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Introduction: Cardiovascular system is the vitally important system in the dynamical

adaptation process of the newborns to the extrauterine environment. To reliably detect

immaturity in the given organ system, it is crucial to study the development of the organ

functions in relation to maturation process.

Objectives: The objective was to determine the changes in the spontaneous short-term

blood pressure variability (BPV) and baroreflex sensitivity (BRS) reflecting various aspects

of cardiovascular control during the process of maturation in preterm babies and to

separate effects of gestational age and postnatal age.

Methods: Thirty-three prematurely born infants without any signs of cardio-respiratory

disorders (gestational age: 31.8, range: 27–36 weeks; birth weight: 1,704, range:

820–2,730 grams) were enrolled. Continuous peripheral blood pressure signal was

obtained by non-invasive volume-clamp photoplethysmography method during supine

rest. The recordings of 250 continuous beat-to-beat blood pressure values were

processed by spectral analysis of BPV (assessed measures: total power, low frequency

and high frequency powers of systolic BPV) and BRS calculation. For each infant we also

assessed systolic, diastolic and mean blood pressures, heart rate and respiratory rate.

Results: With the postconceptional age, BPV measures decreased (for total power:

Spearman correlation coefficient rs = −0.345, P = 0.049; for low frequency power:

rs = −0.365, P = 0.037; for high frequency power rs = −0.349; P = 0.046); and

BRS increased significantly (rs = 0.448, P = 0.009). The further analysis demonstrated

that these effects were more attributable to gestational age than to postnatal age. BRS

correlated negatively with BPV magnitude (rs = −0.479 to −0.592, P = 0.001–0.005).

Mean blood pressure and diastolic blood pressure increased during maturation

(rs = 0.517 and 0.537, P= 0.002 and 0.001, respectively) while heart rate and respiratory

rate decreased (rs = −0.366 and −0.516, P = 0.036 and 0.002, respectively).

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://www.frontiersin.org/journals/pediatrics#editorial-board
https://doi.org/10.3389/fped.2021.653573
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2021.653573&domain=pdf&date_stamp=2021-07-01
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:michal.javorka@uniba.sk
https://doi.org/10.3389/fped.2021.653573
https://www.frontiersin.org/articles/10.3389/fped.2021.653573/full


Javorka et al. Blood Pressure Variability in Newborns

Conclusion: We conclude that maturation process is accompanied by an increased

involvement of baroreflex buffering of spontaneous short-term blood pressure

oscillations. Gestational age plays a dominant role not only in BPV changes but also

in BRS, mean blood pressure, diastolic blood pressure and heart rate changes.

Keywords: preterm infants, blood pressure, blood pressure variability, baroreflex sensitivity, volume-clamp

photoplethysmography

INTRODUCTION

Premature infants represent a specific group of individuals
with different degrees of maturation. The degree of
maturity/immaturity determines their prognosis, including
various abnormalities in cardiovascular system (CVS) as well as
subsequently increased risk of hypertension in adulthood (1–3).
To reliably detect immaturity in the given system, it is crucial to
study the development of the organ functions in the dynamics
of time.

The immaturity of CVS and its control as one of the most
vitally important physiological systems can be potentially risky
for a premature newborn (4). Although an information on
the maturation related changes in heart rate and heart rate
variability reflecting heart rate control by autonomic nervous
system are well-know (5, 6), the data focusing on another
aspects of cardiovascular control – short-term blood pressure
variability (BPV) and baroreflex sensitivity (BRS) – are still
very rare. It is mostly caused by the methodological difficulties
and unavailability associated with continuous non-invasive blood
pressure recording essential for this kind of analysis (7).

Short-term BPV is a result of complex regulation of
cardiovascular system, including high-pressure baroreflex,
sympathetic modulation of vasculature, regulation of cardiac
activity, as well as changes in venous blood return (e.g., caused
by respiration) (8, 9). Knowledge of short-term BPV and BRS
can potentially provide novel insight on maturation of the
cardiovascular system and its control in premature infants.

The aim of this study was to study developmental changes
in BPV and BRS in preterm infants. We addressed also the
hypothesis that baroreflex buffers the blood pressure oscillations
and therefore in the next step we focused on the relation between
BPV and BRS.

MATERIALS AND METHODS

Subjects
A total of 33 children (15 boys and 18 girls) born in the
27th−36th gestational week with a birth weight of 820–2,730 g
were recruited for the study. From this basic group, one child
was classified as extremely preterm (below 28 weeks of gestational
age at birth) and 14 were classified as very preterm (gestational
age 28–32 weeks). At the time of examination, the children had
a postconceptional age (gestational + postnatal age) of 32.3–
38.4 weeks. To analyze the influence of growth after birth and
deviation of birth or current weight from average values for
given age we found z-scores (distance from population mean

expressed in standard deviations) for both birth and current
weights. Growth after birth was quantified as a difference between
z-scores for current and birth weights.

Criteria for inclusion of newborns included postnatal age
higher than 4 days and a wrist circumference of 45–75mm. The
infants at the time of examination were without any symptoms
of respiratory or cardiovascular disorders and they did not
take drugs that could affect the cardiorespiratory system. Only
children who were calm during the examination were included
in the study. The child’s motor restlessness was one of the
exclusion criteria. Other exclusion criteria included respiratory
or cardiovascular disorders and chromosomal abnormalities. The
infants requiring phototherapy due to hyperbilirubinemia or
analgosedation at the time of measurement were also excluded
from our study.

The study was approved by the Ethics Committee of the
Jessenius Faculty of Medicine, Comenius University in Martin
(Slovakia). Written informed consent to the infant’s participation
in the study was given for each child by a parent or legal guardian.

Data Acquisition
Examination of children and data recording were performed
between 8 a.m. and 3 p.m, 1–2 h after feeding. The measurement
conditions, including environmental, were standardized with
a reduction of visual and acoustic stimuli, constant ambient
temperature set according to the gestational age of the child in
the incubator or on a warming mattress. During recordings the
children were in the supine position.

A Portapres instrument (FMS, Netherlands) was used for
non-invasive and continuous peripheral blood pressure (BP)
recording. BP registration was preceded by a selection of a cuff
of the appropriate size according to the circumference of the
newborn’s wrist. After placing the cuff on the wrist of the right
hand, which was supported and kept at heart level, the child
was left at rest for at least 5min. Subsequently, we recorded
resting beat-to-beat BP values during 2–5min. Recordings of
blood pressure were stored in the device memory, transferred
to a computer and processed by original FMS software. During
each measurement, we recorded the child’s behavior and the
current oxygen saturation of blood with a pulse oximeter (Nellcor
Oximax N560, USA). The average value of oxygen saturation in
the whole study group was 97% (range 93–100%). Respiratory
rate was measured visually from chest and abdomen movements
at 30 s intervals.

Each child was connected to a monitor (Carescape V100
Dinamap Critikon, USA) for intermittent determination of
systemic BP using oscillometric method. Two BP values
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were obtained before Portapres was used, two values after
measurement by Portapres. For each infant, the oscillometrically
measured BP was determined as an average of these four values.

Data Processing
From each recording, a stationary part consisting of 250
continuous beat-to-beat values of systolic BP (SBP), diastolic
BP (DBP), mean BP (MBP) values and pulse intervals were
found. The mean values of SBP, DBP, MBP and heart rate
(HR; calculated as a reciprocal value of pulse interval) for each
newborn were calculated. The spontaneous variability of SBP
was analyzed by spectral analysis using fast Fourier transform
(FFT) after resampling at 4Hz and detrending. Window size
was set at 256 resampled values. Total spectral power (TP)
and spectral power in the low frequency band (LF: 0.04–
0.15Hz) and in the high frequency band (HF: 0.4–1.5Hz) were
calculated. Spectral bands for the neonatal population were
defined according to Andriessen et al. (10, 11). While total
power reflects overall blood pressure variability magnitude, blood
pressure variability in high frequency band mainly reflects the
mechanical effect of venous return changes associated with
respiratory activity and respiratory sinus arrhythmia effect on
duration of cardiac filling during diastole (9). Oscillations of the
systolic blood pressure in low frequency band are associated with
vascular control related to baroreflex activity and hence they are
related to parasympathetic as well as to the sympathetic activity.
Because the commonly calculated ratio of low- to high-frequency
oscillations magnitude is considered a controversial parameter
with unclear interpretation (12), its values were not calculated.

As the next step, BRS expressed in ms/mmHg was calculated
using the cross-correlation sequence method (or xBRS method)
using original software provided with Portapres device. In more
details, 10 s windows of simultaneous systolic blood pressure
and pulse interval changes were analyzed to find positive cross-
correlation using time delays between blood pressure and pulse
interval signal ranging from 0 to 5 s. When cross-correlation
value was significant at P = 0.01, it indicated that increase in
systolic blood pressure was accompanied by an increase in pulse
interval pointing toward an involvement of baroreflex in given
window of recording. The delay giving the highest correlation
was chosen and instantaneous BRS value was estimated as the
slope of relation between systolic blood pressure and pulse
interval. Mean BRS for each newborn was calculated as a mean
of instantaneous BRS values (average number of instantaneous
BRS values used for the calculation of an individual BRS was
24). Data acquisition and processing are schematically presented
in Figure 1.

Statistical Analysis
Shapiro-Wilk normality test as a test of the normal Gaussian
distribution of analyzed data was used prior to statistical analysis.
Two-sample t-test (for variables with Gaussian distribution) and
non-parametric Mann-Whitney U-test (for variables with non-
normal distribution) were used to test significant differences
between two subgroups. To determine the correlations between
variables, Spearman’s correlation coefficient (rs) and P-value
associated with the given coefficient were determined.

For all statistics, we considered the P-values below 0.05 as the
statistically significant. The results are presented as mean and
standard deviation (SD).

RESULTS

The study was originally intended to analyze separately the
effect of gestational age and postnatal age on BPV and BRS
measures. However, infants with lower gestational age had
greater instability of the respiratory and cardiovascular systems at
the beginning of neonatal period. These children were examined
only after the stabilization of their vital functions. It caused that
children with low gestational age were usually examined later
after birth (i.e., with higher postnatal age), while children with
higher gestational age were examined earlier in their postnatal
age. It caused strong negative correlation between gestational and
postnatal age (rs = −0.87) violating the possibility to analyze
effects of postnatal age and gestational age separately.

Taking together, when we consider the whole group, the effect
of gestational age could not be separated from the effect of
postnatal age and vice versa. Therefore, we decided to correlate
assessed measures with postconceptional age only combining
effect of both gestational and postnatal age.

In an effort to separate effect of gestational age from the
effect of postnatal age, we selected from the study group two
subgroups with 11 newborns in each of them. Two subgroups
of children were paired according to postconceptional age of
35 ± 1 week. To minimize the spread of postconceptional age
in two groups we excluded remaining 11 infants being too far
from 35th week of postconceptional age from between-groups
analysis. The first group (group 1) was a group with higher
gestational age and lower postnatal age and the second group
(group 2) was characterized by a lower gestational age and higher
postnatal age. Both groups had almost the same current weight at
the time of measurement. The basic study group and subgroups
characteristics are presented in Table 1.

BP and HR values determined by the intermittent
oscillometric method in the whole basic study group did
not differ significantly from the values measured by Portapres
presented in Table 1. SBP determined by the oscillometric
method was 58.1 (6.1) mmHg, DBP was 31.4 (8.2) mmHg, MBP
was 40.6 (7.4) mmHg and HR was 149.8 (14.5 min−1).

Correlations of Postconceptional Age and
Z-Scores of Birth and Current Weights to
Basic Cardiorespiratory Measures and to
Blood Pressure Variability (BPV) and
Baroreflex Sensitivity (BRS)
Postconceptional age in the group of all 33 newborns positively
correlated with DBP (rs = 0.537; p= 0.001) andMBP (rs = 0.517;
p = 0.002), BRS (rs = 0.448; p = 0.009), and it correlated
negatively with HR (rs = −0.366; p = 0.036) and respiratory
rate (RR; rs = −0.516; p = 0.002). Postconceptional age also
significantly negatively correlated with total power in systolic
blood pressure (TP SBP), spectral power in low frequency band
(LF SBP) and in high frequency band (HF SBP) (Figure 2).
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FIGURE 1 | Volume-clamp photoplethysmographic method of peripheral blood pressure measurement (upper left part) is based on the application of counter

pressure by cuff (in adults applied on finger, in newborns on wrist) to prevent pulsations in finger (or wrist) volume caused by blood pressure oscillations, including

pulses related to heart beat. It is verified that cuff pressure then corresponds to arterial blood pressure. From the resulting recording (left bottom part of figure), systolic

blood pressure (SBP) values and pulse intervals (PI) are measured. SBP oscillations (blood pressure variability) are analyzed by spectral analysis to quantify magnitude

of blood pressure variability at various frequencies [e.g., in low (0.04–0.15Hz) and high (0.4–1.5Hz) frequency bands]. In addition, baroreflex sensitivity is quantified

from the correlation between two measured signals (SBP and PI oscillations) using cross-correlation sequence method.

No correlation between z-scores of birth weight and current
weight or of their difference with any analyzed cardiovascular
measure was found.

Effects of Gestational and Postnatal Age in
Preterm Infants With Similar
Postconceptional Age to Cardiorespiratory
Measures and to Blood Pressure Variability
(BPV) and Baroreflex Sensitivity (BRS)
Despite the similar postconceptional age and current weight, the
group 1 in comparison to the group 2 had higher MBP (44.0 vs.
38.0 mmHg), DBP (35.3 vs. 28.0 mmHg) and lower HR (136.9 vs.
155.7 min−1).

BRS was higher and the values of the HF SBP and TP SBP were
significantly lower in the group 1 with longer gestational age and
shorter postnatal age in comparison to the group 2 (Tables 1, 2).

Baroreflex Sensitivity and Its Correlations
With Blood Pressure Variability Measures
and Heart Rate
Correlations between BRS and HR and parameters of spectral
analysis of SBP variability were calculated in the whole group of
33 infants. TP as well as spectral powers in LF and HF bands
significantly negatively correlated with BRS (Figure 3). There
was also a significant negative correlation between BRS and HR
(rs =−0.594; P < 0.001).

DISCUSSION

The most important observations of our study include the
following effects of postconceptional age and gestational age
on cardiovascular control in premature newborns: a decrease
of blood pressure variabiliy accompanied by an increase in
baroreflex sensitivity, a decrease in heart rate together with an
increase of diastolic and mean blood pressures and a significant
correlation between baroreflex sensitivity and blood pressure
variability magnitude.

Blood Pressure Variability and Baroreflex
Sensitivity in Newborns
With the introduction of noninvasive method for beat-to-beat
BP recording into clinical physiology, including its application
to newborns, new insight into cardiovascular control emerged.
Firstly, spontaneous oscillations of BP – BPV – could be analyzed
providing information related to BP control. Secondly, from the
analysis of heart rate (or pulse interval) changes in relation to
BP perturbations, cardiac chronotropic branch of high-pressure
baroreflex characteristics including BRS can be estimated.

The mechanisms behind spontaneous BPV are complex.
Similarly to heart rate variability, the blood pressure changes
from heart beat to heart beat. These spontaneous changes –
BPV – are mostly composed of the slower (low-frequency –
LF) and faster (high-frequency - HF) oscillations. Slower LF
oscillations in BPV of systolic blood pressure were considered
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TABLE 1 | Basic characteristics including cardiorespiratory measures of the whole study group (n = 33) and of two subgroups with the similar postconceptional age;

values are presented as mean and standard deviation (in parentheses). Range is presented in square brackets.

Basic study group

(n = 33) 15 male, 18

female

Group 1 (n = 11) 6

male, 5 female

Group 2 (n = 11) 6

male, 5 female

P-value

Gestational age (weeks) 31.8 (2.7)

[27–36]*

34.45 (1.13)

[33–36]

31.73 (1.42)

[29–33]**

<0.001a

Postnatal age (days) 19.4 (11)

[4–39]

5.82 (1.94)

[4–10]

23.82 (6.97)

[15–34]

<0.001

Postconceptional age (weeks) 34.7 (1.6)

[32.3–38.4]

35.27 (1.01)

[33.7–36.7]

35.13 (1.11)

[33.3–36.6]

0.752

Birth weight (g) 1,704 (462)

[820–2,730]

2 145 (275)

[1,690–2,730]

1 630 (271)

[1,240–2,080]

<0.001

z-score birth weight −0.091 (0.857)

[−2.310–1.720]

−0.391 (0.848)

[−2.310–0.560]

−0.179 (0.532)

[−0.710–0.830]

0.492

Current weight (g) 1,983 (278)

[1,260–2,700]

2 053 (280)

[1,620–2,700]

2 054 (214)

[1,700–2,540]

0.990

z-score current weight −0.850 (0.789)

[−3.120 to 0.430]

−1.091 (0.842)

[−2.880 to 0.090]

−0.909 (0.612)

[−1.520 to 0.310]

0.570

z-score difference CW-BW −0.759 (0.293)

[−1.410 to −0.140]

−0.700 (0.169)

[−1.010 to −0.470]

−0.730 (0.271)

[−1.170 to −0.380]

0.759

SBP (mmHg) 58.5 (5.2) 57.5 (4.0) 54.9 (4.7) 0.187

DBP (mmHg) 31.7 (7.8) 35.3 (5.5) 28.0 (5.6) 0.006

MBP (mmHg) 41.8 (6.9) 44.0 (4.8) 38.0 (5.7) 0.015

HR (min−1 ) 148.5 (14.4) 136.9 (12.0) 155.7 (9.9) <0.001

RR (min−1 ) 50.3 (7.5) 46.9 (6.6) 51.5 (6.6) 0.113

P-values correspond to between groups testing (Group 1 vs. Group 2). SBP, systolic blood pressure; DBP, diastolic blood pressure; MBP, mean blood pressure; HR, heart rate; RR,

respiratory rate. *included 14 children with gestational age in the range 28–31 weeks; 1 child with gestational age below 28 weeks; **included 5 children with gestational age < 32

weeks. a indicates Mann-Whitney U-test used for between groups difference testing.

FIGURE 2 | Correlations between postconceptional age (PcA) in weeks (wks) and spectral total power (TP), low frequency band spectral power (LF) and high

frequency band spectral power (HF) of systolic blood pressure (SBP) variability with the Spearman correlation coefficient (rs) and statistical significance level (P).

Logarithmic scale was applied on y-axis. Empty circles corresponds to infants with gestational age below 32 weeks.

to reflect mostly sympathetic activity directed to blood vessels
(13). However, mechanisms behind the LF oscillations are more
complex, including other mechanisms including modulation by
endothelial cells lining internal surface of vessels (9) and by
spontaneous changes in smooth muscle cells in vascular wall –
myogenic vascular control (8). In addition, a significant portion
of LF SBP variability is attributable to spontaneous changes in

heart rate – heart rate variability – affecting cardiac cycle length
and hence DBP and SBP values (14).

SBP variability in the HF spectral band is mostly influenced
by changes in cardiac contraction strength associated with
ventilation (15). Cyclic intrathoracic pressure changes related
to ventilation lead to changes in venous return and finally to
fast cyclic changes in systolic blood pressure values. Similarly
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TABLE 2 | Comparison between two groups of newborns (Group 1 with higher

gestational age, lower postnatal age; Group 2 with lower gestational age, longer

postnatal age).

Group 1 Group 2 P-value

BRS (ms/mmHg) 9.42 (5.71) 3.90 (1.63) 0.010

LF SBP (mmHg2) 0.286 (0.251) 0.953 (1.217) 0.082

HF SBP (mmHg2) 1.212 (1.276) 2.727 (2.576) 0.011

TP SBP (mmHg2) 1.498 (1.497) 3.680 (3.232) 0.011

Data are presented as the mean (standard deviation); P-value, significance level for

between-groups comparison (Mann-Whitney U test). BRS, baroreflex sensitivity; LF SBP,

spectral power in low frequency band; HF SBP, spectral power in high frequency band;

TP SBP, total power in systolic blood pressure variability.

to LF band, venous return changes associated with heart rate
variability can be also involved in the origin of HF SBP
oscillations (16).

We observed the negative correlation between
postconceptional age and BPV (overall BPV, as well as BPV
in LF and HF bands) in the group of premature infants. It
means that with a higher postconceptional age BPV in all
assessed frequency bands decreases. Interestingly, when we
analyzed two groups with the similar postconceptional age but
different gestational and postnatal ages, we found statistically
significantly lower values of TP SBP and HF SBP and a tendency
toward lower LF SBP power. It indicates that the gestational
age plays a dominant role in the gradual decrease of BPV
in newborns.

Our results point toward the fact that the intrauterine
maturation (reflected in gestational age) plays a dominant role
in the stabilization of spontaneous short-term BPV, mostly in the
HF band. Since blood pressure changes are mediated by multiple
mechanisms partially explained above, several mechanisms could
be responsible for this phenomenon:

Firstly, the decrease in the baroreflex involvement in the origin
of BPV oscillations mediated by sympathetic nerves directed to
the vessels can be considered. However, we assume that this
mechanism will affect mostly LF oscillations in BPV and we
consider this mechanism as a less probable because in our study
HF SBP was affected more prominently.

Secondly, when we consider both LF and HF BPV oscillations,
the changes in heart rate variability could be responsible for
the changes in BPV via so called feedforward mechanism
where changes in cardiac cycle length are transferred to SBP
changes (16). However, based on the results of previous studies
the heart rate variability increases with gestational age (5, 6)
and we observed the opposite changes in BPV making this
mechanism improbable.

Thirdly, the activity and regulatory role of the autonomic
nervous system is underdeveloped in premature infants making
mechanical changes caused by respiration dominant in the origin
of BP oscillations (17). A reduction in intrathoracic pressure
changes associated with breathing as a result of an increase in
lung compliance and a reduction in airway resistance (18) can
be responsible for the decrease in HF SBP with postconceptional
and gestational age. Decreased lung compliance together with

a weakening of strength of the Hering-Breuer inflation reflex
(19) could be also responsible for the negative correlation
between respiratory rate and postconceptional age found in
our data.

Fourth important potential mechanism of observed BPV
changes associated with postconceptional and gestational age
include baroreflex acting as a buffer of BP oscillations (7). Wray
et al. (20) found that vagal blockade reduces BRS and increases
BPV in young healthy people. Therefore, we hypothesize that
increased involvement of baroreflex expressed as increased
BRS should be associated with a decreased BPV also in our
neonatal group.

We tried to confirm this hypothesis by the analysis of BRS
from spontaneous HR and SBP oscillation. In agreement with
previous studies (21–24), higher BRS was present in children
with higher gestational and postconceptional age. Subgroups
analysis points toward a predominance of gestational age also
in this relationship. We assume that a gradual decrease of BPV
with postconceptional age is associated with the gradual increase
of BRS. This observation is in concert with the concept of
high-pressure baroreflex as a buffer of BP perturbations (25)
confirming baroreflex as very important mechanism for stability
of cardiovascular system even in healthy premature infants in
early postnatal life. Infants with low BRS can be thus prone to
circulatory instability.

Relationship Between Postconceptional or
Gestational Age and Basic
Cardiorespiratory Measures
We observed a positive correlation of postconceptional age
with MBP and DBP and negative correlation with heart and
respiratory rate (HR, RR). In other words, the higher was the
gestational age, the higher was the systemic DBP, MBP and
lower HR and RR. These findings are consistent with previous
results (26–29). Subgroups analysis showed that gestational age
plays the dominant role in the observed changes related to
postconceptional age. Interestingly, no maturation effect on SBP
was observed in our study. Considering the factors influencing
DBP and subsequently MBP values based on Windkessel model
(30), duration of cardiac cycle (reciprocal of HR) and steepness
of BP decay during diastolic phase are the most important
mechanisms contributing to changes in DBP and MBP values
provided that the SBP values are similar. Postconceptional
age correlated negatively with HR – it would itself lead to
prolongation of diastole and a decrease of DBP (andMBP) values.
However, since the positive correlation was observed between
DBP or MBP values and postconceptional age, it indirectly
indicates a marked increase in the steepness of BP diastolic
decay. It was most probably caused by an increased peripheral
vascular resistance in relation to increasing postconceptional and
gestational age – but this indirect finding should be confirmed by
direct measurement.

Several previous studies demonstrated that regardless of
gestation week at birth where marked difference in BP values
are observed, BP values become similar at the postconceptional
age of 42 – 44 weeks (31, 32). In agreement with previous data,
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FIGURE 3 | Correlations between baroreflex sensitivity (BRS) and total power (TP), low frequency band spectral power (LF) and high frequency band spectral power

(HF) of systolic pressure (SBP) variability with the Spearman’s correlation coefficient (rs) and statistical significance level (p). Logarithmic scale was applied on y-axis.

Empty circles corresponds to infants with gestational age below 32 weeks.

the newborns from our study born more prematurely, despite
having a longer postnatal age (almost 24 vs. 6 days) at the time
of measurement, have not yet been able to reach BP and HR
values of babies with higher gestational and lower postnatal age
at the 35th postconceptional week. It clearly indicates that the
duration of postnatal age alone in estimating the maturity of the
cardiovascular system can bemisleading when the gestational age
is too low. We confirmed that postconceptional age in preterm
infants is more accurate parameter predicting value of blood
pressure than postnatal age.

In contrast, growth rate expressed as a difference in z-
scores between birth and current weights did not correlate
with any analyzed measure and it did not differ between
two groups. It indicates that potential effect of altered growth
rate after birth did not contribute to the observed changes
and relations.

Methodological Limitations
Method of the continuous non-invasive recordings of blood
pressure by volume-clamp method in neonatology has great
benefits but is relatively difficult and limited. The volume-clamp
photoplethysmographicmethod (33) enables to record each beat-
to-beat value of SBP, MBP and DBP for analysis of spontaneous
BPV together with a calculation of BRS. In newborns, the
reliablity of modifiedmethod (finger cuff used in adults is applied
on the wrist of newborn) for determining BP and BPV values
was verified and validated by comparison with the oscillometric
method as well as with the invasive intraarterial blood pressure
measurement (10, 34, 35).

The first limit stems from the size of the cuffs supplied
with the device (Portapres, Finometer). It limits the use of the
device to newborns with a wrist circumference in the range
of 45–75mm, i.e., mostly to the premature newborns. A wrist
circumference in our group of premature infants was in the range
49.5–74.2mm. Using an inappropriate cuff size (e.g., smaller cuff
size for a larger wrist in the full-term newborn could result in
unprecise BP readings and increased discomfort of the child.

Cuff-size limitation currently restricts blood pressure variability
and baroreflex analysis to premature infants – therefore it was
not possible to compare premature newborns with a control
group of full-term neonates to better characterize changes related
to maturation.

To obtain continuous beat-to-beat recordings of systemic
blood pressure in preterm infants at rest it is necessary to provide
a suitable quiet and thermoneutral environment. Restlessness of
a newborn, especially motoric, not only leads to physiological
changes in cardiorespiratory parameters, but it can also cause
artifacts by mechanical cuff compression. It could make the
recording full of artifacts and hence unusable for evaluation of the
spontaneous short-term BPV. In addition, although it would be
interesting to observe changes in blood pressure control related
to early postnatal period, due to ethical reasons the infants were
examined only after stabilization of vital functions requiring ≥4
days in our study group.

Regarding the measurement length, long-term inflation of
the cuff on the wrist can lead to acral venous congestion and
discomfort of the child. Some authors used a measurement
time interval of 4–10min in their studies [e.g. (10, 36, 37)].
Yiallorou et al. (38) used repeated 2-min episodes to register BP
in premature infants. We used a measurement time of 5min
providing sufficiently long stationary time periods (containing
250 continuous beats) for data analysis.

Relatively small number of examined subjects associated with
complex measurement procedure did not enable to account for
potential sex differences and it must be also considered as a
study limitation.

CONCLUSIONS

We conclude that maturation process is accompanied by a
decrease in BPV and an increase of BRS reflecting buffering of
BP changes by baroreflex. Gestational age plays a dominant role
not only in BPV changes but also in BRS, MBP, DBP and HR
changes. The results indicate changes related to parasympathetic

Frontiers in Pediatrics | www.frontiersin.org 7 July 2021 | Volume 9 | Article 653573

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Javorka et al. Blood Pressure Variability in Newborns

heart rate control in relation to postconceptional and gestational
age in preterm infants.
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