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ABSTRACT

Most genomes harbor a large number of trans-
posons, and they play an important role in evolu-
tion and gene regulation. They are also of inter-
est to clinicians as they are involved in several dis-
eases, including cancer and neurodegeneration. Al-
though several methods for transposon identifica-
tion are available, they are often highly specialised
towards specific tasks or classes of transposons,
and they lack common standards such as a uni-
fied taxonomy scheme and output file format. We
present TransposonUltimate, a powerful bundle of
three modules for transposon classification, anno-
tation, and detection of transposition events. Trans-
posonUltimate comes as a Conda package under the
GPL-3.0 licence, is well documented and it is easy
to install through https://github.com/DerKevinRiehl/
TransposonUltimate. We benchmark the classifica-
tion module on the large TransposonDB covering
891,051 sequences to demonstrate that it outper-
forms the currently best existing solutions. The an-
notation and detection modules combine sixteen ex-
isting softwares, and we illustrate its use by anno-
tating Caenorhabditis elegans, Rhizophagus irregu-
laris and Oryza sativa subs. japonica genomes. Fi-
nally, we use the detection module to discover 29
554 transposition events in the genomes of 20 wild
type strains of C. elegans. Databases, assemblies,
annotations and further findings can be downloaded
from (https://doi.org/10.5281/zenodo.5518085).

INTRODUCTION

Transposons are evolutionary ancient mobile genetic ele-
ments that can move via copy&paste and cut&paste trans-
position mechanisms. They can be classified within a tax-
onomic scheme (Figure 1A), and each class is associated

with a set of characteristics, e.g. proteins relevant for trans-
position and structural features (Figure 1B). During trans-
position, transposable elements (TEs) can leave structural
patterns both at the insertion and the deletion site (1–3).
Autonomous transposons encode the tools necessary for
transposition events, e.g. genes producing transposase, inte-
grase and other enzymes (3), while non-autonomous trans-
posons depend on proteins encoded elsewhere (4). As the
insertion of a transposon can be detrimental, many species
have developed repression mechanisms, e.g. TE promoter
methylation (5) and piRNAs (6). Even though transposition
events occur rarely (7), in many organisms large sections of
DNA consist of either transposons or their transposition-
incompetent descendants that have accumulated mutations
over time (4). It is estimated that transposons make up a
large share of the genome in many species; 45% in humans,
20% in fruit flies, 40% in mice, 77% in frogs and 85% in
maize (8).

Studying TEs is highly relevant for understanding evolu-
tionary processes (9), developmental biology, gene regula-
tion, and many diseases are suspected to be related to trans-
poson activity such as subtypes of haemophilia, immun-
odeficiency, cancer and Alzheimer’s disease (10–12). Also,
TEs are popular for genetic engineering purposes as they
allow for direct insertion of their genetic cargo into a tar-
get genome (13–15). However, the repetitive nature of trans-
posons and their descendants is a challenge for their anal-
ysis and discovery, in particular when using short-read se-
quencing technologies (7). Long-read technologies facilitate
studies of transposons and their functional consequences,
but they also require novel computational tools. Although
various approaches for identifying transposons have been
proposed recently (16), current tools do not provide the flex-
ibility to combine, filter and order annotated elements on a
unifying scale, and are often limited to a family of trans-
posons or a group of species (17).

Here, we present a bundle of tools addressing three dif-
ferent tasks related to transposon identification: classifica-
tion, annotation and detection. The goal of classification
is to determine which taxonomic class a given transposon
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Figure 1. Transposon taxonomy and transposon structure. (A) The taxonomy used in this study is based on multiple classification schemes (3,36,49,106)
and the taxonomies used by the transposon databases. (B) Autonomous, transposition competent transposons have characteristic structural and protein
features depending on their class. The proteins are necessary for the transposons to move via class-specific transposition mechanisms. The x mark which
structural and protein features are characteristic to different transposon classes and sub classes for complete, autonomous transposons. The (x) mark
features that are not required but if present are indicative.
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sequence belongs to. The annotation task consists of scan-
ning a genome sequence to mark all transposons. Finally,
the detection task involves the comparison of two genomes
to identify structural variants arising from the insertion of
TEs.

Existing transposon classifiers are difficult to compare
directly since they vary in their approach, which fea-
tures and taxonomies they use, how they evaluate pre-
dictions, and which databases are used for training. Ap-
plications of SVMs (18), hidden Markov models (19),
random forests (20), Gaussian naive Bayes (21), decision
trees (22), stacking (23,24), boosting (25,26), neural net-
works (27–29), evolutionary algorithms (21,30) and genetic
algorithms (31–34) can be found in the literature. Most
methods use sequence features, such as the k-mer frequency,
the occurrence of structural (35) and protein features (18)
for classification. Besides, another approach is to classify
TEs using the similarity to known transposons based on a
sequence library (36).

The annotation of transposons in nucleotide sequences
is challenging due to the presence of transposition-
incompetent TEs that have been mutated, truncated, de-
graded, fragmented and dismembered due to nesting (37).
Annotation is further complicated by a lack of stan-
dards (38) and disagreement on definition, taxonomy and
terminology (39,40). Since transposons do not adhere to a
universal structure (41), many researchers have employed
class-specific approaches (42). Moreover, most of the soft-
ware employed for transposon annotation was originally
designed for gene annotation, neglecting the peculiari-
ties of transposons (39). Existing transposon annotation
methods (Table 1) can be assigned to one or more ap-
proaches (1,2,41,43). The de novo approach finds trans-
posons by identifying repetitive sequences. It is effective
in discovering previously unknown transposons with high
prevalence (41), but it is computationally costly (39,41), un-
able to find degraded transposons (41), and risks misiden-
tifying repetitive DNA or high copy number genes as
transposons (44,45). The structure-based approach (also
called motif-based (42) or signature-based approach (2))
is based on knowledge of the structure of transposons
and annotates by finding combinations of characteris-
tic patterns (38,46). This approach enables the discov-
ery of transposition-incompetent transposons thanks to
their unique structural properties (41). However, these ap-
proaches are often characterized by high false discovery
rates (37,44) and they miss transposons with weak sig-
natures (37). The similarity-based approach (also called
library-based approach (2)) employs a library of known
transposons together with BLAST(-like) tools. The high ac-
curacy (41) and short runtimes (44,47) of this approach
come at the cost of its inability to find unrelated trans-
posons (41,47) and the dependency on quality and exhaus-
tiveness of the library (38,44,48). Moreover, the current ver-
sion of the most widely used database RepBase (49) is be-
hind a paywall and the related tools RepeatMasker and Re-
peatModeler are not transparent with regards to how trans-
posons were curated and consensus sequences were gener-
ated (39).

Previous efforts to detect transposition events by com-
paring two genomes have been based on the analysis of the

depth of coverage, discordant and split read pairs (50,51).
However, both the task of detecting structural variants
(SVs) and annotating TEs are very challenging when using
short reads (7). Recently, long-reads technologies have be-
come more widely available, but to the best of our knowl-
edge the only existing method that can take advantage of
them for TE detection is LoRTE (52). Although results indi-
cate that LoRTE performs well even on low coverage reads,
it is limited to PacBio data and insertion and deletion SVs
only.

Here, we present TransposonUltimate, a set of tools for
the identification of transposons, consisting of three mod-
ules for accurate classification, annotation in nucleotide se-
quences and detection of transposition events (Figure 2).
Our new classifier is benchmarked against existing soft-
wares, and we use the annotation module to analyse the
genomes of three different species. Finally, the detection
module is employed to identify transposition events in 20
high quality genomes from Caenorhabditis elegans wild iso-
lates that were assembled using a combination of long- and
short-read technologies.

MATERIALS AND METHODS

Transposon classification module, RFSB

Given a nucleotide sequence that is considered to be a trans-
poson, the goal is to determine the class of a transposon
according to a given taxonomy. This task is a hierarchi-
cal classification problem, meaning the classifier needs to
identify multiple classes that stand in a relationship de-
scribed by a taxonomic hierarchy. The design of the classi-
fication module includes several aspects; choosing a trans-
poson database for training and testing, feature selection,
model structure, training strategy, model implementation,
evaluation and benchmarking.

The classifiers considered here are supervised learn-
ing algorithms, and consequently their performance is
limited by the data used for training. Previous studies
used small transposon sequence databases, each with
different taxonomic schemes, which does not allow for a
direct comparison. Therefore, we created TransposonDB
(Figure 3, File F1), a large collection of transposon se-
quences that consists of ten databases: ConTEdb (53)
(http://genedenovoweb.ticp.net:81/conTEdb/index.php),
DPTEdb (54) (http://genedenovoweb.ticp.net:81/DPTEdb/
browse.php?species=cpa&name=Carica papaya L.),
mipsREdat-PGSB (55) (https://pgsb.helmholtz-
muenchen.de/plant/recat/index.jsp), MnTEdb (56)
(http://genedenovoweb.ticp.net:81/MnTEdb1/), PMIT-
Edb (57) (http://pmite.hzau.edu.cn/download mite/),
RepBase (58) (https://www.girinst.org/repbase/, we use
version 23.08 that was the last publicly available ver-
sion before the paywall was introduced), RiTE (59)
(https://www.genome.arizona.edu/cgi-bin/rite/index.cgi),
Soyetedb (60) (https://www.soybase.org/soytedb/#bulk),
SPTEDdb (61) (http://genedenovoweb.ticp.net:81/SPTEdb/
browse.php?species=ptr&name=Populus trichocarpa) and
TrepDB (62) (http://botserv2.uzh.ch/kelldata/trep-db/
downloadFiles.html). To create the database, the tax-
onomies were unified, duplicates were dropped and several
filter rules were applied (Supplementary Table S1). Filtering
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Table 1. Overview of common transposon annotation tools

Approach Class I Class II

Name Novo. Struc. Simil. LTR LINE SINE TIR HEL MITE

RepeatMasker x x x x x x x x
RepeatModeler x x x x x x x
CLARI TE (107) x x x x x x x x x
TESeeker (41) x x x x x x x
PILER (40) x x x x x x x
Censor (108) x x x x x x x
RepLong (109) x x x x x x x
EDTA (44) x x x x x x x x x
MGEScan (110) x x x x x x
LTR Finder (111) x x
LtrDetector (112) x x
LTRpred (73) x x x x
LTRharvest (66) x x x x
LTRdigest (113) x x
SINE-Finder (68) x x x
SINE-Scan (69) x x x
TIRvish (67) x x
HelitronScanner (42) x x
MUSTv2 (70) x x
MiteFinderII (71) x x
MITE-Tracker (72) x x
detectMITE (45) x x
MITE-Hunter (47) x x

The most commonly used tools such as RepeatMasker and RepeatModeler cover a variety of transposons, while others focus on certain classes only. The
tools use one or more of the de novo, structural and similarity-based transposon annotation approaches.

A B C

Figure 2. Three pipelines of the TransposonUltimate framework. (A) Given the nucleotide sequence of a transposon, relative k-mer frequencies (for k =
2, 3, 4) and binary protein features are extracted. These features are used by the random forest selective binary classifier (RFSB) to infer the transposon’s
class. (B) Published transposon and protein annotation tools are applied to a given genome. Resulting annotations are filtered, merged and clustered using
CD-HIT. Then, BLASTN is used to find additional full-length copies. (C) Sequencing reads obtained using a long-read technology from a probe genome
are aligned onto a reference genome using ngmlr and pbmm2. Next, the alignments are used to discover structural variants. After filtering the structural
variants, they are matched to the transposon annotations to detect transposition events.

included the removal of sequences with no label, the exclu-
sion of fragments, contigs, satellites and RNA sequences.
Moreover, only sequences with a length >100 bp and those
including at least once each of the letters ‘A’,’C’,’G’ and
‘T’ were kept. To the best of our knowledge, this is the
largest database of transposon sequences available. Since
TransposonDB covers all relevant Eukaryotic kingdoms,

it allows for the training and evaluation of a robust, cross-
species hierarchical classification model (Supplementary
Tables S2 and S3). Moreover, the database is balanced
and covers sufficient examples for all taxonomic nodes
(Supplementary Table S4). However, TransposonDB is
still likely to be biased as most of the TEs are from plant
genomes.
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Figure 3. Summary statistics for the TransposonDB. (A) Ten publicly available transposon databases were filtered and combined. Sequences with no (valid)
class label, fragments, contigs, satellites, RNA, shorter than 100 bp were filtered out. Moreover, duplicates were dropped when merging. Taxonomic schemes
by different databases were unified. (B) The length distribution of sequences in the databases reveals that most DNA transposons are shorter than 500 bp,
while most retrotransposons are longer than 3,000 bp. However, Helitrons are significantly longer than other DNA transposons. (C) TransposonDB is
balanced in terms of class occurrence, although ERV (1/1/3), SINE (1/2/2) and Novosib (2/1/6) transposons occur rarely.

We selected the combination of relative k-mer frequen-
cies and binary protein features for our classifier. Relative
k-mer frequencies represent the number of occurrences of a
k-mer within a sequence divided by the number of times it
would appear if the sequence consisted of this k-mer only.
Protein features are binary, indicating the presence of a cer-
tain protein domain in the sequence. The feature vector con-
sists of k-mer frequencies (k = 2, 3, 4) and 169 selected do-
mains from NCBI CDD (63) covering class-specific trans-
posons (Supplementary Table S5). We used the 169 domains
as query sequences for RPSTBLASTN (v2.10.1) to anno-
tate the conserved domain models at an e-value of 5.0 as it
performed best in terms of classification performance (Sup-
plementary Figure S1A, B). In addition, two model struc-
tures were explored. The binary structure employs binary
classifiers for each node (= transposon class) of the taxon-
omy, and it assigns a probability for each sequence to belong
to the node in question. For each internal node, the child is
chosen as the node associated with the highest probability.
The multilabel structure employs a multilabel classifier for
each parent node of the taxonomy with n + 1 classes rep-
resenting the taxonomic child classes and −1 (return sce-
nario). After inference, the taxonomic class can be deter-
mined by choosing the most probable child node at each
stage or to return to a higher level and then choose the
second most probable child node at that stage. Moreover,
we explored two training strategies. The all training strat-
egy trains each classification node with the whole training
set, while the selective training strategy trains each classi-
fication child node with a training set that was activated
by the parent node. All training strategies, model struc-
tures and feature generation were implemented in Python
(v3.6.9). Models implementing random forests, AdaBoost,
logistic regression, SVM and Naive Bayes from the ma-
chine learning package scikit-learn (v0.23) (64) were ex-
plored. Random forest consistently yields the highest clas-
sification performance (Supplementary Figure S2). Based
on these results, we propose a random forest classifier with
a selective training strategy on a binary model structure,
RFSB.

Previous transposon classification studies use different
performance measures, taxonomies, training and testing

sets, making it hard to compare them. To evaluate the
performance, we consider three perspectives. The first
perspective is based on hierarchical precision and recall,
meaning it considers the whole taxonomy, as proposed
in (65). The second perspective evaluates for different
taxonomic levels and the third perspective captures the
classification performance of single classes. We benchmark
RFSB againts TERL (29), TopDown (24), NLLCPN (27),
HC LGA (33) and HC GA (31), as their published code al-
lowed for reproduction. To ensure a fair comparison, source
codes were partially modified to allow the training and eval-
uation of these models on the taxonomy used in our work
and TransposonDB and can be found on Github https:
//github.com/DerKevinRiehl/transposon classifier rfsb/
blob/main/benchmark/ClassifierCode.rar.

Transposon annotation module, reasonaTE

Given an assembled genome, the goal of the annotation
module is to find all transposon occurrences and their
locations. Our reasonaTE pipeline produces rich anno-
tations, including transposon mask regions (union of
all annotated base pairs) as well as transposon annota-
tions, classification, structural and protein features. This is
achieved by combining the advantages of thirteen published
transposon annotation tools covering different annota-
tion approaches and transposon classes: RepeatMasker
v2.0.1 (http://www.repeatmasker.org/), RepeatModeler
v4.1.1 (http://www.repeatmasker.org/RepeatModeler/),
LTRharvest (66) (https://www.zbh.uni-hamburg.de/
forschung/gi/software/ltrharvest.html) and TIRvish (67)
(http://genometools.org/tools/gt tirvish.html) are avail-
able as Conda packages. Moreover, we created Conda
packages for SINE-Finder (68) (http://www.plantcell.
org/content/suppl/2011/08/29/tpc.111.088682.DC1/
Supplemental Data Set 1-sine finder.txt), SINE-Scan (69)
(https://github.com/maohlzj/SINE Scan), HelitronScan-
ner (42) (https://sourceforge.net/projects/helitronscanner/
files/), MUSTv2 (70) (http://www.healthinformaticslab.
org/supp/resources.php), MiteFinderII (71) (https:
//github.com/jhu99/miteFinder) and MITE-Tracker
(72) (https://github.com/INTABiotechMJ/MITE-Tracker)

https://github.com/DerKevinRiehl/transposon_classifier_rfsb/blob/main/benchmark/ClassifierCode.rar
http://www.repeatmasker.org/
http://www.repeatmasker.org/RepeatModeler/
https://www.zbh.uni-hamburg.de/forschung/gi/software/ltrharvest.html
http://genometools.org/tools/gt_tirvish.html
http://www.plantcell.org/content/suppl/2011/08/29/tpc.111.088682.DC1/Supplemental_Data_Set_1-sine_finder.txt
https://github.com/maohlzj/SINE_Scan
https://sourceforge.net/projects/helitronscanner/files/
http://www.healthinformaticslab.org/supp/resources.php
https://github.com/jhu99/miteFinder
https://github.com/INTABiotechMJ/MITE-Tracker
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to make them accessible and to facilitate their installation.
Also, we include the output files of LTRpred (73) (https:
//hajkd.github.io/LTRpred/articles/Introduction.html) into
the pipeline, as this tool provides high quality annotations,
but is available as a Docker image only. As the tools have
different output formats, we developed a parser module to
convert all outputs to GFF3 format.

After running the annotation tools, additional copies
of the identified transposons are searched using the
clustering tool CD-HIT (v4.8.1) (74,75) at an identity
threshold of 0.9 and BLASTN (v2.10.1) at an e-value
of 0.1. If not mentioned further, we used the standard
settings for all other parameters of these tools. For
the annotation of transposon-characteristic proteins,
we have created a Conda packaged version of Trans-
posonPSI (http://transposonpsi.sourceforge.net/), and
we also use the protein domains from NCBI CDD
for this task. Using TransposonDB, NCBI CDD and
RPSTBLASTN, we selected the 1,000 most frequently
occurring protein domains that are characteristic to trans-
posons (File F2). As an application, here we annotate
the genome MSU7 of Oryza sativa subspecies japonica
(http://rice.plantbiology.msu.edu/index.shtml), the genome
DAOM197198 of Rhizophagus irregularis (https://www.
ncbi.nlm.nih.gov/bioproject/?term=PRJDB4945) (76),
three reference genomes VC2010 (https://www.ncbi.
nlm.nih.gov/bioproject/?term=PRJEB28388), N2 (https:
//www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA13758),
CB4856 (https://www.ncbi.nlm.nih.gov/bioproject/?term=
PRJNA275000) and 20 novel wild type strains (77) of
Caenorhabiditis elegans (Supplementary Table S6).

Transposition event detection module, deTEct

Given an assembled reference genome and sequenced
probe genome reads, the goal is to identify transposi-
tion events that are manifested as structural variants.
This requires both a list of SVs and annotation of TEs
as inputs. We employ the structural variant caller Snif-
fles on ngmlr (78) alignments and PBSV (https://github.
com/PacificBiosciences/pbsv) structural variant caller on
pbmm2 alignments of PacBio reads (https://github.com/
PacificBiosciences/pbmm2). Moreover, the TE annotations
are generated using the proposed reasonaTE pipeline men-
tioned before.

SVs are filtered twice. First, variants shorter than 50 bp
or longer than 1% of the genome length were excluded.
Second, duplicate structural variants of the same type
are merged. Consecutively, the remaining variants and
TE annotations are matched and reported if their length
corresponds to each other. Transposon annotations were
matched to structural variants if they intersected for at least
10% and their length was similar by a threshold of 50%. We
chose to do so as structural variant callers and transposon
annotators have an uncertainty regarding exact locations.
We therefore consider a similar length more important than
a high overlap. The proposed deTEct pipeline is applicable
to long-read sequencing technologies, and it has been tested
with PacBio data. It has not been tested for short reads and
thus we advice against using the pipeline for this type of
data.

RESULTS

RFSB outperforms other transposon classifiers

We benchmarked our RFSB method against other transpo-
son classifiers, and the results show that it has the highest
sensitivity and specificity (Figure 4A, Supplementary Table
S7). TE Learner (20) has the lowest reported performance,
while the other methods have similar F1 scores. However,
this comparison is based on reported numbers from differ-
ent studies with different evaluation schemes, taxonomies
and datasets for training and testing. For a more fair com-
parison some of the tools were applied to the subset of
TranspsonDB which includes RepBase and PGSB (Fig-
ure 4B). The comparison of the results reveals large dis-
crepancies. Surprisingly, TERL and TopDown have a per-
formance which is worse than random guessing, and closer
inspection of the outputs from NLLCPN reveals that it has
learned a constant distribution rather than a relationship
between sequences and classes.

A detailed analysis of the classification performance of
RFSB across different taxonomic levels and classes reveals
a small decrease in performance when considering deeper
taxonomic levels (Figure 4C). Underrepresented classes, e.g.
Helitrons and MITEs, perform worse, and the results are
consistent for both F1 and MCC scores. Moreover, for some
classes the performance of RFSB on the large, cross-species
TransposonDB is better than for the more homogeneous
subset of RepBase and PGSB, which suggests that it is ro-
bust, generalisable, and applicable to different species. An
inspection of the most informative features (File F3) shows
that long k-mer features contribute the most to the classi-
fication performance, while protein domains have a smaller
share amongst the most contributing features (Figure 4D).
This motivated the exploration of longer k-mer features,
but we did not find any significant increase of the perfor-
mance when using 5-mers (Figure 4E). We also evaluated
the runtime (All computations were executed on the clus-
ter CB-GPU1 of the Gurdon institute (OS Ubuntu v18.04.4
LTS). The cluster consists of 80 Intel(R) Xeon(R) Gold
6148 CPUs (2.40 GHz), 315 GB CPU-RAM, two GeForce
RTX 2080 GPUs (each 60T RTX-OPS) and 16 GB GPU-
RAM.) of the different classifiers, and the results show that
the superior classification performance of RFSB comes at
a cost of it taking almost twice as long to run as the other
methods (Supplementary Tables S10 and S11).

The ensemble strategy reasonaTE finds more transposons

Next, we evaluated the ability of our reasonaTE pipeline to
identify TEs in the genomes of three different species (Fig-
ure 5A, B, File F4). The TE content of almost 21% for C.
elegans is higher than previously reported values of 12% (8),
17% (79) and 12−16% (80). However, as these studies used
methods that were biased towards finding specific classes of
transposons, it is to be expected that our ensemble strategy
finds more TEs. By contrast, the prediction of 33% for O.
sativa ssp. japonica is very close to the mean of other re-
ports (81–89). The content of 23% in Rhizophagus irregu-
laris is close to a previous estimate of 27% (90). The low
variation of transposon content across different strains be-
comes obvious for the cluster of C. elegans. Interestingly,

https://hajkd.github.io/LTRpred/articles/Introduction.html
http://transposonpsi.sourceforge.net/
http://rice.plantbiology.msu.edu/index.shtml
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJDB4945
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB28388
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA13758
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA275000
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbmm2
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Figure 4. Evaluation of the RFSB classifier. (A) Benchmark of different transposon classifiers by reported numbers in publications. (B) The performance of
selected, reproducable classifiers applied on RepBase+PGSB database using the taxonomy in Figure 1A. Reported numbers represent performances from
a total perspective. (C) RFSB classification performances from total, taxonomic level and class perspective. (D) Analysis of each feature’s contribution
to classifier’s explanatory power. The white line shows the cumulative explanatory power. (E) Analysis of different k-mer features in combination with
protein features for a binary classifier differentiating between class 1 and 2 transposons. All values presented were calculated as average across a 10-fold
cross validation.

the relative transposon class frequency reveals clear differ-
ences across species (Figure 5C, D). Similarly, the length
distributions (Figure 5E−G) exhibit substantial differences
between transposons of the same class found in different
species. Helitrons in particular vary in length as was ob-
served before (91).

In concordance with (92,93), the share of Helitrons
amounts to almost 2% of the C. elegans genome. More-
over, the majority of the transposons are TIR DNA trans-
posons, as reported by (79,94,95). Contrary to previous
studies (80,96,97), we mainly find hAT, CMC and Novosib
transposons to be present in the C. elegans genome rather
than Tc1-Mariner transposons. Our findings for the rice
genome are consistent with previous findings. The high fre-
quency of Gypsy (class 1/1/2) compared to other LTR
(class 1/1) and non-LTR (class 1/2) was reported in Oryza
sativa subs. japonica (87). Moreover, the small share of
MITEs, up to 2%, is similar to the previously reported share
of 4% (89). A previous study (44) found that class 1 trans-
posons have a larger share (25%) than class 2 transposons
(20%) and the frequencies for the subclass level (LTR 23.5%
and non-LTR 2%, TIR 17.5% and Helitrons 3.6%) match
our findings. Inspection of the annotation density across
the chromosomes revealed a characteristic concentration at
the arms for C. elegans (Supplementary Figure S3), con-
sistent with the higher densities observed for other vari-
ants (79,80,98–101).

The comparison of different annotation tools reveals that
reasonaTE finds more TEs (Supplementary Figure S4) as
none of the other methods finds more than 31.8% of the
TEs reported by reasonaTE. In addition, the analysis shows
that around 40% of the repetitive elements found by Repeat-
Masker and RepeatModeler were confirmed as transposons
using our approach. Moreover, the transposon character-

istic protein annotations by TransposonPSI and the 1000
most frequently occurring proteins from NCBI CDD in-
tersect significantly with reasonaTE’s transposon annota-
tions. The analysis also reveals large overlap between some
tools, e.g. MUSTv2 & MITE-Tracker, LTRpred & LTRhar-
vest and SINE-Finder with all other tools.

Closer inspection of the class composition of the TEs
found for Caenorhabditis elegans confirms the advantages
of the ensemble technique of reasonaTE (Supplementary
Figure S5). None of the tools is able to find the same share
of TEs on its own as the ensemble. Moreover, we find that
tools that were designed to identify a specific transposon
class annotate TEs from other classes as well.

The runtime of reasonaTE depends on many different
factors, including the number of TEs, their distribution, and
the size of the genome. In general, the runtime is propor-
tional to the size of the genome, but as we have only exam-
ined three different organisms we cannot extrapolate how
runtimes will scale. For the investigated genomes in this
study, the annotation tasks took around 6 days in the given
cluster environment setup. RepeatMasker and RepeatMod-
eler made up the largest share of runtime, the actual post-
processing of reasonaTE did not exceed 10% of the total
runtime.

29 554 transposition event candidates were observed analyz-
ing 20 wild type strains of Caenorhabditis elegans using de-
TEct

Finally, we applied the deTEct pipeline to 20 whole genome
assemblies of wild type strains of the nematode C. elegans.
Each strain was compared to the two reference genomes
VC2010 and CB4856 (Figure 6A, Supplementary Table S8,
File F5). As expected, the newly sequenced genomes of
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Figure 5. reasonaTE results for three species. The colors used in this figure represent Caenorhabditis elegans (red), Oryza sativa subs. japonica (green) and
Rhizophagus irregularis (blue). (A) The average TE content of different species. The TE content is calculated as ratio of the sum of all basepairs part of
the transposon region mask and the total genome size. The whiskers represent standard deviations. (B) The dot size represents the TE content as reported
in the first panel, and the figure shows a linear relationship between genome size and the total number of transposons found. (C) Average TE content
by transposon classes. The values were calculated by dividing the sum of the lengths of all transposons of a specific class by the total genome length.
The whiskers represent the standard deviation. (D) The class distribution across all TEs based on the number of elements. (E–G) The transposon length
distribution by classes for the three species. The boxes cover 25–75% percentiles, including the orange bar at the 50% percentile. The length of whiskers
amounts to 150% of the interquartile range.

these two strains have almost no transposition events when
compared to their reference. Closer inspection of the trans-
poson and transposition event densities reveals that the pu-
tative transposition events are primarily located at the ends
of the chromosomes (Figure 6B) as reported by (79). From
the initial list of SVs, 3.97% were identified as transposi-
tion events. However, the list included numerous duplicates
or very short variants that were subsequently filtered out.
Consequently, we find that after filtering, 7.37% of all SVs
are caused by transposition events.

Most of the transposition events were observed due to
deletions (60%) while insertions, duplications and inver-
sions cause the remaining variation (File F6 + F7). One
difficulty in interpreting these proportions stems from the
known biases of sequencing data (102) which make inser-
tions hard to detect. This results in an elevated number
of observations of cut transpositions (deletions), but fewer
paste transpositions (insertions). Nonetheless, we find cer-

tain classes of transposons to be especially active in the com-
parisons of probe and reference genomes, such as Helitrons
and SINEs relative to VC2010, and LINEs and Novosib
when compared to CB4856 (Figure 6D, File F8). The ac-
tivity of Helitrons was observed previously (92,93). He-
litrons were implicated in the divergence of GPCR genes
and heat shock elements. Moreover, they are considered to
play an important role in evolution (42). Comparing the
two major classes, we conclude that the biggest contribu-
tion stems from DNA transposons (82% for VC2010 com-
parisons and 95% for CB4856 comparisons), similar to the
findings in (103).

Moreover, we observe a linear relationship between the
number of transposition events found and the phylogenetic
distance of the given strains (Figure 6E-F). This result can
be observed consistently for PacBio data (Supplementary
Table S9). The strains QX1211 and ECA36 have the largest
differences based on transposon data before (80). Although
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Figure 6. deTEct results and discovered transposition events. (A) Results show the number of detected transposition event candidates by probe strain for
both reference genomes VC2010 and CB4856. (B) The transposon activity in the Caenorhabditis elegans genome by chromosomes. The first row shows
the density of transposon annotations in VC2010. The second row shows the density of transposition events. The following two rows represent results for
CB4856. For all autosomal chromosomes we identify a characteristic pattern of transposon activity at the ends of chromosomes. (C) Dataflow analysis of
the pipeline. The diagram shows the share of different structural variant categories at each stage of the pipeline (left y-axis). Deletions make up the largest
share of transposition events. Additionally, the share of remaining data is outlined (right y-axis). Approximately 4% of all structural variants initially found
are finally identified as transposition events. (D) Helitrons and SINEs are more active relative to VC2010, while Novosib are especially active relative to
CB4856. Relative activity is calculated by the share of a class’ basepairs appearing in transposition events divided by its share of a the classes basepairs
in the transposon annotation. (E) A linear relationship between phylogenetic distance and the number of observed transposition events becomes obvious
for the Caenorhabditis elegans strains for both SV callers PBSV and Sniffles. Phylogenetic distance is calculated as sum of distances in the phylogenetic
tree to the last common ancestor. (F) The phylogenetic tree of the Caenorhabditis elegans strains. The branch lengths are proportional to the number of
polymorphisms that differentiate each pair. Tree based on data from (101).

the identification of SVs and TEs are computationally de-
manding tasks, the identification of transposition events us-
ing deTEct takes only a few seconds to run.

DISCUSSION

Here, we present TransposonUltimate, a bundle of three
modules for transposon classification, annotation and
transposition event detection. Moreover, we present Trans-
posonDB, a database containing more than 891 051 trans-
poson sequences from a wide range of species. Our bench-

mark shows that the classification module RFSB outper-
forms existing methods. Although RFSB has a very high
accuracy, we believe that performance could be improved
by developing species specific classifiers. It would also be
helpful to explore new feature representations that strongly
correlate to phylogenetic distance metrics.

The annotation module combines existing annotation ap-
proaches using an ensemble strategy, and this ensures a less
biased outcome than existing methods that tend to favor
certain TE classes. The annotation module could be ex-
tended by the search for fragmented copies of annotated
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transposons connected with filters to avoid false positives.
Application to three different species revealed that TEs
from the same family vary drastically in length. Thus, an
important question for future research is to determine to
what extent such differences reflect hitherto uncharacter-
ized families, and to what extent the differences correspond
to overall sequence divergence.

The detection module enables the identification of trans-
position events through structural variants in genomes pro-
filed using long-read sequencing technologies. Application
of the deTEct pipeline to 20 wild type strains of C. elegans
suggests that transposon events are responsible for 7.37%
of structural variants. Although previous studies have ar-
gued that transposons are a major driver of structural vari-
ation (102), our results suggest that at least for wild isolates
of Caenorhabditis elegans this is not the case. As additional
high quality assemblies become available, it will be interest-
ing to further explore this important question. Moreover,
the development of localisation algorithms of target and
donor sites of transposons seems a promising add-on for
the detection module. Besides, structural variants gathered
from whole genome comparison using anchor filtering (104)
could be included and compared.

As long-read technologies are becoming more widely
used and the number of sequenced genomes rises quickly,
there is an urgent need for methods to identify and an-
notate TEs which correspond to plurality and in some
cases a majority of genome sequences. In particular, as
more human (105) and other vertebrate genomes (https:
//vertebrategenomesproject.org/) are profiled using these
technologies, TransposonUltimate will be a valuable tool to
improve our understanding of the impact of TEs on both
traits and diseases.

CONCLUSION

Our TransposonUltimate bundle of software tools provides
a powerful and user-friendly means of analyzing TEs. In ad-
dition to providing highly accurate classifications, our anal-
ysis also provides insights as to what features are most in-
formative for predicting TE class. Our ensemble approach
to annotation is more unbiased than existing methods that
tend to focus on one or a few classes. Finally, our transpo-
sition event detection module can take advantage of long-
read technologies to identify to what extent TEs underlie
SVs.

DATA AVAILABILITY

Databases, assemblies, annotations and further find-
ings can be downloaded from https://cellgeni.cog.
sanger.ac.uk/browser.html?shared=transposonultimate.
TransposonDB is available at Zenodo with DOI
10.5281/zenodo.5518085. Source codes, Conda
package, installation manual and further documen-
tation and further instructions can be found on
https://github.com/DerKevinRiehl/TransposonUltimate.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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14. Vizváryová,M. and Valková,D. (2004) Transposons - the useful
genetic tools. Biologia, 59, 309–318.

15. Ivics,Z., Li,M.A., Mátés,L., Boeke,J.D., Bradley,A. and Izsvák,Z.
(2009) Transposon-mediated genome manipulations in vertebrates.
Nat. Methods, 6, 415–422.

16. Girgis,H.Z. (2015) Red: an intelligent, rapid, accurate tool for
detecting repeats de-novo on the genomic scale. BMC
Bioinformatics, 16, 227.

https://vertebrategenomesproject.org/
https://cellgeni.cog.sanger.ac.uk/browser.html?shared=transposonultimate
https://github.com/DerKevinRiehl/TransposonUltimate
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac136#supplementary-data


PAGE 11 OF 13 Nucleic Acids Research, 2022, Vol. 50, No. 11 e64

17. Gilly,A., Etcheverry,M., Madoui,M.-A., Guy,J., Quadrana,L.,
Alberti,A., Martin,A., Heitkam,T., Engelen,S., Labadie,K. et al.
(2014) TE-Tracker: systematic identification of transposition events
through whole-genome resequencing. BMC Bioinformatics, 15, 377.

18. Abrusán,G., Grundmann,N., DeMester,L. and Makalowski,W.
(2009) TEclass––a tool for automated classification of unknown
eukaryotic transposable elements. Bioinformatics, 25, 1329–1330.

19. Hoede,C., Arnoux,S., Moisset,M., Chaumier,T., Inizan,O.,
Jamilloux,V. and Quesneville,H. (2014) PASTEC: an automatic
transposable element classification tool. PLOS ONE, 9, e91929.

20. Schietgat,L., Vens,C., Cerri,R., Fischer,C.N., Costa,E., Ramon,J.,
Carareto,C. M.A. and Blockeel,H. (2018) A machine learning based
framework to identify and classify long terminal repeat
retrotransposons. PLoS Comput. Biol., 14, e1006097.

21. Kamath,U., Jong,K.D. and Shehu,A. (2014) Effective automated
feature construction and selection for classification of biological
sequences. PLoS ONE, 9, e99982.
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