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Colorectal cancer is the most common type of gastrointestinal malignant tumors worldwide. Standardization of the strategy for
the precise treatment of this cancer has been a major challenge. Enrichment analysis of six gene groups (colon cancer-specific
genes (upregulated and downregulated); rectal cancer-specific genes (upregulated and downregulated); and common genes
(upregulated and downregulated)) revealed the common and specific features of colon and rectal cancer, particularly a
hyperactive immune response in rectal cancer. Key common genes exhibited a similar expression pattern, but were associated
with distinct patient prognosis in colon and rectal cancer. FUT4 was a core regulatory gene in rectal cancer; it can decrease the
level of infiltration by M2 macrophages in the tumor immune microenvironment and participate in the positive regulation of
the immune system and glycoprotein biosynthetic process, thereby affecting the outcome of patients with rectal cancer. FUT4
co-expression genes can influence patient’s survival time by regulating the cell cycle. Among the regulators of FUT4 co-
expression genes, checkpoint kinase 2 (CHEK2) was linked to patient outcome.

1. Introduction

Colorectal cancer (CRC) is the most common type of gastro-
intestinal cancers [1]. The incidence of CRC has sharply
increased due to the shifting of disease risk factors over the
past decade, especially among individuals aged <50 years
[2, 3]. Despite advances in endoscopy, surgery, chemother-
apy, and immunotherapy, current therapeutic modalities
are unable to adequately meet the requirements of clinical
treatment [4]. Recent research studies demonstrated that
heterogeneity in molecular features and alterations in gene
expression are the core contributors to the high incidence
rate of CRC observed in adolescents [3]. Thus, there is an
urgent need to further understand the biological characteris-
tics of CRC cells.

Colon and rectal cancers exhibit different biological
characteristics. Therefore, it is suggested that these two types
of cancer should be treated differently [5]. The precise treat-
ment of CRC demands a more detailed interpretation of the

different characteristics of colon and rectal cancers. Further-
more, it has been proposed to abandon the term “colorectal
cancer” due to differences in the anatomy, epidemiology,
molecular carcinogenesis, and clinical features of colon and
rectal cancers, as well as focus research efforts on their differ-
ential treatment [6]. This highlights the current major obsta-
cle to the precise treatment of CRC. Differences in anatomy,
embryonic origin, and intestinal flora characteristics can be
useful in interpreting the differences between colon and rec-
tal cancers; however, these factors may not be sufficient.
Thus, revealing the shared and different features between
colon and rectal cancers and identifying the critical genes
and pathways involved in these conditions may help explore
the potential diagnostic and therapeutic target for disease.

High-throughput RNA sequencing provides the oppor-
tunity to detect alterations in the gene expression pattern
between the tumor and normal tissue. Analysis of RNA
sequencing data can assist in identifying the different mech-
anisms underlying RNA expression across different types of

Hindawi
Journal of Oncology
Volume 2022, Article ID 4637570, 38 pages
https://doi.org/10.1155/2022/4637570

https://orcid.org/0000-0003-1837-8602
https://orcid.org/0000-0003-0226-1418
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4637570


tumors. In recent years, several studies have investigated dif-
ferences in the microsatellite instability status, gene expres-
sion status, gene methylation status, and therapeutic
responsiveness between CRCs of varied anatomical origin
[7–9]. However, there is lack of integrated analysis of the
gene expression pattern and its related biological functions
in colon and rectal cancers. Thus, we conducted an inte-
grated analysis to fill this gap in research.

2. Materials and Methods

2.1. Differentially Expressed Gene (DEGs) Acquisition and
Related Analysis. The GEPIA2 database (http://gepia2
.cancer-pku.cn/) is an integrated online-analysis tool for
the expression of differentially expressed gene (DEGs) in
cancer based on The Cancer Genome Atlas and Genotype-
Tissue Expression database. This tool provides customizable
analysis, including differential expression analysis, profiling
plotting, correlation analysis, and patient survival analysis
[10]. Samples with gene expression level at top 70% were
considered as high expression group, and the other 30%
samples were considered as low expression group. In this
study, we utilized GEPIA2 to identify DEGs in the two types
of gastrointestinal cancers, determine their chromosomal
location, and conduct comparisons of the expression of mul-
tiple genes and their relationship with survival.

2.2. Functional Analysis and Visualization of Results. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed to
analyze the function of each gene group. We used clusterPro-
filer, the package of R software, to identify the molecular func-
tion, biological process, and cellular component for the GO
analysis and pathway for the KEGG analysis [11]. The result
was visualized in a bubble chart using the R package ggplot.

2.3. Construction of a Protein–Protein Interaction Network
and Module Analysis. The protein–protein interaction net-
work was constructed using the Search Tool for the Retrieval
of Interacting Genes (STRING; http://string-db.org) (ver-
sion 11.0) online database [12]. Interactions with a com-
bined score > 0:4 and false discovery rate < 0:05 were
included. Cytoscape (version 3.8.0) is an open source bioin-
formatics software with multi-plug-in apps for analyzing
molecular interaction networks [13]. The hub genes of the
network were identified using CytoHubba (version 0.1), a
plugin-in application of the Cytoscape (version 3.8.0) soft-
ware [14]. Here, we identify the genes interaction network’s
core module by MCODE in the parameters: degree cut −
off = 2, node score cut − off = 0:2, k − score = 2, and Max
depth = 100; then, the module with the most MCODE scores
is considered the core module. The nodes are ranked by
Maximal Clique Centrality (MCC) value. To further analyze
the module and function of the hub genes, we conducted
enrichment analysis using the Cytoscape plug-in application
ClueGO (version 2.5.7) and CluePedia (version 1.5.7) [15,
16]. Only enriched terms with a P value < 0:05 were selected.

2.4. UALCAN Database Analysis. The UALCAN (http://
ualcan.path.uab.edu) database is an integrated online-

analysis tool for cancer omics data; this tool can be used to
perform an expression analysis stratified according to char-
acteristics [17]. Using UALCAN, in this study, we conducted
an expression analysis stratified according to the clinical fea-
tures and tumor protein p53 (TP53) mutation status.

2.5. Immune Infiltration Related Analysis. TIMER2.0 (http://
timer.cistrome.org/) is a comprehensive resource for the sys-
tematic analysis of immune infiltration in cancer [18–20]. It
provides information regarding the abundance of immune
infiltrates, which is estimated by multiple immune deconvo-
lution methods including TIMER [18], XCell [21], MCP-
counter [22], CIBERSORT [23], EPIC [24], and QUANTI-
SEQ [25]. In addition, it allows the generation of figures
for the comprehensive exploration of immunological, clini-
cal, and genomic features of tumors. Using TIMER2.0, in
this study, we analyzed the fucosyltransferase 4 (FUT4)-
mediated immune microenvironment and its relationship
with the overall survival of patients. During the analysis of
the overall survival of patients, parameters of TIMER2.0
were set as follow: split infiltration percentage of patients:
(%) 30 and survival time between: 120.

2.6. Analysis of FUT4’s Potential Coregulators and Their
Biological Function. The LinkedOmics database (http://
www.linkedomics. org/login.php) is a platform based on
The Cancer Genome Atlas for the analysis and comparison
of cancer multi-omics data within and across multiple types
of tumors [26]. In this study, LinkedOmics was used to iden-
tify the FUT4 co-expression genes and analyze their func-
tion, as well as determine regulators of these co-expression
genes. Co-expression genes’ identification was conducted
by Pearson correlation analysis. A P value < 0:05 and false
discovery rate < 0:05 were set as thresholds for the identifica-
tion of co-expression genes. This database was also used for
the detection of GO-biological process, GO-cellular compo-
nent, GO-molecular function, and KEGG pathways, as well
as kinase-target identification, miRNA-target identification,
and transcription factors– (TFs–) target identification
through gene set enrichment analysis (GSEA) [27].

2.7. External Validation Set Related Analysis. To validate
FUT4 and CHEK2’s impact on patient’s outcome, external
validation set GSE87211 was enrolled in this research. The
data series’ clinic information and transcription data were
acquired from Gene Expression Omnibus data base (GEO).
Patients were divided into high expression group/low
expression group according to FUT4 or CHEK2’s expression
level based on the best-separation cutoff value. Since
patient’s 5-year survival probability is commonly applied
to assess patient’s outcome in clinic practice, only the
patient’s 5-year follow-up information was enrolled in the
research. Patient’s outcome was compared by the R package
“ggsurvplot.”

2.8. Cell Culture and Quantitative Real-Time PCR Assay.
Human rectal cancer cell line SW480 and human primary
rectal epithelial cell line were purchased from Saibaikang
Biotechnology, Shanghai, China. Human primary rectal epi-
thelial cell line was cultured in a humidified incubator with
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5% CO2 at 37 °C in ICell Primary Epithelial Cell Culture Sys-
tem (Saibaikang Biotechnology, Shanghai, China). Human
rectal cancer cell line SW480 was cultured in a humidified
incubator with 5% CO2 at 37 °C in special culture medium
for SW480 cells (Saibaikang Biotechnology, Shanghai,
China). qRT-PCR analysis was carried out according to the
published literature [28]. First-Strand cDNA Synthesis Kit
and 2× SYBR Green qPCR Master Mix were purchased from
SEVEN Biotechnology, Beijing, China. GAPDH was used as
the internal control. Relative mRNA levels were calculated
using the −ΔΔCt method and presented as 2(−ΔΔCt).
Primers were purchased from Tongyong Biotechnology,
Anhui, China. The primers were as follow: FUT4: forward:
5′-GATCTGCGCGTGTTGGACTA-3′;

reverse: 5′-GAGGGCGACTCGAAGTTCAT-3′;
GAPDH: forward: 5′-GGAGCGAGATCCCTCCAAA

AT-3′;
reverse: 5′-GGCTGTTGTCATACTTCTCATGG-3′.

2.9. Statistical Analysis. A jlogFCj > 2 and P value < 0:05
were set as thresholds for the identification of DEGs. The
LIMMA package was applied for differential analysis. The
correlation between FUT4 and co-expression genes was
assessed using the Pearson correlation coefficient. For the
cell-line-based assay, t test was employed to compare the
two groups. If not specially mentioned, the comparison of
survival curves, hazard ratios, and log-rank P values were
calculated using the log-rank test.

3. Results

3.1. Schematic Diagram of the Overall Design. First, we deter-
mined DEGs between the colon and rectal cancers and nor-
mal tissue. The DEGs were divided into six groups, and a
functional analysis of each group was subsequently con-
ducted to analysis the biological heterogeneity and common
features in the colon cancer and rectal cancer (Figure 1(a)).

FUT4

Tumor immune-infilration analysis
Co-expression genes analysis

Function analysis
of each group

Hub genes identification

No gene is survival-specific in both
colon cancer and rectal cancer

Survival-specific genes

SKA1, FUT4, ZG16

FUT4-targeting immune cell

Survial-specific immune cellClinc feratures stratified
expression analysis

FUT4-mediated function analysis

Core regulating genes
identificaton

Co-expression genes identificaiton

Regulators identificaiton

Function analysis

Colon cancer-specific genes Rectal cancer-specific genesCommon genes

Down-regulated
896 genes

up-regulated
978 genes

(a)

(b)

(d)

(c)

Validation in external data set GSE87211 Validation in cell line

Figure 1: Flowchart of this study. (a) Analysis of shared and distinct features between colon and rectal cancers. (b) Identification of core
regulatory genes. (c) Analysis of the regulatory role of FUT4 from multiple perspectives. FUT4: fucosyltransferase 4.
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Figure 2: Identification of DEGs between CRC and normal tissues. (a) Upregulated and (b) downregulated DEGs in colon and rectal
cancers based on data obtained from the GEPIA2. The overlapping areas represent common genes altered in both types of cancer.
Chromosomal distribution of DEGs in (c) colon cancer and (d) rectal cancer. CRC: colorectal cancer; DEG: differentially expressed gene;
GEPIA2: Gene Expression Profiling Interactive Analysis 2.
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Next, we identified hub genes for each group and analyzed
their impact on survival to detect the potential key regula-
tory genes (Figure 1(b)). Then multiplatforms were applied
to analyze the rectal cancer-specific core regulatory gene
FUT4’s mediated immune microenvironment, network of
co-expression genes, clinic feature’s stratified expression sta-
tus, and mediated function in order to roundly describe the
role of FUT4 in rectal cancer (Figure 1(c)). Finally, external
validation set and cell-line assay were conducted to validate
FUT4’s therapeutic potential (Figure 1(d)).

3.2. DEG Data Acquisition and Grouping. First, we collected
the DEG data from GEPIA2. Subsequently, we divided the
data into the following six groups: colon cancer-specific
genes (upregulated and downregulated), rectal cancer-

specific genes (upregulated and downregulated), and com-
mon genes (upregulated and downregulated) (Figures 2(a)
and 2(b)). The chromosomal location of DEGs in the two
diseases was also identified by GEPIA2 (Figures 2(c) and
2(d)). The results demonstrated that DEGs are similarly
localized in these two types of cancer.

3.3. Function Enrichment of Each Gene Group. The GO anal-
ysis showed that genes in the colon cancer-specific genes
(upregulated) group were mainly associated with the gener-
ation of epithelial features of cancer cells (Figure 3(a)). This
result suggests that colon cancer is more epithelial-like and
would be more sensitive to specific therapeutic strategies tar-
geting cancers of epithelial origin compared with rectal can-
cer. The GO and KEGG analyses showed that genes in the
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Figure 3: DEG-mediated function analysis. (a–f) Functional enrichment analysis of each gene group by GO. (g–l) Functional enrichment
analysis of each gene group by KEGG. DEG: differentially expressed gene; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and
Genomes.
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common genes (upregulated) were mainly associated with
the proliferation of cancer cells, particularly during the pro-
cess of karyokinesis (Figures 3(b) and 3(h)). The result
revealed the common overactivated karyokinesis pattern
and high proliferative activity of the two types of cancer.
Furthermore, the analyses showed that genes in the rectal
cancer-specific genes (upregulated) group were mainly asso-
ciated with hyperactive immune response (Figures 3(c) and
3(i)). Additionally, the enriched terms focused on antibody-
and complement-mediated immune response, which is an
immune response synergistically regulated by multiple types
of immune cells. Thus, in the following analysis, we
attempted to interpret the distinct immune pattern of rectal
cancer by identifying the immune cells participating in this
process. GO and KEGG analyses showed that genes in the
colon cancer-specific genes (downregulated) group were
mainly associated with cancer cell adhesion (Figures 3(d)
and 3(j)). This result suggests that colon cancer is character-
ized by looser cell adhesion than rectal cancer. Additionally,
the analyses showed that genes in the common genes (down-
regulated) group were mainly associated with contraction of
vascular smooth muscle (Figures 3(e) and 3(k)). According
to the results, the two gastrointestinal cancers exhibit similar
histological heterogeneity compared with normal tissue. The
GO and KEGG analyses showed that genes in the rectal
cancer-specific genes (downregulated) group were mainly
associated with the microstructure of the cell membrane
and the circadian rhythm of cells (Figures 3(f) and 3(l)).
The results presented the loss of the normal microstructure
and circadian rhythm during the malignant transformation
and dedifferentiation of rectal cells.

3.4. Common Hub Genes with Similar Expression Patterns
Are Associated with Distinct Outcomes in Patients. Because
colon and rectal cancers exhibit similar gene expression pat-
terns (Figure 2), we further investigated their common char-
acteristics. For this purpose, we selected the two common
gene groups for further investigation of biological patterns.

Firstly, we constructed the protein–protein interaction
network using STRING and identified the top 10 hub genes
of the two groups (Figures 4(a) and 4(b)). Subsequently, we
conducted enrichment analysis of the hub genes to achieve a
further interpretation of the biological function shared by
these cancers (Figures 4(c) and 4(d)). Most hub genes of
the common genes (upregulated) group were enriched in
the mitotic sister chromatid segregation function, revealing
the common hyperactive proliferation pattern of the two
types of cancer (Figure 4(c)). This finding is consistent with
the results of our enrichment analysis of genes in the com-
mon genes (upregulated) group (Figures 3(b) and 3(h)).
Most hub genes of the common genes (downregulated)
group were enriched in the vascular smooth muscle contrac-
tion function, revealing common histological heterogeneity
of the two cancers versus normal tissue (Figure 4(d)). This
result is also consistent with those of the enrichment analysis
of genes in the common genes (downregulated) group
(Figures 3(e) and 3(k)). Among the hub genes identified,
18 genes were enriched to the particular terms which
referred to their essential regulatory roles in the disease.
Therefore, we further analyzed the expression pattern of
these 18 genes (Figures 4(e) and 4(g)) and their impact on
survival (Figures 4(f) and 4(h)). Interestingly, these genes
exhibited similar expression patterns in the two types of
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Figure 4: Integrated analysis of hub genes. Hub genes in the (a) upregulated and (b) downregulated groups. Function enrichment analysis of
hub genes in the (c) upregulated and (d) downregulated groups. The expression level of key genes in the (e) upregulated and (g)
downregulated groups in tumor tissues and normal tissues. Impact of hub genes on survival in the (f) upregulated and (h)
downregulated groups. The blue boxes indicate a significant impact on patient survival (P < 0:05).

19Journal of Oncology



(MCM10)

(CDCA2)

(SKA1)

(SHCBP1)

(TACC3)

(FOXA1)

(SHMT2)

(SYNGR2)

(DBNDD1)

(MANEAL)

−0.2

−0.1

0.0

0.1

0.2

Colon cancer-specific genes
( Up-regulated)

COAD

(a)

(FABP1)

(RBP2)

(RBP4)

(PCK2)

(ST6GAL1)

(STRA6)

(HMGCS2)

(COMP)

(EZH2)

(FUT4)

−0.25

0.00

0.25

Rectal cancer-specific genes
(Up-regulated)

READ

(b)

(ZG16)

(GUCA2B)

(CLCA4)

(MS4A12)

(TPSAB1)

(TPSB2)

(FBLN1)

(MFAP5)

(KIT)

(PDGFRA)

−0.2

−0.1

0.0

0.1

0.2

Colon cancer-specific genes
(Down-regulated)

COAD

(c)

(ITGA1)

(TLN1)

(ACTN1)

(ADCY2)

(ACTA1)

(C3)

(GNG3)

(SCNN1D)

(SERPING1)

(RAPGEF3)

−0.4

−0.2

0.0

0.2

0.4

Rectal cancer-specific genes
(Down-regulated)

READ

(d)

0 50 100 150

0.0

0.2

0.4

0.6

0.8

1.0
Overall survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low SKA1 group
High SKA1 group

Logrank p = 0.046
HR (high) = 0.6
p (HR) = 0.048
n (high) = 189

n (low) = 81

(e)

0 40 6020 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0
Overall survival

Months

Pe
rc

en
t s

ur
vi

va
l

Low FUT4 group
High FUT4 group

Logrank p = 0.016
HR (high) = 0.33
p (HR) = 0.021
n (high) = 64

n (low) = 28

(f)

Figure 5: Continued.
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tumors but had limited impact on the survival of patients
with these cancers. To explain this observation, we focused
on the remaining four groups. Thus, we hypothesized that
the nonoverlapping DEGs, which constitute a smaller pro-
portion than the common DEGs, result in differences in
the survival patterns linked to these cancers.

3.5. FUT4 Is the Core Regulatory Gene That Predicts
Outcome in Patients with Rectal Cancer. To validate our
hypothesis, we conducted further analysis of the remaining
four genes groups. Initially, we generated the protein–pro-
tein interaction network using STRING and identified the
hub genes of each group by CytoHubba. Subsequently, we
tested the impact of each gene on survival using data from
GEPIA2 (Figures 5(a)–5(d)). Among all the hub genes, only
spindle and kinetochore associated complex subunit 1
(SKA1), FUT4, and zymogen granule protein 16 (ZG16)
were correlated with patient survival. Among these three
genes, FUT4 demonstrated the greatest and most significant
impact on patient outcome, according to the hazard ratio
and P value (Figures 5(e)–5(g)). Thus, we selected FUT4 as
the core regulatory gene for further investigation. To reveal
the distinct role of FUT4 in rectal cancer, we analyzed
FUT4-mediated function in the rectal cancer-specific genes
(upregulated) group. According to the findings, FUT4 partic-
ipated in the “positive regulation of immune system process”
and “glycoprotein biosynthetic process” in rectal cancer
(Figure 6(a)). Recent studies showed that members of the
glycoprotein family regulate several antitumor processes in
CRC through immune cell-mediated and immunoglobulin-
mediated mechanisms [29–31]. Thus, based on the results

of the enrichment analysis, we hypothesized that FUT4 plays
a regulatory role in outcome in patients with rectal cancer by
targeting immune-related processes and contributing to the
tumor immune microenvironment.

We also analyzed the correlation between FUT4 expres-
sion and clinical features using the UALCAN database. Sig-
nificant differences in the expression of FUT4 were found
between patients with rectal cancer and normal controls, as
well as in sex, cancer stage, and TP53 mutation subgroups
(Figures 6(b)–6(e)).

3.6. FUT4 Expression Predicts Patient Outcome through the
M2 Macrophage-Mediated Mechanism in Rectal Cancer.
The tumor-infiltrating immune cells are important markers
of patient outcome in cancer. Hence, we assessed the corre-
lation between the levels of immune infiltration and FUT4.
This assessment was performed using TIMER2.0 to validate
the hypothesis that FUT4 regulates biological function and
consequently predicts patient outcome by influencing the
infiltration levels of certain types of immune cells. Our
results showed that the expression of FUT4 was significantly
positively correlated with the infiltration of myeloid-derived
suppressor cells (TIDE), macrophage M1 (QUANTISEQ), B
cell naïve (XCELL), common lymphoid progenitor (XCELL),
T cell CD4+ T helper 2 (XCELL), T cell CD4+ (non-regula-
tory) (QUANTISEQ), T cell CD4+ memory resting (CIBER-
SORT-ABS), B cell (TIMER), T cell natural killer (XCELL),
and T cell CD4+ memory resting (CIBERSORT) cells.
Moreover, it was negatively correlated with the infiltration
of macrophage M2 (QUANTISEQ, XCELL), T cell CD4+
naïve (T cell CD4+ naive), and T cell CD8+ central memory
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Figure 5: Identification of key regulatory genes. HR of the top 10 hub genes in the (a) colon cancer-specific genes (upregulated) group, (b)
rectal cancer-specific genes (upregulated) group, (c) colon cancer-specific genes (downregulated) group, and (d) rectal cancer-specific genes
(downregulated) group. The blue boxes indicate a significant impact on survival. Kaplan–Meier curves depicting the survival impact of (e)
SKA1, (f) FUT4, and (g) ZG16. The blue boxes indicate a significant impact on patient survival (P < 0:05). FUT4: fucosyltransferase 4; HR:
hazard ratios; OS: overall survival; SKA1: spindle and kinetochore associated complex subunit 1; ZG16: zymogen granule protein 16.
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Figure 6: FUT4 function expression analysis stratified by clinical features. (a) Function analysis of the regulatory role of FUT4. (b–e) The
expression of FUT4 stratified by different sample types, sex, individual cancer stage, and TP53 mutation status. ∗P < 0:05; ∗∗P < 0:01; and
∗∗∗P < 0:001. FUT4: fucosyltransferase 4; TP53: tumor protein p53.
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Figure 7: Analysis of the FUT4-mediated immune microenvironment. (a) Correlation between the expression level of FUT4 and infiltration
level of different immune cells in the immune microenvironment. (b) Cumulative survival analysis in patients with different immune-cell
concentration statuses. FUT4: fucosyltransferase 4.
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(XCELL) cells (Figure 7(a)). The recorded immune-
infiltration pattern was consistent with the results of the
enrichment analysis for the rectal cancer-specific genes
(upregulated) group (Figures 3(c) and 3(i)). The most
enriched term in the GO “immunoglobulin complex” was
the B cell-mediated bioprocess. This result was consistent
with the positive correlation of FUT4 with the level of B cell
infiltration. During the process of immunoglobulin complex
generation, macrophages M1 and M2 play upregulating and
downregulating roles, respectively; these findings were also
consistent with the correlations of FUT4 [32, 33]. The most
enriched term inGO (i.e., “Fc gammaR-mediated phagocyto-
sis”) is also a B cell-produced immunoglobulin and
macrophage-mediated immune process. This result was also
consistent with the correlation of immune infiltration and
FUT4 [32–34]. The other enriched immune-related terms

were also in agreement with the relative immune-infiltration
pattern of FUT4. The above findings confirm our hypothesis
that FUT4 exerts a regulatory effect and affects survival by reg-
ulating the immune process and immune cell infiltration in
the tumor immune microenvironment.

To further validate the impact on outcome, we analyzed
the FUT4-mediated infiltration of all immune cells related to
patient survival. The patients were divided into two groups
according to their level of immune infiltration. Only macro-
phages M2 (QUANTISEQ) were associated with significant
differences in outcome between the high- and low-
infiltration groups (Figure 7(b)) Moreover, the correlation
between FUT4 and macrophages M2 was the only one to
be validated in both databases (QUANTISEQ, XCELL).
The results indicated that FUT4 is a regulator of macro-
phage M2 infiltration to predict patient outcome. According
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Figure 8: Analysis of FUT4 co-expression genes. (a) Heat map of the top 50 FUT4 co-expression genes. (b) Functional enrichment analysis
of the top 50 FUT4 co-expression genes. (c) HR values of the top 50 FUT4 co-expression genes in colon and rectal cancers. The blue boxes
indicate a significant impact on patient survival. GSEA enrichment analysis of FUT4 co-expression genes using the (d) GO-BP, (e) GO-CC,
(f) GO-MF, and (g) KEGG modules. FUT4: fucosyltransferase 4; GO: gene ontology; GO-BP: GO-biological process; GO-CC: GO-cellular
component; GO-MF: GO-molecular function; GSEA: gene set enrichment analysis; HR: hazard ratio; KEGG: Kyoto Encyclopedia of Genes
and Genomes.
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to TIMER2.0 and enrichment analyses of the rectal cancer-
specific genes (upregulated) group, other immune cells such
as myeloid-derived suppressor cells, macrophage M1, B cell
naïve, common lymphoid progenitor, T cell CD4+ T helper
2, T cell CD4+ (non-regulatory), T cell CD4+ memory rest-
ing, B cell, T cell natural killer, T cell CD4+ memory resting,
T cell CD4+ naïve, and T cell CD8+ central memory cells
play important regulatory roles in the tumor immune micro-
environment (Figures 3(c), 3(i), and 6(a)).

3.7. Identification of FUT4 Co-Expression Genes. To further
investigate the potential role of FUT4 in colon and rectal
cancers, we detected its co-expression genes and performed
functional enrichment analysis. The top 50 significantly cor-
related genes are presented in Figure 8(a). The function of
these genes was determined using ClueGO. According to
the results of the analysis, FUT4 co-expression genes mainly
participate in cancer cell proliferation and gene expression
(Figure 8(b)). To identify the impact of co-expression genes
on the outcome of patients with colon and rectal cancers, we
plotted the survival map of the top 50 significant correlated
genes identified in GEPIA2 (Figure 8(c)). For genes which
were not identified by this analysis, we selected the next
co-expression gene. Notably, it performed the significant
likelihood that top 50 correlated genes are protective genes
in patients with rectal cancer. Of those, twenty genes and
one gene were significantly correlated with better outcome
in rectal and colon cancer, respectively. This result may
explain the distinct impact of common key regulatory genes

in colon and rectal cancer on survival, despite their similar
expression patterns.

We also conducted enrichment analysis of all co-
expression genes through GSEA (Figures 8(d)–8(g)). The
top three most enriched terms in GO-biological process
modules were RNA localization, regulation of mRNA meta-
bolic process, and ncRNA processing. The top three most
enriched terms in GO-cellular component modules were
condensed chromosome, chromosomal region, and preribo-
some. The top three enriched terms in GO-molecular func-
tion were helicase activity, histone binding and catalytic
activity, and acting on RNA. The top three most enriched
terms in KEGG were ribosome biogenesis in eukaryotes,
RNA transport, and aminoacyl-tRNA biosynthesis. The
integrated results suggested that the FUT4 co-expression
genes perform their regulatory function by exerting a broad
effect on nuclear activity and gene translation in tumor cells.
This result is also consistent with the function that the top
50 FUT4 co-expression genes mediated (Figure 8(b)).

3.8. Regulators of FUT4 Co-Expression Genes in Rectal
Cancer. We subsequently identified the regulators of FUT4
co-expression genes, including miRNAs, kinases, and TFs
(Figures 9(a)–9(c)).

Proteins belonging to the kinase family are emerging
regulators of several cellular processes in CRC (e.g., prolifer-
ation, migration, angiogenesis, invasion, and metastasis) by
contributing to the signal transduction of cells [35–37].
Next, we further analyzed the impact of regulatory kinases
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Figure 9: Analysis of regulators of FUT4 co-expression genes. The enrichment status of regulatory (a) miRNAs, (b) kinases, and (c) TFs. (d)
HR values of the top 10 regulatory kinases of FUT4 co-expression genes in the two types of cancer. The blue boxes indicate a significant
impact on survival. Survival analysis of (e) CHEK2 and (f) NLK in patients with rectal cancer. The expression analysis of (g) CHEK2
and (h) NLK. CHEK2: checkpoint kinase 2; FUT4: fucosyltransferase 4; HR: hazard ratio; NLK: nemo-like kinase; TF: transcription factor.
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of the FUT4 co-expression genes on survival. Among the top
10 regulatory kinases, only CHEK2 and nemo-like kinase
(NLK) had a significant impact on outcome in patients with
rectal cancer (Figure 9(d)); of note, none of these kinases had
a significant influence on the outcome of patients with colon
cancer. However, only CHEK2 was associated with both sig-
nificantly higher expression in tumor tissue and significant
impact on the outcome of patients with rectal cancer
(Figures 9(g) and 9(h)). This suggests that CHEK2 may be
a core regulatory kinase in rectal cancer, exerting its biolog-
ical effect by regulating the expression of FUT4 co-
expression genes.

3.9. Validation of the Prognostic Value of FUT4 and CHEK2
in External Validation Set. To test the prognostic value of

FUT4 and CHEK2, we compared the patient’s outcome of
high expression group and low expression group in
GSE87211. Kaplan–Meier (K–M) survival curves demon-
strated that FUT4 and CHEK2 can also relatively well pre-
dict patient’s outcome in validation cohort (Figures 10(a)
and 10(b)). FUT4’s expression status was validated in cell
line (Figure 10(c)). The results further proved the predicting
accuracy of FUT4 and CHEK2.

4. Discussion

In recent years, radical changes have been observed in the
dietary habits of young individuals. These changes have
resulted in a distinct epidemiology and continuously rising
incidence rate of CRC [38]. At present, there is a gap
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Figure 10: Validation of prognostic value of FUT4 and CHEK2 in GSE87211. Kaplan–Meier survival analysis of FUT4 (a). Kaplan–Meier
survival analysis of CHEK2 (b). Comparison of FUT4’s expression level in cancer cell line and normal cell line (c). ∗∗∗∗P < 0:0001.
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between the need for precise treatment of CRC and the cur-
rent treatment strategy. Recent research studies focusing on
the precise treatment of cancer and target identification pro-
posed a new approach to cancer therapy and led to better
patient outcomes [39–41].

The results of this study showed that most DEGs over-
lapped in the two types of cancer (Figures 2(a) and 2(b))
and exhibited similar chromosomal location patterns
(Figures 2(c) and 2(d)). The GO and KEGG enrichment
analyses illustrated a common hyperactive proliferation pat-
tern and histology heterogeneity feature between the two
gastrointestinal cancers (Figure 3). To further investigate
common key regulators, we identified the top 10 hub genes
among the common genes (upregulated and downregulated)
(Figures 4(a) and 4(b)). From the hub gene network, 18
enriched genes which were identified as key regulatory genes
(Figures 4(c) and 4(d)). However, none of those had a signif-
icant impact on patient outcome in both colon and rectal can-
cers (Figures 4(f) and 4(h)). There results imply that, although
exclusiveDEGs constitute a smaller proportion than common
DEGs, they may play essential regulatory roles in the disease
and predict different clinical outcome in patients with these
two types of cancer (Figures 2(a) and 2(b)).

We subsequently sought to identify the key regulatory
genes that may predict distinct patient outcomes in this set-
ting. Among the 40 genes identified from the four exclusive
DEGs group, only SKA1, FUT4, and ZG16 correlated with
patient survival (Figures 5(e)–5(g)). Among those three

genes, FUT4 was linked to the most significant P value and
hazard ratio (Figure 5(f)). We also conducted an expression
analysis for FUT4 stratified by clinical features
(Figures 6(b)–6(e)), which revealed significantly elevated
expression levels in rectal cancer. The significantly elevated
expression of FUT4 in the TP53 mutation subgroups sug-
gested that FUT4 may be a co-occurrence gene with this
mutation (Figure 6(e)). The results of the enrichment analy-
sis showed that FUT4 positively regulates the immune sys-
tem process in patients with rectal cancer. Moreover, the
significant differences in the expression of FUT4 between
patients with a different TP53 mutation status imply that
this mutation may lead to tumor occurrence and progression
by contributing to the regulation of the tumor immune
response. The results of a recent study also supported this
hypothesis [42].

According to some studies, the function of FUT4 in CRC
appears to be contradictory, i.e., linked to poor and good
patient outcomes [43–45]. The complex role of FUT4 in
CRC may be due to the investigation of both colon and rec-
tal cancers in this study. The present results demonstrated
the rectal cancer-specific regulatory role of FUT4 and
revealed its specific regulatory mechanism in colon and rec-
tal cancers. According to the results of the enrichment anal-
ysis of rectal cancer-specific genes, FUT4 exerts its
regulating impact by upregulating the immune response
(Figure 6(a)). Furthermore, GO and KEGG analyses of rectal
cancer-specific genes also revealed a hyperactive immune

M2 macrophage

Positive regulation of
immune systerm processGlycoprotein

biosynthetic
process

FUT4G

Rectal cancer’s hyperactived immune response

Regulate rectal cancer cells’ mitosis
and gene expression

Co-expression genes
0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0
Overall survival

Months

Pe
rc

en
t s

ur
vi

va
l

Logrank p = 0.016
HR(High) = 0.33

p (HR) = 0.021
n (High) = 64
n (Low) = 28

FUT4 confers patients
better outcome

FUT4

M2 macrophage

Positive regulation of
immune systerm processGlycoprotein

biosynthetic
process

FUT4G

Rectal cancer’s hyperactived immune response

Regulate rectal cancer cells’ mitosis
and gene expression

Co-expression genes
0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0
Overall survival

Months

Pe
rc

en
t s

ur
vi

va
l

Logrank p = 0.016
HR(HigHR(HigHR(HigHR(HigHR(HHR(HHR(HiiiigHR(HigHR(HigHHR(HigR(HR(High) = 0h) =h) =h) = 0hh) =) ===h) = 0h) = 0h) = 0=== .3333333

g pp

pppppp (HR) ((( = 0.021111
gg

n nnnn (H h)(Hi h)(High) 646444= 644444444
n (Low) = 28

gg

FUT4 confers patients
better outcome

FFFFFUUUTUTUTUTUTUTUTUTUT4444444

Figure 11: FUT4 predicted the outcome of patients with rectal cancer through an immune microenvironment-mediated multi-mechanism.
FUT4 induced a hyperactive immune response in rectal cancer by decreasing the level of M2 macrophage infiltration and participated in the
glycoprotein biosynthetic process and positive regulation of the immune system process. Moreover, FUT4 co-expression genes regulated the
mitosis and gene expression in rectal cancer cells.
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response in rectal cancer, particularly the antibody- and
complement-mediated immune response (Figures 3(c) and
3(i)). This finding suggests that FUT4 plays an important
role in the tumor immune microenvironment. Based on
the above results, the immune system is in a more hyperac-
tive state in patients with rectal cancer versus patients with
colon cancer, and FUT4 greatly contributes to this condi-
tion. Under this premise, we decided to analyze alterations
in the immune microenvironment that may correlate with
the expression levels of FUT4.

According to the analysis conducted using TIMER2.0,
the expression of FUT4 is significantly correlated with
infiltration of multiple types of immune cells in the tumor
immune microenvironment (Figure 7(a)). Of note, FUT4 sig-
nificantly correlated with both several antigen-presenting cells,
including many types of macrophages and immunoglobulin-
producing cells, such as B cells. This result demonstrated that
FUT4 has great potential as a target for an mRNA vaccine
against rectal cancer. The immunoglobulin- and complement-
mediated immune response is the co-regulation bioprocess of
the microenvironment for T cells, B cells, and antigen-
presenting cells. Therefore, the correlations of FUT4 with the
immune infiltration pattern and immune macroenvironment
features are also consistent with the results of the enrichment
analysis (Figures 3(c) and 3(i)). Among the immune cells that
correlated with FUT4 expression, only M2 macrophages had a
significant impact on patient outcome. Moreover, this correla-
tion was the only one validated in two databases (xCell, quanTI-
seq) (Figure 7). Collectively, these results indicated that FUT4
decreases the level of infiltration of M2 macrophages to predict
the outcome of patients with rectal cancer and induce a more
active immune response in rectal cancer. This result is also con-
sistent with the established immunosuppressive regulatory role
of M2 macrophages in the CRC microenvironment [46–48].

To further investigate the regulatory mechanism of
FUT4, we identified FUT4 co-expression genes and analyzed
their influence on patient outcome. Among the top 50 co-
expression genes, 21 genes and one gene had a significant
impact on overall survival in patients with rectal and colon
cancer, respectively (Figure 8(c)). This result further illus-
trates the regulatory role of FUT4 in rectal cancer. The GO
and KEGG enrichment analyses for co-expression genes
demonstrated that FUT4 can exert its regulatory power by
influencing nuclear activity and gene translation in cancer
cells (Figures 8(d)–8(g)). We also identified the regulators,
including miRNA, kinase, and TFs using LinkedOmics
(Figures 9(a)–9(c)). Among the top 10 regulatory kinases,
only CHEK2 had a significant impact on overall survival
and significantly elevated expression levels in tumor tissue
(Figures 9(d)–9(h)). These results demonstrated that
CHEK2 is the key regulatory kinase in the FUT4 co-
expression gene network and predicts the outcome of
patients with rectal cancer together with FUT4. This conclu-
sion was also validated in the validation data set
(Figures 10(a) and 10(b)). Meanwhile, FUT4’s expression
status was validated in cell line (Figure 10(c)).

In rectal cancer, FUT4 predicts the outcome of patients
through an immune macroenvironment-mediated mecha-
nism. It downregulates the infiltration level of M2 macro-

phages and participates in the glycoprotein biosynthetic
process and positive regulation of the immune system pro-
cess to contribute to the hyperactive immune response in
rectal cancer. Nevertheless, FUT4 co-expression genes regu-
late mitosis, gene translation, and gene transcription in can-
cer cells. Together, the two mechanisms confer better
outcomes in patients with rectal cancer (Figure 11). The
argument for abandoning the term “colorectal cancer” also
appears to come to a conclusion [6]. The two types of cancer
share similar patterns of differential gene expression gene,
histological heterogeneity, and hyperactive proliferation.
Moreover, most DEGs also overlap between the two cancers.
Thus, the proposal to abandon the term “colorectal cancer”
may be excessively radical. However, cancer-specific DEGs
which constitute a smaller proportion also play critical regu-
latory roles in disease progression. Thus, analysis of their
regulatory function and identification of potential therapeu-
tic targets to meet the need for the precise treatment of CRC
is warranted. The present study implies that colon and rectal
cancers should be treated independently. The results of this
study propose two potential genes as target candidates for
the precise treatment of rectal cancer: the immune microen-
vironment regulatory gene FUT4 and kinase family member
CHEK2.
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