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Potentially inappropriate prescribing (PIP), including potentially inappropriate

medications (PIMs) and potential prescribing omissions (PPOs), is a major risk

factor for adverse drug reactions (ADRs). Establishing a risk warning model for

PIP to screen high-risk patients and implementing targeted interventions would

significantly reduce the occurrence of PIP and adverse drug events. Elderly

patients with cardiovascular disease hospitalized at the Sichuan Provincial

People’s Hospital were included in the study. Information about PIP, PIM,

and PPO was obtained by reviewing patient prescriptions according to the

STOPP/START criteria (2nd edition). Data were divided into a training set and

test set at a ratio of 8:2. Five sampling methods, three feature screening

methods, and eighteen machine learning algorithms were used to handle

data and establish risk warning models. A 10-fold cross-validation method

was employed for internal validation in the training set, and the bootstrap

method was used for external validation in the test set. The performances were

assessed by area under the receiver operating characteristic curve (AUC), and

the risk warning platform was developed based on the best models. The

contributions of features were interpreted using SHapley Additive

ExPlanation (SHAP). A total of 404 patients were included in the study

(318 [78.7%] with PIP; 112 [27.7%] with PIM; and 273 [67.6%] with PPO). After

data sampling and feature selection, 15 datasets were obtained and 270 risk

warning models were built based on them to predict PIP, PPO, and PIM,

respectively. External validation showed that the AUCs of the best model for

PIP, PPO, and PIM were 0.8341, 0.7007, and 0.7061, respectively. The results

suggested that angina, number of medications, number of diseases, and age

were the key factors in the PIP risk warning model. The risk warning platform

was established to predict PIP, PIM, and PPO, which has acceptable accuracy,

prediction performance, and potential clinical application perspective.
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1 Introduction

With the rapid aging of the global population, countries

around the world are currently facing a serious problem of an

aging population and the health problems of the elderly. It is

estimated that by 2050, the number of people aged over 60 years

will reach 2.1 billion worldwide (Phillips, 2017), and the

proportion will be more than 20% (Biritwum et al., 2013).

The elderly have poor physical function and often suffer from

comorbidities (Vermunt et al., 2017). Costs related to

comorbidities are a significant economic burden to patients

and healthcare systems (King and Giedrimiene, 2021). During

recent years, there has been a growing interest in the study of

disease associations in aging patients. Accumulated evidence has

suggested that cardiovascular diseases are the most common

comorbid condition in older people with multimorbidities

(Manckoundia et al., 2020). In addition, cardiovascular

diseases are considered a leading cause of death, and the rate

reached 10%–30% in the LifeLines Cohort Study (Van der Ende

et al., 2017). Importantly, this becomes even more pronounced in

the elderly population (Hamilton-Craig et al., 2015; Valdés et al.,

2018).

Moreover, elderly patients usually have several comorbidities

that leads to polypharmacy, increasing the risk of potentially

inappropriate prescribing (PIP) (Corsonello et al., 2010;

Gallagher et al., 2011; D’Cruz et al., 2012; Chen et al., 2014;

Hyttinen et al., 2019b), especially leading to an increase in adverse

drug reactions (ADRs) (Maaroufi et al., 2021). Additionally, PIP

includes potentially inappropriate medications (PIM) and

potential prescribing omissions (PPO), which is a key factor

influencing the occurrence of ADR in elderly patients

(O’Mahony and Gallagher, 2008). PIM is very common in

elderly patients with cardiovascular disease (Sheikh-Taha and

Dimassi, 2017; Maaroufi et al., 2021). 98.2% of elderly patients,

who were admitted to medical or cardiovascular ICUs in a large

tertiary teaching hospital in Brazil, had at least one PIM (Galli

et al., 2016). According to a multicenter, prospective cohort study

that recruited 1,280 patients (median age of 82 years) in England,

PIM contributed to ADR in 12% of elderly patients (Parekh et al.,

2019).

Currently, there are various criteria for assessing PIP

(Petrovic et al., 2016; Lopez-Rodriguez et al., 2020); for

instance, the Beers criteria developed in the United States (By

the 2019 American Geriatrics Society Beers Criteria® Update

Expert Panel, 2019) and the STOPP/START criteria developed in

Ireland (O’Mahony et al., 2015). Although these criteria are

currently in wide use for post-event evaluation, there are

some shortcomings, such as the inability to provide advance

warning of the risk of PIP in elderly patients. Through early

warning of PIP, physicians or pharmacists will be able to identify

patients at risk of PIP and adopt individualized interventions to

reduce the risk of ADR.

Some studies have shown that PIP in elderly patients can be

identified using the frailty index (Cullinan et al., 2016) and the

new Croatian tool (Matanović and Vlahović-Palčevski, 2014).

However, these approaches were not convenient enough, as they

would require a lot of time and effort. In recent years, with the

rise of artificial intelligence, machine learning algorithms have

been increasingly applied to develop predictive models (Badet

et al., 2021; Fralick et al., 2021; Hossain et al., 2021; Lin et al.,

2021; Mišić et al., 2021; Pinaire et al., 2021). Multiple studies

reported that machine learning algorithms could predict severe

hypoglycemia in hospitals, identify genetic risk factors for the

progression and survival of colorectal cancer, etc. Patel et al. used

machine learning algorithms to develop predictive models to

identify predictors of inappropriate use of non-steroidal anti-

inflammatory drugs (NSAIDs) of PIP in elderly patients with

osteoarthritis (Patel et al., 2020).

However, the following problems remain to be resolved: 1)

Fewer data pre-processing methods are used. Our previous study

(Wu et al., 2020) has demonstrated that different data pre-

processing methods (p < 0.05) are important in choosing an

optimal data pre-processing method. 2) Fewer machine learning

algorithms are used. Our previous study (Wu et al., 2020) used

14 machine learning algorithms, and the results showed the

variability between different machine learning algorithms.

Each machine learning algorithm applies in different

conditions. At most two machine learning algorithms in the

above studies were used, which was not sufficient. 3) Fewer

platforms for risk prediction. Risk warning platforms can output

the risk of PIP in elderly patients with cardiovascular disease,

which might alert physicians or pharmacists to review the

medicines.

Thus, the present study analyzed the information on PIP,

PIM. and PPO of cardiovascular disease in elderly patients, and

established a prediction platform using multiple machine

learning algorithms to predict the risk of PIP, PIM, and PPO

in elderly patients with cardiovascular disease.

2 Materials and methods

2.1 Data sources

Participants who were discharged from the Department of

Geriatric Cardiology at Sichuan Provincial People’s Hospital
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from January 2017 to June 2018 were included in this study.

Their clinical information, including prescription information,

medical record information, and results of laboratory tests, were

collected from the electronic medical record. The following

inclusion criteria were used for the selection of the study

participants: 1) age ≥65 years; 2) the duration of

hospitalization between 3 and 60 days; and 3) diagnosed with

at least one cardiovascular disease (hypertension, myocardial

infarction, angina pectoris, hyperlipidemia, peripheral vascular

disease, and indication for antithrombotic therapy, which was

determined by cardiovascular physicians). The patient selection

flowchart is shown in Figure 1.

The STOPP/START criteria (version 2) for the

cardiovascular system and antiplatelet/anticoagulant drugs

were used to identify PIP prescriptions in elderly patients,

including 24 PIM criteria (13 for cardiovascular system and

11 for antiplatelet/anticoagulant drugs) and 8 PPO criteria for the

cardiovascular system. Each electronic medical record was

independently reviewed by three pharmacists, Wu Xingwei,

Zhang Jiaying, and Xiong Huan, who had received training

from the chief pharmacists (Tong Rongsheng and Long

Enwu) to ensure the accuracy of the results. All disagreements

were resolved by consulting the chief physician of internal

medicine.

The patient’s ID number, name, home address, and

telephone number were anonymous during the data

acquisition for ethical reasons. As this is a retrospective study

without intervention, the ethics committee considered it

unnecessary to obtain informed consent from patients. All

variables were coded (X1, X2, . . . , Xn) to allow blinded

analysis of patient data.

2.2 Data pre-processing

2.2.1 Data pre-screening
Data pre-screening included three processes: 1) deleting

columns with more than 90% missing data; 2) deleting

columns with a single value occupying more than 90%; and 3)

deleting columns with coefficient of variation less than 0.01.

Variables meeting one of the abovementioned conditions would

be considered less informative.

2.2.2 Data sampling
To minimize the adverse impact of data imbalance on

prediction performance, the following data sampling methods

were used: 1) no sampling; 2) random upsampling, which

duplicates minority class samples to create additional minority

class samples; 3) random undersampling, which randomly selects

samples from the initial dataset to create a new smaller dataset; 4)

synthetic minority oversampling technique (SMOTE), which

achieves upsampling by linear interpolation between a small

FIGURE 1
Flowchart of patient selection.
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number of class samples and their nearest neighbors; and 5)

borderline SMOTE upsampling, which improves the SMOTE

method by upsampling only the border samples of a small

number of classes, thus improving the class distribution of the

samples.

2.2.3 Feature screening
Three feature selection methods were used for feature

screening: 1) no screening; 2) the Lasso screening method

which evaluates the importance of variables and output the

results by introducing a penalization parameter penalizing and

discarding unimportant variables (variables with coefficients

near zero); and 3) the Boruta screening method which is a

feature selection algorithm to identify the minimal set of

relevant variables.

2.3 Model development

Fifteen datasets were generated by five data sampling methods

and three feature screening methods, and 18 machine learning

algorithms were used on each dataset, respectively, to develop a

total of 270 models. Machine learning algorithms in this study

included logistic regression, decision tree, Gaussian naive bayes,

Bernoulli naive bayes, multinomial naive bayes, passive aggressive,

AdaBoost, bagging, gradient boosting, eXtreme gradient boosting

(XGBoost), K-nearest neighbor (KNN), linear discriminant

analysis (LDA), quadratic discriminant analysis (QDA), random

forest, stochastic gradient descent (SGD), support vector machine

(SVM), extra tree, and ensemble learning (Wu et al., 2020). These

abovementioned algorithms were commonly used and were

suitable for binary classification. In comparison to single

classification algorithms, ensemble algorithms always prove to

be more effective and stable in prediction models.

The whole process of model development could be described

as follows:

(1) The data set was divided into a training set and a test set in a

ratio of 8:2 (according to our sample size, a ratio of 8:2 would

be more suitable than 9:1 or 7:3)

(2) Models were trained in the training set so that the loss

function was minimized. Internal validation was performed

by the ten-fold cross-validation method.

(3) Test set data were passed into the trained model for assessing

model prediction performance. Bootstrapping was employed

for external validation.

(4) The model with the best performance was selected.

2.4 Model evaluation

The area under the receiver operating characteristic

curve (AUC), accuracy, precision, recall, and F1 score

were adopted as quantitative metrics to evaluate the

performance of models, and the candidate model

achieving the best performance was selected as the

optimal prediction model. The contribution of each

variable to the predictive model was estimated with

SHapley Additive exPlanation (SHAP). The modeling

process is shown in Figure 2.

A total of 270 prediction models were developed based on

different sampling methods and feature screening methods. On

the test set, the model with the highest AUC value was selected

and used to establish the prediction platform for PIP, PIM,

and PPO.

2.5 Sample size validation

To train the best model, the bootstrap method was used to

randomly select 10%, 20%, 30%,......100% of the resampling data

from the training set, and the test set was used to test the

predictive ability of the model. The AUC values of the best

models of PIP, PPO, and PIM were estimated. The above process

was repeated 100 times, and the results were plotted on a line

graph. We judged the contribution of the sample size to improve

the prediction performance of models according to the inflection

point change of the line graph.

2.6 Statistical analysis

Categorical data were described by frequency (percent), and

continuous data were statistically described by mean and

standard deviation (Mean ± SD). Analysis of variance

(ANOVA) and rank sum test were used for univariate analysis.

Statistical analysis was performed using stats in Python 3.8,

and model development was implemented using sklearn in

Python 3.8. The front-end of the PIP prediction platform was

written in JavaScript, and the back-end was written in

Python 3.8.

3 Results

A total of 404 elderly patients with cardiovascular diseases

were eligible for this study. The mean age of the patients was

79.1 years, and 59.9% were male. Participants identified as PIP,

PIM, and PPO were 318 (78.7%), 112 (27.7%), and 273 (67.6%),

respectively. The most frequent PIPs were antiplatelet agents

simultaneously used with vitamin K antagonists, direct thrombin

inhibitors, or factor inhibitors in patients (37 instances,

accounting for 21.5% of total PIPs). Table 1 shows detailed

patient demographic information and clinical information as

the independent variables, with PIP, PIM, and PPO as the

dependent variables.
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3.1 Data pre-processing

3.1.1 Data pre-screening
After removing columns that met the deleting criteria,

16 variables were retained and 6 variables were deleted

(X8 myocardial infarction, X11 heart block, X16 venous

thromboembolism, X17 history of gout, X18 renal failure, and

X21 anticoagulant therapy).

3.1.2 Feature screening
After data pre-screening and data sampling, the variables

were screened using the Lasso method and the Boruta method, as

shown in Supplementary Figure S1. The results showed that the

five most important variables in the PIP model were angina,

atherosclerosis, heart failure, diabetes, and number of

medications (Supplementary Figure S1A). In the PPO model,

the five most important variables were number of medications,

angina, atherosclerosis, and history of cardiovascular diseases

(Supplementary Figure S1B). Themost important variables in the

PIM model were number of medications, number of diseases,

duration of hospitalization (days), age, and heart failure

(Supplementary Figure S1C).

3.2 Model validation

3.2.1 Internal validation
Internal validation was performed using the 10-fold cross-

validation method. Fifteen datasets were created using five data

sampling methods and three feature screening methods. Two

FIGURE 2
Overview of the modeling method.
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TABLE 1 Information of PPO, PIP, PIM, and characteristics in the participants.

No. Variable Parameter Value (N = 404)

PIP No 86 (21.3%)

Yes 318 (78.7%)

PPO No 131 (32.4%)

Yes 273 (67.6%)

PIM No 292 (72.3%)

Yes 112 (27.7%)

X1 Gender Female 242 (59.9%)

Male 162 (40.1%)

X2 Age (years) 79.1 ± 8.18

X3 Duration of hospital stay (days) 19.5 ± 9.96

X4 Number of diseases 6.3 ± 2.45

X5 Number of medications 16.2 ± 9.74

X6 Hypertension No 95 (23.5%)

Yes 309 (76.5%)

X7 Cerebrovascular disease No 215 (53.2%)

Yes 189 (46.8%)

X8 Myocardial infarction No 390 (96.5%)

Yes 14 (3.5%)

X9 Angina No 279 (69.1%)

Yes 125 (30.9%)

X10 Heart failure No 235 (58.2%)

Yes 169 (41.8%)

X11 Heart block No 370 (91.6%)

Yes 34 (8.4%)

X12 Atrial fibrillation No 336 (83.2%)

Yes 68 (16.8%)

X13 Atherosclerosis No 93 (23.0%)

Yes 311 (77.0%)

X14 Hyperlipidemia No 342 (84.7%)

Yes 62 (15.3%)

X15 Diabetes No 280 (69.3%)

Yes 124 (30.7%)

X16 Venous thromboembolism No 395 (97.8%)

Yes 9 (2.2%)

X17 History of gout No 392 (97.0%)

Yes 12 (3.0%)

X18 Renal failure No 367 (90.8%)

Yes 37 (9.2%)

X19 Peptic ulcer or alimentary tract hemorrhage No 352 (87.1%)

Yes 52 (12.9%)

X20 History of cardiovascular disease No 45 (11.1%)

Yes 359 (88.9%)

X21 Anticoagulant therapy No 30 (7.4%)

Yes 374 (92.6%)

(Continued on following page)
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hundred and fifty-five models for predicting PIP, PPO, and PIM

respectively, were built using 18 machine learning algorithms.

Different data sampling methods and different machine learning

algorithms in the PIP model were significantly affected by the

prediction performance of the PIPmodel (p < 0.0001). Details are

listed in Supplementary Table S1.

As shown in Supplementary Table S2, different data

sampling methods and different machine learning algorithms

showed significant differences in the prediction performance of

the PPO model (p < 0.0001), but the different feature screening

methods were not significant (p > 0.05).

The results of the PIM prediction model were similar to those

of the PPO prediction model. Significant differences between

different data sampling methods and machine learning

algorithms on the prediction performance of the PIM model

are shown in Supplementary Table S3.

3.2.2 External validation
Applying 18machine learning algorithms, 270machine learning

models were developed for each output. External validation of the

models was performed by bootstrapping 200 samples in the test set.

Different data sampling methods, different feature screening

methods, and different machine learning algorithms in the PIP

models had a significant effect (p < 0.0001) on prediction

performance (list in Supplementary Table S1).

As presented in Supplementary Tables S1, S3, the results of

the external validation of the PIM and PPO models were

consistent with the PIP models. Data sampling methods,

feature screening methods, and machine learning algorithms

showed statistically significant differences in the prediction

performance of the PIM and the PPO model.

3.2.3 Variable importance
The data from 200 bootstrapping samples were entered in the

PIP, PIM, and PPO models. The contribution of each variable to

the prediction performance in the different models is shown in

Supplementary Figure S2 by the averaged AUC value when the

variable was included in the prediction model. The five most

important variables in the PIP model were cerebrovascular

disease, history of cardiovascular disease, number of

medications, duration of hospitalization (days), and age, while

diabetes, gastrointestinal bleeding, hypertension, and angina

were the least important (Supplementary Figure S2A). In the

PPO model, the five most important variables were diabetes,

hyperlipidemia, heart failure, duration of hospitalization (days),

and gastrointestinal bleeding, while the five least important

variables were hypertension, cerebrovascular disease,

antithrombotic therapy, and atrial fibrillation (Supplementary

Figure S2B). The most important variable in the PIMmodel were

diabetes, antithrombotic therapy, duration of hospitalization

(days), age, and hypertension, while gastrointestinal bleeding,

hyperlipidemia, history of cardiovascular disease, and atrial

fibrillation were unimportant (Supplementary Figure S2C).

3.3 Model selection

3.3.1 Model evaluation
AUC, accuracy, precision, recall, F1 score, and the area under

the precision-recall curve (AUPRC) were used to evaluate the

predictive performance of models, and the best models according

to the AUC value are presented in Figure 3. The prediction

performance of the PIPmodel achieved an AUC of 0.8341 and an

AUPRC of 0.9556 (Figure 3A). As presented in Figure 3B, the

best performing PPO model had the highest AUC (0.7007) and

AUPRC (0.7992). The best prediction performance of the PIM

model provided an AUC of 0.7061 and an AUPRC of 0.4268

(Figure 3C). The best predictive performance metrics of PIP,

PIM, and PPO are presented in Figure 3D.

3.3.2 SHapley additive explanation evaluation
SHAP can interpret the output of any machine learning model.

The contribution of variables in the PIP model is explained by SHAP,

and the results are shown in Figure 4. As illustrated in Figure 4A,

SHAP estimated the contribution of each feature value in each sample

to the prediction. Cerebrovascular disease, heart failure, age,

hyperlipidemia, and hypertension provided a positive contribution

to the SHAP value, while duration of hospital stay (days), myocardial

infarction, and gender provided a negative contribution.

Cerebrovascular disease was the most important variable.

As presented in Figure 4B, the SHAP value of each feature in

each sample was calculated and plotted. Variables were ranked in

descending order by summarizing the SHAP values of each

sample. For example, the higher the values of duration of

hospital stay (days), lower the value of SHAP.

The mean of the absolute value of the SHAP value of each

variable, which was regarded as of feature importance, was plotted

as shown in Figure 4C. The top fivemost important variables in the

PIP model were angina, atherosclerosis, number of diseases,

number of medications, and history of cardiovascular disease.

TABLE 1 (Continued) Information of PPO, PIP, PIM, and characteristics in the participants.

No. Variable Parameter Value (N = 404)

X22 Antithrombotic therapy No 119 (29.5%)
Yes 285 (70.5%)
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FIGURE 3
Summary of the performance of PIP, PPO, and PIM model. (A) The results of AUC and AUPRC in the best five PIP model. (B) The results of AUC
and AUPRC in the best five PPOmodel. (C) The results of AUC and AUPRC in the best five PIMmodel. (D) The summary of AUC, accuracy, precision,
recall, F1 score, AUPRC in the best PIP, PPO, and PIM model.
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3.4 Sample size validation

The adequacy of the sample size was verified using the

resampling bootstrapping method, and the results are plotted in

Supplementary Figure S3. In the PIP model, the AUC gradually

increased and the dispersion of the AUC value decreased as the

percentage of sample size increased.When the sample size reached

70%, the curve flattened. The results indicated that the

performance of the PIP model might be affected when

expanding the sample size (Supplementary Figure S3A). In both

the PPO model and the PIM model, both the curves showed an

upward trend. These results indicate that the performance of the

PPO and PIM models might be improved even further with the

addition of samples (Supplementary Figures S3B,C).

3.5 Development prediction platform

Based on the parameters of the best models of PIP, PPO, and

PIM, the prediction platform was established for individualized

intervention. The input interface will be used to receive information

on key variables in each patient (Figure 5A), and the output interface

will show the risk rate of PIP, PIM, and PPO (Figure 5B). The

software has obtained the Computer Software Copyright

Registration Certificate (No. 7960815) received from the National

Copyright Administration of the PRC (Supplementary Figure S4).

4 Discussion

In this study, a total of 404 elderly patients with cardiovascular

disease who were hospitalized for 3–60 days were included. Five

data sampling methods and three feature screening methods were

used to construct 15 datasets, and 270 machine learning models

were developed using 18 machine learning algorithms. AUC,

accuracy, precision, recall, F1 Score, and AUPRC were used to

evaluate the performance of the models. The PIP prediction

platform was developed based on the parameters in the best

model (the AUCs of the PIP, PPO, and PIM models were

0.8341, 0.7007 and 0.7061, respectively).

FIGURE 4
Variable contribution to the PIPmodel by SHAP Value. (A)Contribution of each feature value in one sample. (B) Summary of SHAP value of each
variable. (C) Absolute average of SHAP value of each variable.
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One study reported that length of stay, comorbidities, and age

were associated with PIP in elderly patients (Abegaz et al., 2018).

Muhlack et al. (2018) found that elderly patients with multiple

diseases, frailty, and cognitive impairment were more likely to have

PIM. Meanwhile, the study showed that elderly patients with lower

levels of education, those taking multiple medications, and

unplanned hospitalization were more likely to have PIM.

Previous research suggested that the number of medications

prescribed was associated with the occurrence of PIM (Nieves-

Pérez et al., 2018; Ma et al., 2019). Maaroufi et al. (2021) found

significant correlations between PIM and the number of

medications used (at home), gender, unauthorized medications,

and the number and type of comorbidities, with information on

the number of medications used. Multiple results showed that

comorbidities and the number of medications were key risk

factors for developing PIP in the elderly. Moreover, a recent

study showed that the prevalence of PIP was related to the days

of hospitalization (Xu et al., 2020). According to the electronic

medical record in the hospital, patients whose duration of

hospitalization was between 3 and 60 days were included in the

study. Patients whose length of stay was less than 3 days might die

following hospitalization or have a few examinations after

hospitalization and should be excluded. In this study, we found

that angina, atherosclerosis, heart failure, diabetes, and the number

of medications used were more strictly associated with the

development of PIP in elderly patients with cardiovascular

disease. These results suggest that patients with the above

variables need additional care and attention. Furthermore, using

these variables in similar studies may be interesting in the future.

Similar to this study, Patel et al. (2020) built prediction models

using cross-validated logistic regression (CVLR) and XGBoost to

screen predictors of potentially inappropriate osteoarthritis in the

elderly with NSAIDs. The machine learning algorithms used in

this study included two machine learning algorithms used by Patel

FIGURE 5
Operation interface of PIP warning platform. (A) User input interfaces. (B) User output interfaces.
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et al. (2020). Compared to this study, Patel et al. (2020) reported a

better predictive performance with an AUC of 0.8341 and an

accuracy of 0.7160. However, Patel’s study did not perform

external validation and had poor generalization ability. In this

study, external validation was performed. Additionally, the

ensemble algorithms summarized the output of the five best

models (assessed by AUC) among the trained models and

generated output according to the voting principle, which could

help to improve the prediction performance of models. The results

suggested that the model in the present study had a stronger

generalization ability and higher prediction accuracy.

5 Limitations

This study had a number of limitations. First, this study was

based on data from a single medical center in China. We are not

certain if our results can also be generalized to other hospitals with a

large elderly population. Second, according to the sample size results

of this study and the results of other studies (Black et al., 2018; Rose

et al., 2018; Hyttinen et al., 2019a; Hyttinen et al., 2019b), a larger

sample size is needed to further optimize the model in the future.

Third, this study was a retrospective analysis, so there were cases of

incomplete data or missing records. For example, educational status

has previously been demonstrated to be associated with the

development of PIP. However, we lacked such data.

6 Conclusion

In summary, we developed a riskwarning platform for potentially

inappropriate prescriptions in elderly patients with cardiovascular

disease who are over 65 years of age and with hospitalization between

3 and 60 days. We explored various combinations of different

sampling methods, feature selection methods, and algorithms.

Additionally, the contribution of variables was demonstrated by

several methods. The risk warning platform could conveniently

inform clinicians about the risk of PIP, which is key to the

development of effective and personalized treatment strategies.
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