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Abstract

Background: Differences in responses to environmental chemicals and drugs between life stages are likely due in part to
differences in the expression of xenobiotic metabolizing enzymes and transporters (XMETs). No comprehensive analysis of
the mRNA expression of XMETs has been carried out through life stages in any species.

Results: Using full-genome arrays, the mRNA expression of all XMETs and their regulatory proteins was examined during
fetal (gestation day (GD) 19), neonatal (postnatal day (PND) 7), prepubescent (PND32), middle age (12 months), and old age
(18 and 24 months) in the C57BL/6J (C57) mouse liver and compared to adults. Fetal and neonatal life stages exhibited
dramatic differences in XMET mRNA expression compared to the relatively minor effects of old age. The total number of
XMET probe sets that differed from adults was 636, 500, 84, 5, 43, and 102 for GD19, PND7, PND32, 12 months, 18 months
and 24 months, respectively. At all life stages except PND32, under-expressed genes outnumbered over-expressed genes.
The altered XMETs included those in all of the major metabolic and transport phases including introduction of reactive or
polar groups (Phase I), conjugation (Phase II) and excretion (Phase III). In the fetus and neonate, parallel increases in
expression were noted in the dioxin receptor, Nrf2 components and their regulated genes while nuclear receptors and
regulated genes were generally down-regulated. Suppression of male-specific XMETs was observed at early (GD19, PND7)
and to a lesser extent, later life stages (18 and 24 months). A number of female-specific XMETs exhibited a spike in
expression centered at PND7.

Conclusions: The analysis revealed dramatic differences in the expression of the XMETs, especially in the fetus and neonate
that are partially dependent on gender-dependent factors. XMET expression can be used to predict life stage-specific
responses to environmental chemicals and drugs.
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Introduction

Detoxification and elimination of drugs, environmentally-

relevant chemicals and endogenous metabolites is a major func-

tion of the liver and important in maintaining the metabolic

homeostasis of the organism. Xenobiotics are metabolized by a

large number of xenobiotic metabolizing enzymes (XMETs) which

fall into three broad categories: phase I, phase II and phase III.

Phase I enzymes are mainly monooxygenases that convert

hydrophobic xenobiotics into hydrophilic molecules and include

cytochrome P450 family members, alcohol and aldehyde dehy-

drogenases, and amine oxidases. The cytochrome P450 (CYP)

enzymes catalyze oxidative metabolism of a vast number of

compounds, including many proteratogens, procarcinogens, and

promutagens to reactive and toxic intermediates. Phase II enzymes

convert the products of phase I metabolism into amphiphilic

anionic conjugates that are water soluble and include glutathione

transferases, UDP-glucuronyl transferases, and sulfotransferases.

Phase III genes export conjugated xenobiotics out of the liver and

include ATP binding cassette subfamily members, organic anion

and cation transporters, and solute carriers [1]. A large number of

genetic and biochemical studies have shown that the level of

expression and activity of individual XMETs in part, determines

the fate of a specific xenobiotic and whether exposure results in

toxicity [2] [3].

Pharmacokinetic differences between the fetus, newborns,

children, and the aged may alter responses to chemicals compared

to adults, potentially resulting in differences in therapeutic drug
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efficacy and for environmentally-relevant chemicals, adverse

health effects. Numerous changes take place in the liver during

the fetal and neonatal period. Hematopoiesis, which is a major

function of the fetal liver, declines dramatically during liver

maturation as hematopoietic stem cells migrate elsewhere [4].

During the late fetal and neonatal stages, the liver initiates the

expression of genes associated with liver maturation and starts

forming the architecture of the liver lobules. Associated with these

changes, hepatocytes start expressing various types of XMETs

including CYP genes [5] [6] [7]. Many environmental chemicals

and drugs are known to cause unwanted effects in the embryo or

fetus, including in utero death and birth defects which are

determined in part by XMET expression. Likewise, in the elderly,

there are pharmacokinetic changes that are attributed in part to

decreases in the volume of the liver and diminished hepatobiliary

functions including decreases in phase I drug metabolism

capability [8]. Dramatic changes in the expression of some

XMETs have been observed in the livers of aged rats [9] [10]. The

prediction of responses to chemicals and drugs in the elderly is

complicated by the fact that the elderly population has a burden of

or is more susceptible to various diseases and are often prescribed

several drugs concurrently.

No systematic analysis of the expression of XMETs through

different life stages has been carried out in any species to

determine differences with adults. Knowledge of XMET mRNA

expression would be a useful starting point to predict chemical

metabolism and associated responses as a function of life stage.

Here, we used full-genome microarrays to comprehensively

identify XMET gene expression changes through different life

stages compared to adult controls, the age at which most acute,

subchronic and chronic studies begin chemical exposure.

Materials and Methods

Animals and study design
All animal studies were conducted in accordance with guidelines

established by the United States Environmental Protection Agency

(US EPA) Office of Research and Development (ORD)/National

Health and Environmental Effects Research Laboratory (NHEERL)

Institutional Animal Care and Use Committee (IACUC) and

approved by the IACUC (IRP-NHEERL/ECD/CTB/CJC(JSL)/

2006-01-r3). Procedures and facilities were consistent with the

recommendations of the 1996 National Research Council (NRC)

‘‘Guide for the Care and Use of Laboratory Animals’’, the Animal

Welfare Act, and Public Health Service Policy on the Humane Care

and Use of Laboratory Animals.

Timed-pregnant C57BL/6J or C3H/HeJ dams (n = 6) or male

C57BL/6J mice, at approximately 6 (n = 5), 12 (n = 6), 18 (n = 7)

and 24 (n = 10) months of age were purchased from Charles River

Laboratory (Raleigh, NC) and acclimated for 1 week. Replicates

were individual mice. Mice were housed (1 per cage) in poly-

carbonate cages on Alpha Dry bedding with a 12 hour light/dark

cycle. Room temperature was 7062uF with a relative humidity of

50%. The basal diet was Ralston Purina 5001 (Ralston Purina

Co., St. Louis, MO) and water was provided ad libitum. Pregnant

dams were sacrificed at gestation day (GD) 19 and male pups

(n = 7) were sacrificed by decapitation. Male mice from additional

litters at ages post-natal day (PND) 7 (n = 4), PND32 (n = 6), and

PND67 (n = 7) or approximately 6, 12, 18 and 24 months of age

were sacrificed using CO2 asphyxiation. All necropsies started in

the morning and were completed by the afternoon. Studies with

the C3H/HeJ mice have been described previously [11]. Indi-

vidual animals in the litter were regarded as units. Livers were

removed, weighed, cubed and stored at 280uC until RNA

isolation. All aspects of these studies were conducted in compliance

with the guidelines of the Association for Assessment and Accredi-

tation of Laboratory Animal Care (AAALAC) International and

were approved by the US EPA/NHEERL IACUC.

RNA Isolation
Total RNA was isolated from mouse livers according to the

TriReagent procedure (Molecular Research Center, Cincinnati,

OH) and cleaned using the Qiagen RNeasy mini RNA cleanup

protocol (Qiagen, Valencia, CA). The integrity of each RNA

sample was determined using an Agilent 2100 Bioanalyzer

(Agilent, Foster City, CA), and RNA quantity was determined

using a NanodropH ND-100.

Microarray hybridizations
Liver gene expression analysis was performed according to the

Affymetrix recommended protocol using Affymetrix Mouse

Genome 430 2.0 GeneChipsH containing probes for over 30,000

genes. Total RNA (5 mg per sample) was labeled using the

AffymetrixH One-Cycle cDNA Synthesis protocol and hybridized

to arrays as described by the manufacturer (AffymetrixH, Santa

Clara, CA). The cRNA hybridization cocktail was incubated

overnight at 45uC while rotating in a hybridization oven. After

16 hours of hybridization, the cocktail was removed and the arrays

were washed and stained in an Affymetrix GeneChipH fluidics

station 450 according to the Affymetrix-recommended protocol.

Arrays were scanned on an Affymetrix GeneChipH scanner. Four

mice per age group were examined and cRNAs from individual

mouse livers were hybridized to individual chips.

Analyses of Microarray data
Analysis of microarray data was performed using Rosetta

ResolverH (Seattle, WA). Probe set expression levels were

normalized using the Rosetta gene-specific error model. Differen-

tially expressed genes (DEG) were identified using an error-

weighted one-way ANOVA with a Benjamini-Hochberg false

discovery rate (FDR) of 0.05. Principal components analysis (PCA)

was performed using Rosetta ResolverH. Hierarchical clustering

was performed using CLUSTER and visualized with TREEVIEW

[12]. Genes which exhibited gender-dependent expression were

identified from the .cel files from two published studies [13] [14]

using identical procedures as described above. Biological analyses

were done using the C57BL/6J strain. All data is MIAME

compliant and the raw data, as well as a detailed description of the

microarray experiment, is available through Gene Expression

Omnibus at the National Center for Biotechnology Information at

http://www.ncbi.nlm.nih.gov/geo/, as accession number GSE21716.

Evaluation of Selected Genes by Real-Time RT-PCR
The levels of expression of selected genes were quantified using

real-time reverse transcription–PCR (RT-PCR) analysis. Briefly,

total RNA was reverse transcribed with murine leukemia virus

reverse transcriptase and oligo(dT) primers. The forward and

reverse primers for selected genes (available upon request) were

designed using Primer Express software, version 2.0 (Applied

Biosystems, Foster City, CA). The SYBR green DNA PCR kit

(Applied Biosystems, Foster City, CA) was used for real-time PCR

analysis. The relative differences in expression between groups

were expressed using cycle threshold (Ct) values as follows. The Ct

values of the genes were first normalized with b–actin and

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of the same

sample. Assuming that the Ct value is reflective of the initial

starting copy and there is 100% efficiency, a difference of one cycle
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is equivalent to a two-fold difference in starting copy. Means and

SE (n = 4) for RT-PCR data were calculated by Student’s t test.

The level of significance was set at p#0.05.

Results and Discussion

Ontogeny of hepatic XMET gene expression changes
through the life stages of the mouse

Hepatic gene expression profiles were generated using full

genome gene arrays (Affymetrix MOE430_2 chips) from fetal (GD

19), neonatal (PND 7), prepubescent (PND32), middle age (12

months), and old (18 and 24 months) male C57BL/6J mice and

GD19 and PND32 male C3H/HeJ mice. Gene expression was

compared to 2 month old (PND67) animals for the fetal/neonatal

experiments or 6 month old animals for the aged mice, as these

studies were carried out at separate times. An unsupervised

comparison by principal components analysis (PCA) between the

liver profiles used in this analysis revealed the dramatic gene

expression differences between the fetal and neonatal livers and

their controls in the C57BL/6J mice (Figure 1A). Age segregates

along principal component #1 axis (11% variance) and strain

segregates along principal component #3 axis (5% variance).

There were similar differences between the GD19 livers compared

to the PND32 and PND67 livers from the C3H/HeJ mice. The

differences between the 6, 12, 18 and 24 month samples were

more subtle, but there were clear differences between 6 and 24

month old animals (not shown). The PCA clearly separated the

samples from the two strains, not surprising given the known

genetic and phenotypic differences between these strains, espe-

cially the known responses of the liver to hepatotoxicants [15]. The

comparison also revealed differences between the mouse livers at

PND67 and 6 months (data not shown) which may be due to a

number of biological (e.g., age) or technical differences (e.g.,

sampling times). While there is evidence of diurnal effects on

XMET gene expression [16,17], this should not affect our results

since all samples were collected during the day. The expression of

all genes significantly altered (20,687 genes) is shown in Figure 1B,

highlighting the dramatic differences in gene expression at GD19

and PND7. Interestingly, a smaller set of genes was differentially

expressed only at PND7. In comparison, relatively few changes

were observed in the aged mice.

Expression of XMETs through life stages in the mouse was

examined. XMETs were identified from a list provided in an earlier

paper [18], as well as identified in the latest curation of the

Affymetrix MOE430_2 chip. The list includes 190 phase I genes,

135 phase II genes, and 745 phase III genes. The list also includes

104 known regulators of XMET expression including nuclear

receptors with known or putative roles in XMET regulation. Most

of the XMETs (721 genes or ,61% of total) were altered in at least

one of the life stages (Figure 2A). Most of the changes occurred only

in the fetus and neonate. More subtle changes were observed during

aging. Most of the XMET genes altered at 24 months overlapped

with those altered at GD19 (Figure 2B). Five probe sets including 4

genes (Arntl, Slc6a15, Slc7a2, Gstt2) were altered only at 24 months.

The total number of XMET probe sets altered was 636, 500, 84, 5,

43, and 102 for GD19, PND7, PND32, 12 months, 18 months and

24 months, respectively. At GD19 and PND7, down-regulated

genes outnumbered up-regulated phase I-III genes (Figure 2C). At

PND32 up-regulated phase I genes outnumbered those that were

down-regulated, whereas there were about equal numbers of up-

and down-regulated phase II and III genes at this age. There were

more down-regulated than up-regulated phase I and II genes at 24

months. A list of the expression changes of the XMETs is included

in Table S1.

Using Ingenuity Pathways Analysis (IPA), canonical pathways

that were significantly altered (p-value#0.01) at the different life

stages were identified. All differentially expressed XMETs were

used as input for each life stage (Figure 2D). Most of the pathways

(29) were significantly altered in fetal/neonatal and aged groups.

Nineteen pathways were unique to the fetal/neonatal groups. No

pathways were unique to the aged groups. This analysis demon-

strates that the fetal and neonatal life stages exhibit profound

differences in their XMET expression compared to adult mice,

while the livers from aged mice exhibit more subtle differences in

XMET expression.

Gender-dependent changes in XMET expression at
different life stages

Gender-dependent gene expression in the rodent liver is

determined in large part by the growth-hormone secretory pattern,

which is continuous in females and pulsatile in males. Some XMET

genes can exhibit dramatic gender differences in expression, and

these gender-dependent patterns determine responses to pharma-

ceutical agents as well as environmentally-relevant chemicals [19].

The behavior of gender-dependent XMET genes through mouse

life stages has not been previously assessed. We examined the

expression of 106 XMET probe sets (out of the 721 XMET probe

sets exhibiting altered expression at one or more time points) that

also exhibited gender-dependent gene expression in the mouse liver.

Gender-dependent genes were identified from two studies in which

hepatic gene expression was compared between male and female

adult mice [13] [14]. Gender-dependent gene expression was

calculated as a ratio of expression in males to that in females. In

male mice, most of the male-predominant genes were suppressed in

the fetus and neonate and did not achieve full adult levels until after

PND7 (Figure 3A). The genes included the male-specific testoster-

one 16alpha-hydroxylase, Cyp2d9. A number of the XMETs in male

mice exhibited a fetal/neonatal-like expression as late as PND32

including Aox1, Aox3, Ces2, Cyp4a12a/Cyp4a12b, Cyp7b1, Slc35b1,

Ugt2b1, and Ugt2b38 (Figure 3A). Only four of the male-specific

genes in male mice exhibited increased expression during

development relative to adults including a transcription factor

involved in cell proliferation (Myc) and three phase III genes (Abca1,

Slco1b2 and Slc35a4).

Many female-predominant genes exhibited a unique pattern of

expression during development that included increased expression

between GD19 and PND32, generally peaking at PND7

compared to the adults (Figure 3B). These included many classical

female-specific genes involved in xenobiotic metabolism (e.g.,

Abcd2, Cyp3a41a/Cyp3a41b, Cyp4a10/Cyp4a31, Fmo2, Fmo3) as well

as the testosterone hydroxylases Cyp2b9 and Cyp2b10 and the

nuclear receptor Nr1i3 (CAR). Many of the female-predominant

genes (e.g., Cyp17a1, Cyp2a4/Cyp2a5, Cyp2c38) did not follow the

pattern of higher fetal/neonatal expression compared to adults.

These genes exhibited decreased expression between GD19 and

PND32 relative to adults indicating they are under different

control mechanisms during development.

Aging had more subtle effects on gender-dependent XMETs. At

24 months, 11 out of the 15 male-predominant probe sets that

were altered in male mice exhibited decreased expression relative

to 6 month old adults (Abcg2, Aox3, Ces2, Cyp2d9, Cyp4a12a/

Cyp4a12b, Cyp4v3, Cyp7b1, Slco1a1, Ugt2b1, and Ugt2b38)

(Figure 3A). Four male-predominant phase III probe sets (Abca1,

Slc10a2, Slc11a2, Slc41a2) exhibited increased expression at 24

months. Nine out of 17 female-predominant probe sets that were

altered exhibited increased expression at 24 months including

Abcd2, Ces3, Cyp2b9, Slc13a3, Slc3a1, Slc44a1, and Sult1a1 while the

rest (Cyp2a4/Cyp2a5, Fmo1, Gstt2, Por, Slc22a5, Slc2a2, Sult1d1) were
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down-regulated. The pattern of general decreases in male-

predominant genes indicates a general feminization of the liver

XMET transcriptome during aging. These results are consistent

with the feminization of gene expression observed in the aging rat

liver [10], which likely originates from decreases in circulating

testosterone and disruption of the growth hormone pulsatile

secretion pattern in males [20].

STAT5b is an important determinant of growth hormone-

mediated male-predominant gene expression [19], whereas

STAT5a expression determines in part female-predominant gene

expression [21]. Gender-predominant genes have been classified

based on their expression behavior in wild-type vs. STAT5a-null

or STAT5b-null mouse livers [19] [21]. As these studies examined

gene expression in young adult mice (6–9 weeks), we compared the

gender-predominant XMET genes identified in our studies to

determine if STAT5a or STAT5b may be playing a role in the

development of the male-specific profile. Out of the 106 XMETs

identified that were expressed in a gender-predominant manner,

51 and 55 probe sets overlapped with the genes cataloged in the

STAT5b-null or STAT5a-null studies, respectively. Almost all of

the male-predominant genes from our analysis were classified as

male-specific and were up-regulated by STAT5b in males [19],

i.e., expression was negatively affected in STAT5b-null mice

compared to wild-type mice. The genes included Ces2, Gstp1,

Foxa1, Cyp2d9, Slco1a1, Abcg2, and Cyp7b1. Most of the male-

predominant genes were unaffected in STAT5a-null mice [20].

Likewise, the female-predominant genes that were transiently up-

regulated during development were classified as female-specific

and down-regulated by STAT5b in male mice (Abcd2, Aldh3a2,

Ces3, Cyp2b10, Cyp2b9, Cyp2c37, Cyp39a1, Cyp3a16, Cyp4a10, Fmo1,

Fmo2, Mgst3, Nr1i3, Por, Slc16a7, Sult1a1, Sult3a1). Most of the

genes in this category were unaffected by loss of STAT5a. Thus,

this comparison provides evidence that STAT5b but not STAT5a

is playing a role in the development of the male-specific signature

between PND7 and PND67.

These results indicate that the immature male mouse liver

exhibits characteristics of a feminized mouse including suppression

of male-predominant genes. Many of these genes retain fetal/

neonatal expression patterns until PND32, about the time of

increases in circulating testosterone levels and sexual maturity.

This is in contrast to the majority of fetal/neonatal genes which

obtain adult levels by PND7. We uncovered a group of unique

female-predominant XMETs in male mice that were transiently

up-regulated relative to adults with peak expression at ,PND7.

Our comparison with the extensive microarray analysis of

expression changes in STAT5a- and STAT5b-null mice indicated

that STAT5b but not STAT5a plays a major role in driving the

male-predominant expression pattern during development of the

neonatal liver. It was curious that a smaller group of female-

predominant genes exhibited suppressed expression throughout

development (e.g., Abcc3, Abcd4, Ces3, Cyp17a1, Cyp2a4, Cyp2c38,

Cyp2c50, Cyp2c54, Fmo2, Gstt2, Gstt3, Slc17a1, Slc22a5, Slc29a1,

Slco1a4, Sult1b1) and thus were likely not under control of STAT5b.

These genes, like many genes suppressed during development (Lee

et al., submitted) may require factors other than STAT5b to achieve

adult-like expression. Based on these results we would predict that

immature male mice ,PND7 would exhibit responses to drugs and

xenobiotics similar to female mice.

Impact of life stage on XMET gene family expression
The impact of life stage on the expression of families of XMETs

was examined. Members of the alcohol dehydrogenase (Adh)

enzyme family metabolize a wide variety of substrates, including

ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and

lipid peroxidation products. Aldehyde dehydrogenase (Aldh) is the

second enzyme of the major oxidative pathway of alcohol

metabolism. Most of the Adh and Aldh family members exhibited

suppressed expression relative to adults (Table S2). However,

Adh7, Adhfe1, Aldh1a3, Aldh1b1, Aldh1l2, Aldh3a2, Aldh3b1, Aldh4a1

and the 5 probe sets of Aldh18a1 (encoding a glutamate gamma-

semialdehyde synthetase involved in arginine and proline

metabolism) were up-regulated during at least one age before

maturity. At 24 months, Adh4 and Aldh3b1 were slightly elevated.

A large number of Cyp genes were altered during development

(Table S3). While most Cyps were suppressed during development,

a number of subclasses exhibited increased expression including

members of the Cyp2b (i.e., Cyp2b9, Cyp2b10, Cyp2b13), Cyp3a (i.e.,

Cyp3a16, Cyp3a41a/3a41b, Cyp3a44), Cyp4a (i.e., Cyp4a14, Cyp4a29,

Cyp4a31) and Cyp4f (i.e., Cyp4f16, Cyp4f16/4f37, Cyp4f18) sub-

classes. Cyp genes involved in bile acid biosynthesis were altered

during development including the up-regulation of Cyp39a1 and

Cyp7a1 and the down-regulation of Cyp7b1 and Cyp8b1. A smaller

subset of Cyp genes was altered by aging but in general, they

exhibited smaller fold-changes than the more dramatic changes

observed during development. Like the developmental stages,

most of the Cyps altered with aging exhibited down-regulation

except Cyp2b9, Cyp3a13, and Cyp4f16.

We also observed the suppression of carboxylesterase (Ces) genes

during development. These included Ces1, Ces2, Ces3, Ces5, Ces6,

and Ces7. Ces3 exhibited a slight increase in expression at PND7

and 24 months. Carboxylesterases are important in the detoxifi-

cation of organophosphorous pesticides [22] and pyrethroid

insecticides [23], leading to the prediction of increased levels

during development upon exposure.

The aldo/keto reductase (Akr) superfamily involved in phase I

metabolism consists of more than 40 known enzymes and proteins.

These enzymes catalyze the conversion of aldehydes and ketones

to their corresponding alcohols by utilizing NADH and/or

NADPH as cofactors. The enzymes display overlapping but

distinct substrate specificity [24]. Akr genes that were up-regulated

at GD19 and/or PND7 included Akr1b3, Akr1b7, Akr1b8, Akr1c18

and Akr1c20 (Table S4). Akr1b3 and Akr1b7 encode prostaglandin

F2a synthase [25] and Akr1c18 encodes a 21-hydroxysteroid

dehydrogenase [26]. Akr1c12 and Akr1c13 were down-regulated at

24 months. Akr1c12/13 functions as a dehydrogenase for

endogenous hydroxysteroids [27].

Cytosolic and membrane-bound forms of glutathione S-

transferase (Gst) are encoded by two distinct supergene families.

These enzymes function in the detoxification of electrophilic

compounds, including carcinogens, therapeutic drugs, environ-

mental toxicants and products of oxidative stress, by conjugation

with glutathione. Most of the Gst genes were down-regulated

Figure 1. Transcriptional ontogeny of hepatic gene expression through life stages in the mouse. A. Principal components analysis (PCA)
of the livers from mice at different life stages. The PCA shows the dramatic differences between the fetal/neonatal samples and the adult. More subtle
differences were observed between adult and old mice (Not shown). C57, C57BL/6J; C3H, C3H/HeJ. B. Altered gene expression through life stages in
the mouse liver. Differentially expressed genes (fold change$|62|) were identified and clustered as detailed in the Materials and Methods. There
were no changes in gene expression in the ‘‘Adult’’ (PND67 and 6M) by definition. The intensity scale indicates fold-changes relative to the adult
controls. Red, up-regulation; green, down-regulation; black, no change.
doi:10.1371/journal.pone.0024381.g001
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during development (Table S4). Increased susceptibility to liver

carcinogenesis in mice and humans has been linked to single

nucleotide polymorphisms in the Gstt1 or Gsta4 genes [28] that

were down-regulated in our study. Gstcd, Gstm5, Gsto1, Mgst2 and

Mgst3 were up-regulated. Mgst2 and Mgst3 catalyze the committed

step in the biosynthesis of cysteinyl-leukotrienes (cys-LTs), potent

smooth muscle contracting agents which play key roles in

inflammatory and allergic diseases [29]. Gpx3, Gpx7, and Gss

involved in glutathione synthesis were also up-regulated during

development. At 24 months, there was weak up- (Gsta3, Gstm3) and

down- (Gpx7, Gstt2) regulation of some family members.

Sulfotransferase (Sult) enzymes catalyze the sulfate conjugation

of many hormones, neurotransmitters, drugs, and xenobiotic

compounds. Sult1a1, Sult1c2, Sult1d1 and Sult3a1 were up-regulated

and Sult1b1 and Sult5a1 were down-regulated during development

(Table S4). Sult1a1 was up-regulated and Sult1d1 and Sult5a1 were

down-regulated at 24 months.

UDP-glucuronosyltransferases (UGT) transform small lipophilic

molecules such as steroids, bilirubin, hormones, and drugs, into

water-soluble, excretable metabolites. The UGT1A enzymes are

encoded at a single locus that includes thirteen unique alternate

first exons followed by four common exons. The UGT family

members altered during development were universally down-

regulated (Table S4). A smaller number of Ugts were altered at 24

months including up-regulation of Ugt3a1 and down-regulation of

Ugt2a3, Ugt2b1, Ugt2b5, Ugt2b37 and Ugt2b38.

Expression of transporters located on both basolateral and

apical membranes of hepatocytes was examined. There were more

genes involved in transport that were under-expressed than over-

expressed during development (Table S5). Transporters with

increased fetal expression included genes with known endogenous

functions such as transport of amino acids (Slc1a5, Slc38a1, Slc38a5,

Slc3a2, Slc43a1, Slc7a1), adenine nucleotide (Slc25a4), glucose

(Slc2a1, Slc2a3), heme (Abcb10, Slc25a37, Slc25a38, all found on the

inner mitochondrial membrane), inorganic anion (Slc4a1(erythrocyte

membrane protein band 3, Diego blood group)), inorganic phosphate

(Slc20a1), monocarboxylic acids such as lactate (Slc16a1), urea

(Slc14a1), and zinc (Slc39a5, Slc39a8). Many of these genes may be

expressed in resident hematopoietic cells including nucleated

erythrocytes (Lee et al., submitted).

Some of the phase III genes that are coordinately up-regulated

during development may play essential roles in liver growth. For

example, the amino acid transporters Slc1a5, Slc7a5, and Slc3a2

play roles in regulating the target of rapamycin complex 1 (Torc1),

a highly conserved serine/ threonine kinase that in mammals

activates cell growth in response to stimuli including nutrients

(amino acids), growth factors (such as insulin and insulin-like

growth factor), and cellular energy status (ATP). Inhibition of

TORC1 activates autophagy [30]. L-glutamine uptake is regulated

by Slc1a5 and loss of Slc1a5 function inhibits cell growth and

activates autophagy. The complex of Slc7a5/Slc3a2, acts as a

bidirectional transporter that regulates the simultaneous efflux of

L-glutamine out of cells and transport of L-leucine/essential amino

acids into cells. Thus, the increases in Slc1a5 and Slc3a2 in the fetus

may be linked to coordinated cell growth and proliferation

through mTOR [31].

A number of transporters exhibited increased abundance in

aged mice that may be associated with tertiary lymphoid

neogenesis (TLN), a phenomenon entailing formation of ectopic

lymphoid structures observed in chronically inflamed tissues [32].

In the aging mouse liver, macrophages, T cells, B cells and

neutrophils form foci in the periportal region of the liver lobule

[33]. Two of the transporters (Abca7, Abcg3) are either lymphoid-

specific or associated with inflammation [34] [35]. Other

transporters with increased abundance included Abcd2 involved

in the peroxisomal import of fatty acids and fatty acyl-CoAs,

Slc41a2, a magnesium transporter and two amino acid transporters

(Slc3a1, Slc7a1).

The expression of known and putative transcriptional regulators

of the XMETs was also examined. The nuclear receptor

superfamily controls basal and chemical-inducible regulation of a

number of XMETs [36]. While most of the nuclear receptors were

down-regulated during development, Nr1i3 (CAR), Nr2c2 (known

as TR4 or TAK1), Nr2f1 (COUP-TF1), and Nr3c1 (glucocorticoid

receptor, GR) were up-regulated at one or more time points

during development (Table S6). Aging resulted in up-regulation of

Nr1h2 (liver X receptor beta, LXRbeta) and down-regulation of

Nr1d2 (Rev-erb beta).

Transcriptional regulators that fall into other transcription

factor families were examined. The heterodimeric partners

encoded by the Ahr and Arnt genes which control the transcrip-

tional response to polyaromatic hydrocarbons like dioxin were up-

regulated during development (Table S6). Activation of the Kelch-

like ECH-associated protein 1 (KEAP1)-NF-E2-related factor 2

(NRF2)-signaling pathway is an adaptive response to environmen-

tal and endogenous stressors and serves to render animals resistant

to chemical carcinogenesis and other forms of toxicity, while

disruption of the pathway exacerbates these outcomes [37]. We

observed increased expression of Nrf2 (Nfe2l2) and down-

regulation of Keap1 (21.8 fold-change at GD19) during develop-

ment. Heterodimeric partners of Nrf2 were up- (Maff and Mafk) or

down- (Mafg) regulated. Other Maf and Nrf family members were

also up-regulated during development. Arnt1, Maf and Nfe2 were

up-regulated and Mafb and Maff were down-regulated at 24

months. The fetal and neonatal life stages may exhibit induced

Nrf2 and decreased Keap1 expression to help protect the fetus or

newborn from environmental stressors including oxidative stress.

The expression of ,40 genes at all life stages was examined by

RT-PCR. Two genes (a-fetoprotein (Afp) and Cd34) exhibited

strong expression at GD19 and PND7 compared to adults (data

not shown), consistent with their known fetal expression in the liver.

The RT-PCR results for the XMETs were consistent with those

observed by microarrays (Table S7). Additional genes not examined

by microarray were queried by RT-PCR including sulfotransferase

family 2A, dehydroepiandrosterone (DHEA)-preferring, member 1

(Msta1) which was dramatically up-regulated only at PND7. Two

17b-hydroxysteroid dehydrogenases (Hsd17b5 and Hsd17b7) were

down-regulated at GD19 and PND7. In an examination of

transcription factors important in XMET expression, Ahr, Car and

Pxr genes exhibited decreased expression at one or more time points

during development while Ppara was up-regulated at PND7. The

expression of Ppara correlates with the up-regulation of target genes

Figure 2. Altered expression of XMETs in the male mouse liver at different life stages. A. XMET expression at different life stages. XMET
genes which exhibited significant differences in expression compared to adult animals were identified as detailed in the Materials and Methods.
Genes were clustered using one-dimensional hierarchical clustering. B. Overlap in the XMET probe sets altered in the fetus (GD19) and at 24 months.
C. Quantitation of the number of up- and down-regulated phase I, II and III probe sets at different life stages. DEGs, differentially expressed genes. D.
Canonical pathways overrepresented by the XMET probe sets at different life stages. XMET genes described in Figure 2A were analyzed by Ingenuity
Pathways Analysis. Pathways were clustered by one-dimensional clustering. Scales at the bottom indicate the 2log(p-value) for all genes.
doi:10.1371/journal.pone.0024381.g002
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Cyp4a10 and Cyp4a14 while the down-regulation of Car and Pxr

correlates with the down-regulation of many XMETs that are

controlled by these transcription factors. We also confirmed the up-

regulation of Cyp2b9 and down-regulation of Cyp1a2 and Cyp7b1 at

24 months (data not shown).

Our comprehensive analysis of XMET expression in mice

revealed key features of XMET expression at different life stages.

A large number of XMETs (,61% of total) were altered in the

fetus and/or neonate, and most of these genes including phase I–

III genes were underexpressed relative to adults. Expression of

many of XMETs achieved adult levels by PND7-PND32.

Consistent with our findings, a number of published studies

indicate that in mice and rats, specific XMETs are generally

underexpressed during development and exhibit increased expres-

sion from before birth to adulthood. Choudhary et al. [38]

identified Cyp genes that were increased during development when

assessed in whole fetuses from mice. In rats, there was a 4- and 6-

fold increase in CYP protein content at PND7 and PND14,

respectively, compared with PND1 [39]. In rats, CYP1A1 was

expressed during early gestation, but expression of most of the

other CYP enzymes occurred at or near birth (CYP2B, CYP2C23,

CYP3A) or immediately after birth (CYP2E1) [40]. CYP1A2,

CYP2C6, CYP2C11, CYP2C12, and CYP4A10 were expressed only

after the first week of birth [40] [41] [39] [42]. CYP2B1 activity at

PND4 was comparable to levels observed in adult livers [39],

whereas postnatal [40] activity of CYP2E1 increased linearly with

age and at PND32 was comparable to that in adult liver [40] [39].

Based on the pattern of XMET expression, we would predict that

the fetus and neonate would be more susceptible to chemicals that

do not require metabolic activation (and thus Cyp expression) for

toxic effects. Increased sensitivity in the fetus and neonate may be

compounded by the fact that the dam also exhibits changes in

XMET expression. The expression of a number of XMETs

decreased in the livers of F344 rat dams during late-term

pregnancy and lactation [43]. Thus, the fetus and neonate may

be more sensitive to xenobiotic exposure not only because of

XMET changes in the livers of the fetus or neonate but also

because of decreases in the efficient inactivation and excretion of

toxic or potentially toxic chemicals by the dam.

Analysis of XMET expression in the livers from old mice

indicate differences in phase I–III expression consistent with that

observed previously in rats [9] [10]. Compared to the fetus and

neonate, the changes in the aged mice were more subtle. Although

most of the phase I and III genes were down-regulated by aging,

most of the phase II genes were up-regulated. Recently, expression

of a large number of XMETs was examined in the livers from

aged male C57BL/6J mice [42] and many of the changes that we

observed in our microarray study were confirmed by RT-PCR in

this study. These included down-regulation by aging of Cyp1a2,

Cyp4a12, Gsta1/a2, Gsta4, Gstt2, Sultd1, Ugt2a3, Ugt2b1 and up-

regulation by aging of Sult1a1.

Regarding the regulation of environmentally-relevant chemi-

cals, the US EPA’s Draft Guidelines for Carcinogen Risk Assessment,

requires that if data are available from an epidemiological study on

the effects of childhood exposure or an animal bioassay involving

early-life exposure, a risk estimate that includes childhood

exposure should be developed [44] [45]. Cancer risks are

considered higher from early-life exposure than from similar

exposure durations later in life based on extensive literature in

animals [45]. Risk estimates that pertain to childhood exposures

are usually adjusted, i.e., for exposures before 2 years of age, a 10-

fold adjustment factor is invoked, while for exposures between 2

and ,16 years of age, a 3-fold adjustment factor is used. No

adjustments are made for individuals 16 years and older including

aging adults. These adjustment factors do not necessarily reflect

the underlying basis for differences in xenobiotic metabolism and

responses to carcinogens between life stages. Our analysis of gene

expression in the livers of mice at different life stages is one step to

determine if the adjustment factors are too simplistic, chemical

class-specific or adequately protective of sensitive populations.

Future work will be directed towards determining the chemicals to

which different life stages may exhibit altered responses compared

to adults. For the fetus, responses will depend in part on effects of

tissues that act as a metabolic barrier to environmental exposure to

protect the embryo (yolk sac) and the fetus (placenta). For the

neonate, xenobiotic metabolism in the maternal liver as well as any

in the mammary gland will need to be considered.

Summary
In the presence of foreign compounds, metabolic homeostasis of

the organism is maintained by the liver’s ability to detoxify and

eliminate these xenobiotics. This is accomplished, in part, by the

expression of XMETs, which metabolize and transport xenobiot-

ics and determine whether exposure will result in altered

responses. This project was designed to examine the changes in

XMET mRNAs from early to late life stages in male C57BL/6J

mice. Differences with adults in XMET expression were striking in

the fetus and neonate (GD19 and PND7). The livers from aged

mice exhibited more subtle differences in their XMET expression

compared to young adults. In general, the majority of XMETs

altered during development were underexpressed. Our results also

showed that the developing male mouse fetus exhibits character-

istics of a feminized mouse including suppression of male-

predominant probe sets. This comprehensive catalog of XMET

hepatic gene changes through the life stages of the mouse is being

used to predict differences in sensitivity to chemicals at different

life stages (Lee et al., in preparation).

Supporting Information

Table S1 XMET genes altered with life stage.
(XLSX)

Table S2 Altered expression of alcohol dehydrogenase
(Adh) and aldehyde dehydrogenase (Aldh) family mem-
bers.
(XLSX)

Table S3 Altered expression of Cyp family genes.
(XLSX)

Figure 3. Life stage changes in XMET expression are partially gender-dependent. XMETs which exhibited gender differences in gene
expression in the mouse liver in a reanalysis of two studies (gender study 1 (GS1), [14]; GS2, [13]) were examined for expression changes across life
stage. Gender-dependent gene expression was calculated as a ratio of expression in males to that in females. At each life stage the expression in
males and females was compared to adult baseline (PND67 and 6M). Probe sets predominantly expressed in males are indicated in red and female-
predominant probe sets are indicated in green; intensity indicates the ratio of the gender difference. The comparison shows the suppressed
expression of many male-predominant probe sets and increased expression of female-predominant probe sets in the fetus and neonate compared to
the adults. A. Expression of male-predominant probe sets in the fetal and neonatal liver. B. Expression of female-predominant probe sets in the fetal
and neonatal liver.
doi:10.1371/journal.pone.0024381.g003
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Table S4 Impact of life stage on phase II metabolism
genes.
(XLSX)

Table S5 Impact of life stage on phase III transporter
genes.
(XLSX)

Table S6 Impact of life stage on transcriptional regu-
lators of XMET expression.
(XLSX)

Table S7 RT-PCR confirmation of microarray results.
Expression of xenobiotic metabolism genes from GD19-PND67

was determined by RT-PCR. Significant fold-changes (p#0.05)

are indicated.

(XLSX)
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