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ABSTRACT Microbacterium sp. strain Nx66 was isolated from waters contaminated
by petrochemical effluents collected in Algeria. Its genome was sequenced using
Illumina MiSeq (2 � 150-bp read pairs) and Oxford Nanopore (long reads) technolo-
gies and was assembled using Unicycler. It is composed of one chromosome of
3.42Mb and one plasmid of 34.22 kb.

Actinobacteria are Gram-positive aerobic bacteria widely distributed in terrestrial
and aquatic ecosystems and are known to produce a great variety of bioactive

compounds (1, 2). They are mainly free living, commensals, or symbiotic, but some of
them may cause infections in humans (3–8).

A total of 28 strains were isolated from a water sample collected in Skikda’s El Saf-
Saf Valley, Algeria (36.87981N, 6.93111E), receiving industrial releases from a petro-
chemical refinery (9). Aliquots of 100ml up to 1023 dilutions were inoculated onto
Reasoner's 2A agar (R2A) agar plates incubated at 30°C for 24 h to 1week, and bacterial
colonies were purified by streaking three times onto fresh medium agar plates. Protein
samples were prepared from colonies using a mix (50/50) of 70% (vol/vol) formic acid
(Sigma, Lyon, France) and 50% (vol/vol) acetonitrile (Fluka, Buchs, Switzerland) and
were analyzed by mass spectrometry as previously described (10). The Nx66 isolate
was identified with low confidence as a Microbacterium strain.

Nx66 cells were grown for 72 h in R2A liquid medium at 30°C, and DNA was extracted
using the MasterPure complete DNA and RNA purification kit (Epicentre). An Oxford
Nanopore Technologies (ONT) library was prepared according to the manufacturer’s
instructions for 1D native barcoding genomic DNA (kits EXP-NBD103 and SQK-LSK109).
DNA was quantified using the Qubit double-stranded DNA (dsDNA) high-sensitivity (HS)
assay kit (Life Technologies), and purity was determined using a Nanodrop instrument
(ThermoFisher). Size distribution and degradation were assessed using the fragment ana-
lyzer (AATI) high-sensitivity DNA fragment analysis kit. DNA was purified using AMPure XP
beads (Beckman Coulter) and sheared at 20 kb using the Megaruptor system (Diagenode).
One DNA damage repair, end repair, and dA tail step was performed before sample-spe-
cific index ligation. The library was loaded on an R9.4.1 revD flowcell and sequenced on a
GridION instrument at 0.03pmol within 48 h using MinKNOW v2.0.10-1 and Guppy v1.8.5-1
for base calling. Illumina 2 � 150-bp paired-end libraries were prepared according to
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Illumina’s protocols using the TruSeq Nano DNA high-throughput (HT) library prep kit. DNA
was fragmented by sonication. Size selection was performed using sample purification
beads (SPBs). Library quality was assessed using an Advanced Analytical fragment analyzer.
Libraries were quantified by quantitative PCR (qPCR) using the Kapa library quantification
kit. Sequencing was performed on an Illumina MiSeq instrument with V2 reagent kits.

FIG 1 Unrooted maximum likelihood phylogenetic tree of Nx66 and the 35 publicly available Microbacterium complete genome
sequences. The tree was obtained with GToTree v1.4.16 with HMM source Actinobacteria.hmm (138 targets) and default parameters
(JTT1CAT model) (20). The Microbacterium sp. Nx66 closest relatives were Microbacterium sp. strain China and Microbacterium sp.
PAMC 28756 HSR44. The 35 complete genomes and their RefSeq accession numbers are Microbacterium amylolyticum (GCF_
011046975.1), Microbacterium aurum (GCF_001974985.1), Microbacterium chocolatum (GCF_001652465.1), Microbacterium
endophyticum (GCF_011047135.1), Microbacterium foliorum (GCF_003367705.1), Microbacterium foliorum (GCF_006385575.1),
Microbacterium hominis (GCF_002843965.1), Microbacterium hominis (GCF_013282805.1), Microbacterium lemovicicum (GCF_
003991875.1), Microbacterium oleivorans (GCF_001975955.2), Microbacterium oleivorans (GCF_013389665.1), Microbacterium
oxydans (GCF_003991855.1), Microbacterium oxydans (GCF_004000565.1), Microbacterium paludicola (GCF_001887285.1),
Microbacterium protaetiae (GCF_004135285.1), Microbacterium sediminis (GCF_004564075.1), Microbacterium sp. 1.5R (GCF_001889265.1),
Microbacterium sp. 10M-3C3 (GCF_003931875.1), Microbacterium sp. 1S1 (GCF_008271365.1), Microbacterium sp. 4R-513 (GCF_
011046485.1), Microbacterium sp. ABRD_28 (GCF_003850245.1), Microbacterium sp. BH-3-3-3 (GCF_001792815.1), Microbacterium
sp. CGR1 (GCF_001266755.1), Microbacterium sp. L-031 (GCF_008727775.1), Microbacterium sp. No. 7 (GCF_001314225.1),
Microbacterium sp. PAMC 28756 (GCF_001558975.1), Microbacterium sp. RG1 (GCF_005347485.1), Microbacterium sp. SGAir0570
(GCF_005491085.2), Microbacterium sp. ST-M6 (GCF_008727755.1), Microbacterium sp. strain China (GCF_002993305.1),
Microbacterium sp. TPU 3598 (GCF_002356155.1), Microbacterium sp. XT11 (GCF_001513675.1), Microbacterium sp. Y-01 (GCF_
003856715.1), Microbacterium testaceum (GCF_000202635.1), and Microbacterium wangchenii (GCF_004564355.1).
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Adaptors and low-quality extremities (Q, ,20) were trimmed off short reads with
BBDuk (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide). Read pairs with
a Q value of ,30 were discarded. Adaptors were trimmed off long reads using the
Oxford Nanopore Technologies qcat program (https://github.com/nanoporetech/qcat).
Long reads with a Q value of ,9 were discarded using Nanofilt v2.5.0 (11). Assembly
was performed with Unicycler v0.4.7 (12) using default parameters, yielding two circular
replicons of 3,422,870 bp and 34,223bp with GC contents of 70.17% and 66.07%, respec-
tively. QUAST v5.0.2 (13) rated the assembly as good (mapping reads, 99.62%; coverage,
79� for Illumina and117� for Nanopore). Analysis with CheckM v1.0.11 (14) returned
99.49% completeness, insignificant contamination (0.51%), and no strain heterogeneity.

Microbacterium genus assignment was confirmed by the RDP classifier (15) using
16S rRNA genes predicted with barrnap (https://github.com/tseemann/barrnap). The
best average nucleotide identity computed with FastANI v1.2 (16) against the 35 com-
plete public Microbacterium genomes was obtained with Microbacterium sp. strain
China (93.45%, 1,062/1,151 fragments). This value, lower than observed intraspecies
values (17, 18), suggests that Nx66 is close but not identical to strain China (Fig. 1).

Annotation with the MicroScope platform (19) predicted 3,506 genes in the chro-
mosome (3,441 coding sequences [CDS], 47 tRNA genes, and 6 rRNA genes) and 41
CDS in the plasmid. The chromosome annotation showed the presence of a significant
number of genes involved in resistance to toxic metals, such as arsenic and zinc, and
organic compound degradation, such as xylan and chitin.

Data availability. The complete sequences of the Microbacterium sp. Nx66 genome
and plasmid have been deposited in DDBJ/EMBL/GenBank under BioProject PRJEB39712
and assembly accession number GCA_904066215. Raw reads have been made available
under the same BioProject number with accession numbers ERR4508043 for the MiSeq
paired-end reads and ERR4508044 for the ONT long reads. The accession numbers for the
annotated sequences of the chromosome and plasmid are LR880474.1 and LR880475.1,
respectively.
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