
region with polar b- Defensin amino acid and a C-terminal
region with TP5 amino acid. This combination increases the net
charge to +8 and hydrophobicity and supported our hypothesis
and previous studies (Gutsmann et al., 2010; Kaconis et al., 2011;
Heinbockel et al., 2013; Ahmad et al., 2019). These features
presumed to imitate robustly electrostatic interaction between
hybrid DEFB-TP5 peptide and LPS. The recombinant hybrid
DEFB-TP5 peptide showed more potent antibacterial activity
against E.coli C84002 comparable to that of ampicillin. However,
hybrid DEFB-TP5 peptide exhibited neglectable cytotoxicity
and hemolysis.

During multiplication or lysis of bacteria superficial certainly
secreted endotoxin (Walters et al., 2010). We further evaluated
LPS-infected production of NO and pro-inflammatory cytokines
TNF-a, IL-6, IL-1b in mouse RAW264.7 macrophages. The
immune activated macrophages secrete NO at the site of
inflammation to heal impairment and eradicate the cause (Koh
and DiPietro, 2011). However, excessive secretion of NO leads to
inflammation. Therefore, plummeting the production of NO
could be a new tactic against inflammatory disorders.
Inflammation is convoluted chronic diseases i.e cardiovascular
and cancer (Moutsopoulos and Madianos, 2006). Endotoxin is a
major constituent of the outer membrane of gram-negative
bacteria and can promote proinflammatory cytokines in
phagocytic cells (Chen et al., 2019). Consequently, diminishing
proinflammatory response is imperative to reduce inflammatory
disease. Comparatively, the recombinant DEFB-TP5 peptide
more efficiently inhibited the production of cytokines that
previously identified peptides such as SPHF1 (Ahn et al., 2012)
and lunasin-4 (Zhu et al., 2018). Overall, these interpretations
designate that recombinant hybrid DEFB-TP5 is a promising
peptide that might be industrialized.
CONCLUSIONS

For the first time, we reported a successful expression method for
the hybrid DEFB-TP5 peptide in P.pastoris with expression
vector PpICZaA. To achieve a higher expression Highly active
recombinant peptide DEFB-TP5 with molecular weight 6.7kDa
Frontiers in Pharmacology | www.frontiersin.org 7
was obtained. DEFB-TP5 potently neutralizes LPS with no
cytotoxic and hemolytic activity. Additionally, DEFB-TP5
novel peptide exhibited antimicrobial and anti-inflammatory
activity by inhibiting cytokine formulation, including NO,
TNF-a, IL-6, IL1b. This research study delivered a probable
strategy for assembly of bioactive DEFB-TP5 in the industry and
might be helpful for binding endotoxin and preventing
inflammatory diseases.
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