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Background: Timely detection of atrial fibrillation (AF) after stroke is highly

clinically relevant, aiding decisions on the optimal strategies for secondary

prevention of stroke. In the context of limited medical resources, it is crucial

to set the right priorities of extended heart rhythm monitoring by stratifying

patients into di�erent risk groups likely to have newly detected AF (NDAF).

This study aimed to develop an electronic health record (EHR)-based machine

learning model to assess the risk of NDAF in an early stage after stroke.

Methods: Linked data between a hospital stroke registry and a deidentified

research-based database including EHRs and administrative claims data was

used. Demographic features, physiological measurements, routine laboratory

results, and clinical free text were extracted from EHRs. The extreme gradient

boosting algorithm was used to build the prediction model. The prediction

performance was evaluated by the C-index and was compared to that of the

AS5F and CHASE-LESS scores.

Results: The study population consisted of a training set of 4,064 and a

temporal test set of 1,492 patients. During a median follow-up of 10.2 months,

the incidence rate of NDAF was 87.0 per 1,000 person-year in the test set.

On the test set, the model based on both structured and unstructured data

achieved a C-index of 0.840, which was significantly higher than those of the

AS5F (0.779, p = 0.023) and CHASE-LESS (0.768, p = 0.005) scores.

Conclusions: It is feasible to build a machine learning model to assess the

risk of NDAF based on EHR data available at the time of hospital admission.
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Inclusion of information derived fromclinical free text can significantly improve

the model performance and may outperform risk scores developed using

traditional statistical methods. Further studies are needed to assess the clinical

usefulness of the prediction model.

KEYWORDS

atrial fibrillation, electronic health records, ischemic stroke, natural language

processing, prediction

Introduction

Ischemic stroke is associated with a substantial risk of

recurrence with a one-year recurrence rate ranging from 6

to 18% (1–4). The risk of stroke recurrence depends on the

subtypes of ischemic stroke. As compared to other stroke

subtypes, the recurrence rate of cardioembolic stroke is relatively

high (5, 6). Moreover, cardioembolic strokes are often followed

by strokes of the same type (6, 7). Atrial fibrillation (AF)

is the most common cause of cardioembolic stroke, and

even embolic stroke of undetermined source (ESUS) may

originate from subclinical AF (8). As the population ages,

AF-related strokes have increased and may triple in the next

few decades (9, 10). Fortunately, the advancement of non-

vitamin K antagonist oral anticoagulant therapy has made great

progress in preventing patients with AF from cardioembolic

stroke (8). Nonetheless, since AF can be paroxysmal, it may go

undetected and therefore undiagnosed in patients undergoing

routine electrocardiography (ECG) examinations. In fact, for

ischemic stroke patients with undiagnosed AF, delayed use of

oral anticoagulants may double the risk of recurrent stroke or

transient ischemic attack (TIA) (11). Considering the impact of

anticoagulant therapy on the outcome, poststroke screening for

AF is thus critical for preventing recurrent stroke in patients

with acute ischemic stroke (AIS).

Approximately 30% of all ischemic strokes are without any

apparent cause (12). Among these cryptogenic strokes, nearly

two-thirds are considered to stem from embolism (12). A study

points out that through a series of heart rhythm monitoring, AF

can be detected in up to 24% of patients with AIS or TIA (13). In

addition to 24-h or even 72-h Holter monitoring (14), numerous

studies have established that extended ECG monitoring via

either implantable or external devices increases the yield of AF

detection in patients with AIS (15, 16). However, given the

limited medical resources, setting the right priorities of extended

ECGmonitoring by stratifying patients into different risk groups

likely to have newly detected AF (NDAF) is more crucial than

implementing population-level screening (17).

To date, more than twenty risk scores have been proposed

to assess the risk of poststroke NDAF (18, 19). These risk scores

vary in their complexity, target population, outcome definition,

predictor variables, and ease of implementation.Most risk scores

were derived or validated in patients with AIS while some of

them were derived from a specific population with cryptogenic

stroke or ESUS (20, 21). The simplest risk score consists of

only two predictor variables, that is, age and stroke severity as

assessed using the National Institutes of Health Stroke Scale

(NIHSS) (22). Nevertheless, many of the risk scores require

additional diagnostic work-up or interpretation of examination

results to obtain the necessary predictors, such as markers of

blood, ECG, echocardiography, as well as brain and vascular

imaging (18). Routine use of such risk scores may be impractical

in the context of the extra time and cost required.

On the other hand, with the ubiquitous use of electronic

health records (EHRs) and the advancement in computational

power, it has become feasible to use EHRs for the creation,

validation, and implementation of data-driven risk prediction

models (23, 24). For example, a previous study developed

and validated an EHR-based prediction tool for 5-year AF

risk in the general population (25), demonstrating a simple

and cost-conscious approach to AF screening. Furthermore, in

addition to structured numerical and categorical data, EHRs

accommodate a multitude of unstructured textual data such

as narrative clinical notes. Combining information extracted

from clinical free text through natural language processing with

structured data has shown promising results in improving the

performance of risk prediction models (26–28).

AF-related strokes tend to be more severe and may manifest

with different clinical features than other subtypes of ischemic

strokes (29, 30). A higher risk of NDAF has been observed in

patients with greater stroke severity (22, 31). Previous studies

have shown that information extracted from clinical text can be

used to represent patients’ stroke severity (28, 32). Furthermore,

stroke patients with AF have a higher prevalence of heart

diseases and experience more cardiac events than those without

AF (29–31). Symptoms, signs, or examinations related to heart

diseases are typically documented in clinical notes. However,

such information may not be captured or routinely collected as

structured data in the EHR system. We thereby hypothesized

that clinical text contains information that can discriminate

between strokes stemming from AF and those not stemming

from AF. In this study, we aimed to develop an EHR-based
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machine learning (ML)model to assess the risk of NDAF. To this

end, we investigated various ML models using structured data,

unstructured textual data, or a combination of both. In addition,

the prediction performance of the developed ML models was

compared to that of two traditional risk scores on a temporal

test set of patients hospitalized for AIS.

Materials and methods

Data sources

The study data was obtained from the stroke registry of

the Ditmanson Medical Foundation Chia-Yi Christian Hospital

and the Ditmanson Research Database (DRD), a deidentified

database comprising both EHR data and administrative claims

data for research purposes. The DRD currently holds clinical

information of over 1.4 million patients. The hospital stroke

registry has prospectively enrolled consecutive hospitalized

stroke patients since 2007 conforming to the design of the

nationwide Taiwan Stroke Registry (33). To create the dataset

for this study, we linked the stroke registry to the DRD using

a unique encrypted patient identifier. Information regarding

risk factors and stroke severity as assessed using the NIHSS

was obtained from the stroke registry. Billing information and

medical records from 2 years before to 1 year after the index

stroke were extracted from the DRD.

The study protocol was approved by the DitmansonMedical

Foundation Chia-Yi Christian Hospital Institutional Review

Board (IRB2020135). The requirement for informed consent was

waived because of the retrospective design. The study protocol

conforms to the ethical guidelines of the 1975 Declaration

of Helsinki.

Study population

The study population selection is shown in

Supplementary Figure 1. The stroke registry was queried

for all hospitalizations for AIS between Oct 2007 and Sep 2020.

Only the first hospitalization was included for each patient.

Patients who suffered an in-hospital stroke or whose records

could not be linked were excluded. The study population

was split into a training set (patients admitted before the end

of 2016) and a temporal test set (those admitted from 2017

onwards). All patients were traced in the DRD until AF was

detected, death, the last visit within 1 year after the index stroke,

or February 28, 2021, whichever came first.

Predictor and outcome variables

The class label (outcome) was AF, which was defined

according to an AF ascertainment algorithm detailed in

the Supplementary Methods in the Supplementary Material.

According to the time sequence between AF detection and the

index stroke (13), AF was further categorized as known AF

before the index stroke, AF detected on admission, AF detected

during the index stroke hospitalization, and AF detected after

discharge (Figure 1). During the training phase, we trained ML

models to predict which stroke is likely to stem from AF.

Therefore, patients with all kinds of AF were retained in the

training set. Because the study purpose was to build an ML

model to assess the risk of NDAF poststroke, i.e., AF detected

during the index stroke hospitalization and AF detected after

discharge (Figure 1), patients who had known AF before the

index stroke or AF detected on admission (34) were further

excluded from the test set.

A total of 20 structured predictor variables

(Supplementary Table 3), including age, sex, body mass

index (BMI), vital signs, and results of routine blood tests, were

chosen because they are readily available from EHRs upon

admission. Missing values were imputed as mean values for

continuous variables. Besides these structured variables, the free

text extracted from the History of Present Illness section of the

admission note was preprocessed through the following steps:

spell checking, abbreviation expansion, removal of non-word

symbols, removal of words suggestive of AF (“paroxysmal”,

“atrial”, “fibrillation”), lowercase conversion, lemmatization,

marking of negated words with the suffix “_NEG” using

the Natural Language Toolkit mark_negation function, and

stop-word removal.

The preprocessed text was then vectorized using the bag-

of-words (BOW) approach with three different types of feature

representation (Figure 2). We built a document-term matrix

in which each column represents each unique feature (word)

from the text corpus while the rows represent each document

(present illness for each patient). The cells represent the counts

of each word within each document (term frequency), the

absence or presence of each word within each document (binary

representation), or the term frequency with inverse document

frequency (TF-IDF) weighting (35). Because medical terms are

commonly comprised of two words or even more, we further

experimented with adding word bigram features (two-word

phrases) to the basic BOW model. To reduce noises such as

redundant and less informative features as well as to improve

training efficiency (36), we performed feature selection by

filtering out words that appeared in <5% of all documents in

the training set, followed by performing a penalized logistic

regression with 10-fold cross-validation to identify the most

predictive words (37).

Baseline models

For comparison with ML models, we only considered

traditional risk scores that are based on variables available from
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FIGURE 1

Definition of AF categories according to the time sequence between AF detection and the index stroke. AF, atrial fibrillation.

FIGURE 2

The process of machine learning model construction. BOW, bag-of-words; BR, binary representation; CV, cross validation; TF, term frequency;

TF-IDF, term frequency with inverse document frequency.
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EHRs upon admission. According to a validation study that

evaluated eight such risk scores, two risk scores performed

better than the others, demonstrating adequate discrimination

and calibration (19). These two risk scores were thus used as

the baseline models. The AS5F score, composed by age and

NIHSS, was developed and validated in cohorts of patients

who underwent extended Holter monitoring after AIS or TIA

(22). The CHASE-LESS score was constructed from patients

hospitalized for AIS in a claims database (31). It comprises seven

components, including age, NIHSS, as well as the presence of

coronary artery disease, congestive heart failure, hyperlipidemia,

diabetes, and prior stroke or TIA.

Machine learning models

ML models were constructed by using structured data,

vectorized textural data, or a combination of both (Figure 2).

Because class imbalance might influence the classification

performance, we experimented with resampling methods to

maintain the ratio of majority and minority classes as 1:1, 2:1,

or 3:1 (38). The extreme gradient boosting (XGB) algorithm

was used to build classifiers. The XGB classifier trains a series

of classification and regression trees where each successive tree

attempts to correct the errors of the preceding trees.

During the training process, we first evaluated a suite

of different combinations of text vectorization techniques

and resampling methods without hyperparameter tuning. We

repeated 10-fold cross-validation 10 times to obtain the

performance estimates. The area under the receiver operating

characteristic curve (AUC) was used as the evaluation metric

because both positive and negative classes are important. After

the optimal combination of text vectorization and resampling

methods was determined, ML models were trained from the full

training set through feature extraction, feature selection, class

balancing, followed by hyperparameter tuning. Hyperparameter

optimization for each model was performed by repeating 10-

fold cross-validation 10 times. Model error was minimized in

terms of AUC. We performed a grid search to find optimal

hyperparameters following steps proposed in a prior study

(39). After building the XGB classifiers, we used Shapley

additive explanations (40) to interpret the output of the XGB

classifiers. The experiments were carried out by using scikit-

learn, XGBoost, imbalanced-learn, and SHAP libraries within

Python 3.7 environment.

Statistical analysis

Categorical variables were reported with counts and

percentages. Continuous variables were presented as means

with standard deviations or medians and interquartile ranges.

Differences between groups were tested by Chi-square tests for

categorical variables and t tests or Mann-Whitney U tests for

continuous variables, as appropriate.

The incidence rate of NDAF was expressed as events per

1,000 person-years. To assess the prediction performance of each

prediction model, Cox proportional hazard regression analyses

were performed by entering each risk score or the predicted

probability output by each ML model as a continuous variable.

Harrell’s concordance index (C-index) was calculated to evaluate

and compare model performance. The C-index ranges from 0.5

to 1.0, with 0.5 indicating random guess and 1 indicating perfect

model discrimination. A model with a C-index value above 0.7

is considered acceptable for clinical use (41).

All statistical analyses were performed using Stata 15.1

(StataCorp, College Station, Texas) and R version 4.1.1 (R

Foundation for Statistical Computing, Vienna, Austria). Two-

tailed p values were considered statistically significant at <0.05.

Results

Characteristics of the study population

A total of 6,321 patients were eligible for this study

(Supplementary Figure 1). The training set consisted of 4,604

patients who were admitted before the end of 2016. Among

patients in the training set, 422 (9.2%) had known AF, 265

(5.6%) were diagnosed with AF on admission, and 232 (5.0%)

developed NDAF during follow-up. Among 1,717 patients who

were admitted from 2017 onwards, 122 and 103 were excluded

because of having known AF before the index stroke and being

diagnosed with AF on admission, respectively. Therefore, the

temporal test set consisted of 1,492 patients. During a median

follow-up of 10.2 months, 87 (5.8%) patients in the temporal

test set were identified as having NDAF. Each patient had an

average of 3.1 hospital visits per month during the follow-up

period. The incidence rate of NDAF was 87.0 per 1,000 person-

year. Table 1 lists the characteristics of the patients. Patients

in the training set were older, more likely to be female, less

likely to have diabetes mellitus, and tended to have hypertension,

coronary artery disease, congestive heart failure, as well as prior

stroke or TIA. They also had significantly higher NIHSS, AS5F,

and CHASE-LESS scores.

Performance of prediction models

According to the estimates of AUC obtained from the

10 times of 10-fold cross-validation (Figure 3), ML models

using a combination of both structured and unstructured

data achieved higher AUCs than those using structured or

unstructured data alone. Data resampling did not improve the

performance of models. Text vectorization using BOW with

TF-IDF weighting generally performed higher than the other
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TABLE 1 Characteristics of the study population.

Characteristic Training set

(N = 4,604)

Temporal test set

(N = 1,492)

P

Age, mean (SD) 69.2 (12.3) 68.0 (13.5) 0.002

Female 1,896 (41.2) 531 (35.6) <0.001

Hypertension 3,705 (80.5) 1,119 (75.0) <0.001

Diabetes mellitus 1,958 (42.5) 683 (45.8) 0.028

Hyperlipidemia 2,670 (58.0) 852 (57.1) 0.546

Coronary artery disease 560 (12.2) 103 (6.9) <0.001

Congestive heart failure 228 (5.0) 25 (1.7) <0.001

Prior stroke or TIA 1,143 (24.8) 274 (18.4) <0.001

NIHSS, median (IQR) 5 (3-10) 5 (2-8) <0.001

AS5F, median (IQR) 67.4 (59.2–76.5) 65.8 (56.9–74.2) <0.001

CHASE-LESS, median (IQR) 6 (5-8) 6 (4-7) <0.001

Data are numbers (percentage) unless specified otherwise.

IQR, interquartile range; NIHSS, National Institutes of Health Stroke Scale; SD, standard deviation; TIA, transient ischemic attack.

feature value representation methods. Therefore, we used the

full original training set to build three ML models, that is,

a model based on structured data (model A), a model based

on textual data vectorized using BOW with TF-IDF weighting

(model B), and a model based on both structured data and

unstructured textual data vectorized using BOW with TF-IDF

weighting (model C).

Table 2 lists the performance of prediction models. All the

prediction models significantly predicted the risk of NDAF.

Among the ML models, model C had the highest C-index

(0.840), which was significantly higher than those of model

A (0.791, p = 0.009) and model B (0.738, p <0.001). Model

C outperformed the AS5F (0.779, p = 0.023) and CHASE-

LESS (0.768, p = 0.005) scores. The C-index of model A was

comparable to those of AS5F (p = 0.715) and CHASE-LESS (p

= 0.487) scores. Although model B attained the lowest C-index,

its performance was also comparable to the AS5F (p = 0.163)

and CHASE-LESS (p= 0.282) scores.

Model interpretation

Figure 4A shows the top 20 most important features

in model C ordered by the mean absolute Shapley value,

which indicates the global importance of each feature on the

model output. Figure 4B presents the beeswarm plot depicting

the Shapley value for every patient across these features,

demonstrating each feature’s contribution to the model output.

According to the magnitude and direction of the Shapley value,

patients who were female and those with increased age, high

heart rate, elevated creatinine, elevated blood urea nitrogen,

and high BMI were more likely to have NDAF. Patients with

high triglyceride, platelet count, and pulse pressure were less

likely to have NDAF. Words associated with an increased risk

of NDAF included “unit”, “middle”, “cardiovascular”, “heart”,

“electrocardiogram”, and “family”, whereas those associated

with a decreased risk were “numbness”, “diabetes”, “day”, “visit”,

and “ago”.

The top 20 most important features in model A and model

B are shown in Supplementary Figures 2, 3, respectively. The

important structured and unstructured predictors identified

in model C were generally consistent with those identified

separately in model A (structured data) and model B

(unstructured textual data).

Discussion

We found that prediction of NDAF using routinely collected

variables from EHRs was feasible. ML models performed

better than or were comparable to existing risk scores. The

ML model based on both structured variables and text had

higher discriminability than those of AS5F and CHASE-LESS

scores. Furthermore, by using the Shapley value to reveal the

significance of features, we identified important predictors of

NDAF that may help gain insight into clinical practice for

stroke prevention.

Important predictors of newly detected
atrial fibrillation

Many studies have investigated prediction models for NDAF

in the general population (25, 42, 43) or in selected patient

groups such as those with stroke or TIA (18, 21, 22, 31, 44, 45).

Owing to the different characteristics of at-risk populations, it is

arguable whether the relationships between the predictors and
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FIGURE 3

Heat map showing AUC values across machine learning models with di�erent combinations of text vectorization techniques and resampling

methods. AUC, area under the receiver operating characteristic curve; BR, binary representation; TF, term frequency; TF-IDF, term frequency

with inverse document frequency.

TABLE 2 Performance of prediction models for predicting newly detected atrial fibrillation.

Risk score HR (95% CI) P Schoenfeld’s global test C-index (95% CI)

AS5F 1.10 (1.08–1.13) <0.001 0.062 0.779 (0.734–0.825)

CHASE-LESS 1.49 (1.38–1.60) <0.001 0.296 0.768 (0.721–0.816)

Model A (structured) 1.05 (1.04–1.06) <0.001 0.764 0.791 (0.745–0.836)

Model B (unstructured) 1.04 (1.03–1.05) <0.001 0.060 0.738 (0.688–0.788)

Model C (combined) 1.05 (1.04–1.06) <0.001 0.600 0.840 (0.803–0.876)

CI, confidence interval; HR, hazard ratio.

NDAF are similar across patient groups. Among the identified

structured predictor variables, some of them such as age and

BMI were common to the general population and patients with

stroke (18, 42), others are known predictors in the general

population but have seldom been used to predict poststroke

NDAF, while still others are controversial predictors that warrant

further study. For example, chronic kidney disease is a positive

predictor whereas hyperlipidemia is a negative predictor of

NDAF in the general population (25, 43). This study echoes

those findings by showing positive associations of NDAF with

elevated creatinine, elevated blood urea nitrogen, as well as

decreased triglyceride level (Figure 4B). On the other hand, the

evidence on the relationship between heart rate and NDAF is

conflicting (46).

The central hypothesis of this study is that clinical free

text contains information that may be used to predict NDAF.

We indeed identified several words that could help make

predictions. The reason why some of these words were

associated with the risk of NDAF may be obscure at first glance

but could be revealed by examining each word in its context.

For example, the word “unit” from the term “intensive care

unit” and the word “middle” from the term “middle cerebral

artery infarction” typically imply severe stroke, which is a

known predictor of NDAF (22, 31). These results demonstrate

that useful and informative predictors could be derived from

unstructured text in EHRs without intervening human curation.

Despite this, since clinicians may use different terms to describe

the same condition in clinical text, the relationship between

such terms might not be accurately represented. Concept-based

feature extraction using specialized medical ontologies can be

explored in future research (35).

Advantages of EHR-based machine
learning models

Traditional prediction models used in clinical practice are

generally built on limited predefined variables using logistic

regression. Although such models have reasonable prediction

performance, whether they are applicable in routine clinical

practice and relevant to a specific context is yet to be

determined (47). First, logistic regression models necessitate

the assumptions of linear and additive relationships among

predictors being fulfilled, while ML algorithms, especially

tree-based models, are more effective in capturing potential

nonlinear relationships and handling complex interactions

between the predictor and outcome variables (48). Second,
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FIGURE 4

The top 20 most important features identified by the model based on both structured data and unstructured textual data. The mean absolute

Shapley values that indicate the average impact on model output are shown in a bar chart (A). The individual Shapley values for these features

for each patient are depicted in a beeswarm plot (B), where a dot’s position on the x-axis denotes each feature’s contribution to the model

prediction for that patient. The color of the dot specifies the relative value of the corresponding feature.

considering the wide variety of data in EHRs, data-driven

prediction modeling may allow identifying novel predictors in

the context of insufficient prior knowledge of the real system

(49). In this respect, ML is suitable for building complex models

and analyzing noisy data such as that stored in EHRs (50). ML

techniques were also applied to predict cardioembolic vs. non-

cardioembolic stroke mechanism in patients with ESUS (51).

Recently, deep learning techniques have been introduced to

predict new-onset AF in the general population using structured

primary care data or unstructured 12-lead ECG traces (52, 53).

Clinical applications and significance

Poststroke AF screening is essential for choosing the

optimal strategy for secondary stroke prevention. However,

to be resource efficient, extended ECG monitoring should

be prioritized for patients at a high risk of NDAF. The

developed ML model will be suited for assessing the risk

of individual patients and assisting in personalized clinical

decisions. Moreover, locally constructed prediction models may

be more suitable for real-world clinical use than externally

developed risk models (25). Since the prediction model was

derived from EHRs, it is ideal to implement this model in the

EHR as a decision support tool. With this tool, the calculation

of risk estimates and the flagging of high-risk patients can be

automated within the EHR, streamlining the process of risk

stratification for poststroke AF screening.

Limitations

This study has several limitations. First, patients were traced

through EHRs. Because patients might be diagnosed with AF

outside the study hospital, some outcome misclassification was

inevitable. Nevertheless, the frequent visits to the study hospital

observed in this stroke population (>3 visits per month) might

have alleviated this problem. Second, the diagnosis of AF was

made in usual-care settings, where AF was detected almost

exclusively by 12-lead ECG or 24-h Holter ECG. Advanced ECG

monitoring via either implantable or external devices to detect

subclinical or low-burden AF was not used. Consequently,

the study findings are valid for relatively high-burden AF

(54). Third, although data-driven ML modeling has its own

advantages, the predictor-outcome relationships discovered

from data does not mean causality. In other words, prediction

accuracy should not be equated to causal validity (55). Fourth,

as this is a single-site study, the generalizability of the study

findings may be restricted. Variations in the terminology used

in clinical documentation are to be expected across healthcare

settings. However, the methods used here may allow other

healthcare systems to develop their own customized versions of

prediction models.
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Conclusions

It is feasible to build an ML model to predict NDAF

based on EHR data available at the time of hospital

admission. Inclusion of information derived from clinical

free text can significantly improve the model performance

and may outperform risk scores developed using traditional

statistical methods. These improvements may be due to

both the modeling approach to delineate nonlinear decision

boundaries and the use of textual features that help characterize

nuances of disease presentation across patients. Despite

these findings, further studies are required to confirm the

approach’s generalizability and the clinical usefulness of the

prediction model.
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