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The precise modeling of molecular interactions remains an important goal among
molecular modeling techniques. Some of the challenges in the field include the precise
definition of a Hamiltonian for biomolecular systems, together with precise parameters
derived from Molecular Mechanics Force Fields, for example. The problem is even more
challenging when interaction energies from different species are computed, such as the
interaction energy involving a ligand and a protein, given that small differences must be
computed from large energies. Here we evaluated the effects of the electrostatic model
for ligand binding energy evaluation in the context of ligand docking. For this purpose,
a classical Coulomb potential with distance-dependent dielectrics was compared with a
Poisson-Boltzmann (PB) model for electrostatic potential computation, based on DelPhi
calculations. We found that, although the electrostatic energies were highly correlated
for the Coulomb and PB models, the ligand pose and the enrichment of actual ligands
against decoy compounds, were improved when binding energies were computed
using PB as compared to the Coulomb model. We observed that the electrostatic
energies computed with the Coulomb model were, on average, ten times larger than
the energies computed with the PB model, suggesting a strong overestimation of
the polar interactions in the Coulomb model. We also found that a slightly smoothed
Lennard-Jones potential combined with the PB model resulted in a good compromise
between ligand sampling and energetic scoring.

Keywords: ligand docking, polar interactions, electrostatic energy, Poisson-Boltzmann, Coulomb

INTRODUCTION

The quantitative description of molecular interactions, at an atomic level, remains an important
challenge even in current days of Petascale computing. Some of the difficulties found in this field
include: (i) the energetic description of biomolecular systems; (ii) the fact that binding energies
are small differences taken from large energies, resulting in large uncertainties; and (iii) the limited
sampling for some calculations. Taken together, these obstacles are exactly the challenge of scoring
solutions in the docking problem (Halperin et al., 2002).

The second problem, due to the small differences taken from bigger numbers, can be alleviated
with accurate calculations and appropriate sampling. In the context of single point calculations,
such as in ligand docking, this challenge remains as an important issue and is handled in some
applications with a posterior analysis of ligand candidates using molecular dynamics (MD) or
Monte Carlo (MC) simulations to generate an ensemble of thermally accessible configurations
of the system and binding energy calculations. In this context, the MM-GBSA or MM-PBSA
approaches became very popular (Graves et al., 2008; Zhang et al., 2014; Genheden and Ryde, 2015).
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The energetic description of a biomolecular system is tackled
in many docking approaches using molecular mechanics force
fields (Luty et al., 1995; Schulz-Gasch and Stahl, 2004; Cisneros
et al., 2014), where the intermolecular interaction energies are
typically computed as a sum of polar interactions, modeled as
a Coulomb potential, and van der Waals interactions, modeled
through a Lennard-Jones potential (Wang and Lin, 2013).
Additional terms can be added to model the influence of the
solvent, for example (Muniz and Nascimento, 2017).

Modeling polar interactions using a Coulomb potential
introduces some potentially important issues. First, polarization
is not considered. Although this effect might be important,
a quantum description of the system would be required for
appropriate treatment of the dynamics in the electron density
within the active site, increasing the computational costs of the
calculation. Polarization could also be taken into account by
the use of polarizable force fields. However, the computational
cost associated with these calculations limits their use in the
context of the docking of large compound databases (Illingworth
et al., 2008). Second, the dielectric medium of a protein might
not be exactly a constant medium, since the protein surface
faces the solvent while its core might be closer to a highly
hydrophobic medium. So, a representation of the electrostatic
potential (and energies) as a function of a varying continuum
dielectrics might be necessary, such as the treatment given by
the Poisson-Boltzmann (PB) equation (Honig andNicholls, 1995;
Oron et al., 2003; Li et al., 2012, 2013).

Interestingly, Luty et al. observed that, for 20 poses of
benzamidine within 8 Å of trypsin binding site, the electrostatic
interaction energy computed with PB and using a simple
Coulomb model assuming ε = f (r), i.e., the dielectric constant
ε is a linear function of the interatomic distance r, showed a high
correlation (r2 = 0.96) (Luty et al., 1995). In contrary, Gilson and
Honig observed that this simple distance-dependent dielectric
model overestimates electrostatic interactions (also observed by
Luty et al.) and concluded that this model does not seem to
be a realistic way of treating polar interactions in biomolecular
systems (Gilson and Honig, 1988).

In late ’80s Honig et al. developed the DelPhi program
(Gilson et al., 1988), that numerically solves the PB equation
for macromolecular structures, of any shape, given atomic
coordinates, atomic van der Waals parameters, and atomic
charges. The calculation of electrostatic potentials within the
current versions of Delphi (Li et al., 2012, 2013; Jia et al., 2017)
is fast, taking a few seconds in typical workstation computers
for a small size protein. Although it might not be fast enough
to be used in MD simulations, it is very competitive for docking
studies, where the receptor is kept as rigid, in many strategies,
and the interaction potentials can be pre-computed in grids and
stored for the actual docking calculations (Meng et al., 1992;
Luty et al., 1995). Worth of note, the PB calculation is under
constant improvement. Recently, Li et al. showed that Gaussian-
based smoothed dielectric function could better reproduce the
assignment of PKa’s for protein residues (Li et al., 2013). The same
approach was also applied to the ion distribution (Jia et al., 2017).

Here, we compared the results of docking enrichments
and pose reproduction within the same algorithm when using

Coulomb electrostatics with a distance-dependent dielectric
model (i.e., ε = r) and using a PB electrostatic potential pre-
computed using DelPhi (Li et al., 2012). Concurrently, we
evaluated the influence of Lennard-Jones soft-core potential
on docking efficacy with both PB and Coulomb models. We
found that the PB electrostatic model resulted in modest
improvement in pose reproduction and enrichment. However,
when this model was combined with a smoothed van der Waals
potential, an important improvement of pose reproduction and
enrichment was observed, suggesting that fine-tuning of these
terms is necessary.

MATERIALS AND METHODS

Docking Calculations
For all docking calculations reported in this work, the software
LiBELa (dos Santos Muniz and Nascimento, 2015) was used.
LiBELa (Ligand Binding Energy Landscape) uses a combination
of ligand- and receptor-based strategies for docking. For this
purpose, the algorithm requires a reference ligand, that indicates
the initial binding mode. The docking procedure starts with
a superposition of the search ligand onto the reference ligand
by using a ligand-based approach, as previously described (Vaz
de Lima and Nascimento, 2013). Briefly, LiBELa describes the
volume of each i ligand atom as a Gaussian function (Vaz de Lima
and Nascimento, 2013):

ρ (r) = pi exp









−π
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4πσ3i

)
2
3
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where pi is the Gaussian amplitude, defined as 2
√
2, ri is atomic

coordinate for atom i and σi is the van der Waals radius for the
same atom. Using this Gaussian-based description of shape, an
overlay volume for two molecules, A and B, can be defined as
(Vaz de Lima and Nascimento, 2013):

VAB = w
∑

i ∈ A

∑

j ∈ B

∫

dr ρi (r)ρj(r)

Similar terms are added to VAB to compute for the superposition
of atoms with positive charge and negative charge with weights
defined by w (here, set to 1.0 for both terms). Thus, by
maximizing the overlay volume VAB in Cartesian space, an initial
optimized placement of the search ligand is obtained. Afterward,
this initial binding mode is re-optimized to find a minimum in
the binding energy using a global optimization algorithm. In this
step, a typical force field-based definition of binding energy is
used as the objective function:

Ebind =
rec
∑

i

lig
∑

j

qiqj

ǫrij
+

Aij

r12ij
−

Bij

r6ij

Where q is atomic charge, rij is the interatomic distance
between atoms i and j and Aij and Bij are the Lennard-Jones
parameters for the atom pair ij, computed by the geometric mean
approximation. Here,Ai = 2δi (2r0)12 and Bi = 2δi (2r0)6, where
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r0 is the atomic radius and δ is the well depth parameter necessary
for computing van der Waals interactions according to AMBER
force field. Both parameters are taken fromAMBER FF14SB force
field (Maier et al., 2015). A final similarity index can be computed
using a Hodgkin’s similarity index (Hodgkin and Richards, 1987)
defined as:

SI =
2VAB

VAA + VBB

To speed up the calculations, the receptor interaction potential
is pre-computed and stored in grids. In this point, LiBELA can
compute a typical Coulomb electrostatic potential:

φ (r) =
rec
∑

i

qi

εri

where the dielectric constant was set to the interatomic distance
r, i.e., ǫ = rij (Luty et al., 1995). Alternatively, LiBELa
can parse a DelPhi electrostatic map with the electrostatic
potential φDelPhi instead and compute binding energies using this
stronger electrostatic model. For the calculations shown in this
work, DelPhi 8.4 was used (Li et al., 2012, 2013). Typically, a
computation box of 30× 30× 30 Å with a spacing of 0.4 Å (gsize
75 and scale 2.5 Å, in Delphi parameters), with interior dielectrics
of 2.06 and exterior dielectrics of 78.5, and salt concentration
set to 145mM. The same grid spacing was used in calculation
employing the Coulomb model.

We also tested the effect of a smoothed Lennard-Jones
potential by applying the same strategy as suggested by
Verkhivker et al. (1999). Here, the binding energy is evaluated
as (dos Santos Muniz and Nascimento, 2015; Muniz and
Nascimento, 2017):

Ebind =
lig
∑

j

qjφ(r)
rec
∑

i

lig
∑

j

Aij
(

r6ij + δ6VDW

)2 −
Bij

r6ij + δ6VDW

The smoothing term δVDW was systematically varied in the
interval 0.5 to 2.5 Å with a step of 0.5 Å to evaluate the effect
of the Lennard-Joned soft-core potential in pose reproduction
and enrichment when combined with a Coulomb electrostatic
potential (φCoulomb) or a PB electrostatic potential (φDelphi).

Docking Pose Reproduction
Self-Docking Test
For docking pose reproduction, we used three data sets. The
dataset SB2012 (Mukherjee et al., 2010) includes 1,043 crystal
structures of protein-ligand complexes, distributed as SYBYL
MOL2 files. Here and all over this text, the “receptor” is defined
as a protein where an organic small molecular, the “ligand.,”
binds. In these files, the atomic charges are already defined
using AMBER forcefield for receptor and AM1-BCC (Jakalian
et al., 2000, 2002) for ligands. The dataset files were used as
provided, with no further optimizations or modifications of
atomic coordinates. Here, a docking calculation was set using
each ligand-receptor pair, using the own ligand as the reference
ligand in LiBELa.

Cross-Docking Test
For a cross-docking experiment, the Astex dataset was used
(Verdonk et al., 2008). In this dataset, 58 structures with
analogous complexes are provided. From this dataset, 54 targets
were used together with 860 ligands in total. The targets
(receptors) were prepared using DockPrep tool as available in
UCSF Chimera (Pettersen et al., 2004) using AMBER FF14SB
atomic charges. For the ligands, AM1-BCC atomic charges were
attributed using ANTECHAMBER (Wang et al., 2006) and
SYBYL atom types were assigned using the same tool. In this
experiment, each ligand was docked on different (non-native)
crystal structures of its own target. Afterward, the root mean
square deviation (RMSD) was computed using the native ligand
structure as a reference.

Enrichment Tests
In order to evaluate the ability to enrich actual ligands against
decoys, i.e., compounds with similar physicochemical properties
but not expected to bind to a given target, the DUD38 subset
of DUD-E database, which contains 38 targets from the original
DUD dataset (Huang et al., 2006), but rebuild with the same
protocol as used in DUD-Enhanced (DUD-E) (Mysinger et al.,
2012). This subset includes the PDB files for the receptors and
over 630,000 compounds, among binders and decoys, with an
average decoy-to-ligand ratio of 33. The compounds were used
as provided (as SYBYL MOL2 files) with atomic charges defined
following the default ZINC protocol (Irwin and Shoichet, 2005;
Irwin et al., 2012). The receptor files were prepared using the
DockPrep tool available in UCSF Chimera (Pettersen et al., 2004).
In this tool, atomic charges are attributed to receptor atoms
following AMBER FF14SB parameters. Finally, the prepared
receptor is saved as a SYBYL MOL2 file type.

The target-specific ligands and decoys were docked to
each target using LiBELa default parameters and using either
a Coulomb electrostatic model or a pre-computed Delphi
electrostatic potential. The Delphi calculations were carried out
in two steps. In the first step, a calculation is set where the
protein represents 50% of the calculation box. In a second step,
a focused calculation was carried out using a grid of 0.4 Å for a
30 × 30 × 30 Å calculation box centered in the center of mass
of the reference ligand. The energies computed after docking
calculations were used to rank the docked molecules and ROC
curves were computed with locally developed python scripts. The
enrichment was quantified using the Adjusted LogAUC metric
(Mysinger and Shoichet, 2010). This metric is similar to the well-
known AUC but is computed for a semi-logarithmic plot of the
ROC curve spanning three decades in the horizontal axis. The
computed area is then corrected to remove the area expected for
a random enrichment (14.5%).

RESULTS

The calculations of the electrostatic potentials with DelPhi are
very fast, typically taking <5 s in an Intel Xeon E5645 (2.40
GHz) processor running in a single thread. This is much faster
than the calculation of the interaction potential grids in LiBELa,
which took about 5.4min averaging over the 38 targets of the
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DUD38 dataset. The computational efficiency of the electrostatic
calculations with DelPhi makes it tempting to use this more
robust model in docking calculations. However, what is the actual
role of PB-based calculation on protein-ligand interactions in the
context of ligand docking? In order to address this question, we
set up a comparative analysis of ligand binding poses and ligand
enrichments using the Coulomb electrostatic model or PB as the
electrostatic model to assess the effect of the model in sampling
and enrichment, respectively.

Effect on Sampling
The simplest experiment one can think of to evaluate the
sampling effect on ligand docking is to assess the ability of a
model to reproduce ligand poses from crystal structures. In this
context, we compared the RMSDs observed for LiBELa using
either Coulomb or PB as the electrostatic model.

After the redocking of 1,029 ligands on their respective
receptors, the RMSD for all atoms, including hydrogen atoms,
was computed in comparison with the original (experimental)
structures. Averaging over the entire dataset an RMSD of 1.215
Å was observed for the Coulomb model, while for the PB
model an average RMSD of 1.129 Å was achieved. The median
RMSD for these models were 0.535 and 0.598 Å with a standard
deviation slightly increased for Coulomb as compared to PB
(1.689, compared to 1.419 Å). For both models the fraction of
targets with RMSD values found below the typical cutoff value of
3.0 Å was close to 90%, as indicated in Table 1.

When a smoothed Lennard-Jones potential was combined
with the electrostatic models under evaluation in this work,
we found very interesting differences. For a small smoothing
parameter δ = 0.5 Å, the differences between the electrostatic
models are small, similarly to what is observed in the AMBER
Lennard-Jones model. However, as δ becomes larger, the
differences between the Coulomb model and the PB model
become more evident. When δ is set to 2.0 Å, the average RMSD
found for the Coulomb model was 5.643 Å (median 5.566 Å),
while the average RMSD for the PB model was 1.185 Å, with
median in 0.611 Å. So, it appears that the combination of the
PB model with a soft-core VDW potential still leads to good
results in pose reproduction while the Coulomb model rapidly
seems to dominate the binding energy resulting in meaningless
ligand poses.

Another interesting observation comes from the comparison
between the polar term in the interaction energies. An analysis
for 1,029 protein-ligand complexes reveals a good correlation
between the electrostatic interaction energies computed using
a Coulomb model with distance-dependent dielectrics, i.e., ε =
rij, and electrostatic interaction energies computed using the
Poisson-Boltzmann model. As shown in Figure 1, there is a good
correlation between the computed energy terms (r = 0.7 for
N = 1,029), as also observed previously by Luty et al. (1995).
Additionally, one can observe that the electrostatic interaction
energies computed by the Coulomb model are about 10 times
more favorable, on average than those computed using the PB
model, indicating a typical overestimation of the interaction
energies in this model. In the context of ligand docking, this
overestimation may result in binding modes that are biased

TABLE 1 | Summary of the self-docking experiment using the SB2012 dataset.

Electrostatic model Coulomb PB

Smoothing parameter δVDW = 0.0 Å

Average RMSD (Å) 1.215 1.129

Median RMSD (Å) 0.535 0.598

Standard deviation for RMSD (Å) 1.689 1.419

RMSD < 3.0 Å (%) 90% 92%

Average HA_RMSD (Å) 1.124 1.035

Average HA_RMSDh (Å) 1.035 0.948

Average HA_RMSDm (Å) 0.534 0.494

Average Hodgkin’s similarity index 0.858 0.871

Smoothing Parameter δVDW = 0.5 Å

Average RMSD (Å) 1.287 1.079

Median RMSD (Å) 0.535 0.596

Standard deviation for RMSD (Å) 1.812 1.312

< 3.0 Å (%) 88% 93%

Average HA_RMSD (Å) 1.192 0.987

Average HA_RMSDh (Å) 1.104 0.901

Average HA_RMSDm (Å) 0.538 0.467

Average Hodgkin’s similarity index 0.852 0.875

Smoothing Parameter δVDW = 2.0 Å

Average RMSD (Å) 5.643 1.185

Median RMSD (Å) 5.566 0.611

Standard deviation for RMSD (Å) 2.304 1.525

< 3.0 Å 15% 91%

Average HA_RMSD (Å) 5.356 1.096

Average HA_RMSDh (Å) 4.881 1.007

Average HA_RMSDm (Å) 2.263 0.527

Average Hodgkin’s similarity index 0.287 0.858

N = 1,030. Statistics for RMSDs computed after redocking of ligands are shown in

comparison with experimental poses. HA_RMSD, HA_RMSDh and HA_RMSDm refer,

respectively, to the average standard RMSD computed for heavy-atoms only, the

minimum-distance heavy-atom RMSD used in Autodock Vina (Trott and Olson, 2009)

and Hungarian (symmetry-corrected) heavy-atom RMSD (Kuhn, 2010), as computed by

DOCK6 (Brozell et al., 2012).

toward a few polar contacts that are too favorable as compared
to the overall fitting of the ligand and receptor binding pockets.

A more stringent test is to assess the ability of the model to
reproduce experimentally determined poses in a cross-docking
experiment, i.e., in a receptor structure different from the one
used in the actual docking calculation. In brief, it involves
docking ligand LA in receptor structure RB and comparing the
docking pose to the pose observed when LA was crystallized
bound to receptor RA. For this task, the Astex non-diverse dataset
was used.

The employed dataset includes 603 diverse (non-native)
complexes. The results obtained are summarized in Table 2.
Again, when the typical AMBER Lennard-Jones potential is used,
a slight improvement in the binding poses is observed, with
average RMSD going from 4.48 Å, for the Coulomb model, to
3.95 Å in the PB model (median values of 3.27 and 2.94 Å,
respectively). When a smoothed Lennard-Jones potential is used,
on the other hand, the differences between both electrostatic
models increase. For a smoothing parameter δ set to 0.5 Å, the
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FIGURE 1 | Correlation of the electrostatic interaction energies computed with Coulomb model (horizontal axis) and PB (vertical axis). The line shows a linear
regression of the obtained data (N = 1,029) and the regression coefficients are shown in the figure.

average RMSD decreases from 4.65 in the Coulombmodel to 3.90
in the PB model (median values 3.52 and 3.06 Å). And when δ is
set to 2.0 Å, the average RMSD decreases from 7.60 to 3.71 Å,
with median values decreasing from 7.52 to 2.54 Å (Table 2).

Taken together, the results shown here indicate that the
PB model for electrostatic computation result in better pose
reproduction in the scenario of a typical AMBER FF binding
energy calculation and, more significantly, in the scenario of a
soft docking, i.e., when the Lennard-Jones potential is smoothed.
Given the results obtained, we moved for the evaluation
of the changes in the enrichment of actual binders against
decoy compounds.

Ligand Enrichment
In order to assess the ability of the electrostatic models to
recover actual ligands against decoy compounds, we choose the
DUD38 dataset. In this dataset, 38 targets are given with a set
of binder compounds and a set of decoy compounds. In this
context, a decoy is defined as a compound that has similar
physicochemical properties to the binders but is not expected
to bind to the receptor. After docking all the binders and
decoys, the compounds are ranked by their binding energy and a
receiver-operating characteristic (ROC) curve is plotted. Finally,
the enrichment is computed using Adjusted LogAUC metric, as
previously proposed (Mysinger and Shoichet, 2010). Briefly, this
metric describes the area under the curve of the ROC plot with
the x-axis in the logarithm scale and spanning three decades. The
area computed is corrected by subtracting the area expected for a
random enrichment.

The results obtained are summarized in Table 3 and shown
in the complete version in the Supplementary Material. From

the data shown here, we note that, for the usual Lennard-
Jones model used in AMBER force field, i.e., δVDW = 0.0,
the electrostatic models performed almost similarly in terms
of enrichment, with an average enrichment of 4.50 or 4.91
for Coulomb or PB, respectively, with a slight improvement of
the enrichment with the PB model. Using the smoothed VDW
potential with δVDW = 0.5 Å, similar enrichments are observed
but with an improvement in the median enrichment for the
PB model. Here, the average enrichments were 5.01 and 4.99
with median enrichments of 3.93 and 5.40 for Coulomb and PB
models, respectively. Finally increasing the smoothing constant
to δVDW = 2.0 Å, a maximum in the average/median logAUC is
observed for the PBmodel (5.36 and 6.09 for average andmedian,
respectively), while a marked decrease in the enrichment for the
Coulomb model is observed.

For the sake of comparison, the same docking calculations
using the DUD38 were set up using the Grid Score model of
DOCK 6.7 (Brozell et al., 2012). The average andmedian logAUC
observed for this model was 1.3 and −1.2, respectively (Table 3).
Since logAUC corrects for the expected random enrichment,
this metric can achieve negative results if results are worse than
random. It is important to add that the Grid Score used here
has a 6–12 Lennard-Jones potential with a Coulomb electrostatic
model that uses a distance-depend dielectric function (ε = rij),
similar to the model used in LiBELa.

DISCUSSION

The enrichment data shown in Table 3 for the DUD38 dataset
strongly suggests that the continuum electrostatic model can
lead to important improvements in the ability to recover
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TABLE 2 | Summary of the cross-docking experiment using the Astex dataset.

Electrostatic model Coulomb PB

Smoothing parameter δVDW = 0.0 Å

Average RMSD (Å) 4.477 3.951

Median RMSD (Å) 3.269 2.938

Standard deviation for RMSD (Å) 4.408 4.091

Average HA_RMSD (Å) 4.194 3.698

Average HA_RMSDh (Å) 3.768 3.272

Average HA_RMSDm (Å) 4.075 3.801

Average Hodgkin’s similarity index 0.533 0.562

Smoothing parameter δVDW = 0.5 Å

Average RMSD (Å) 4.653 3.900

Median RMSD (Å) 3.523 3.064

Standard deviation for RMSD (Å) 4.537 4.014

Average HA_RMSD (Å) 4.362 3.635

Average HA_RMSDh (Å) 3.851 3.270

Average HA_RMSDm (Å) 4.074 3.790

Average Hodgkin’s similarity index 0.521 0.562

Smoothing parameter δVDW = 2.0 Å

Average (Å) 7.603 3.712

Median (Å) 7.519 2.542

Standard deviation (Å) 3.758 4.053

Average HA_RMSD (Å) 7.369 3.457

Average HA_RMSDh (Å) 6.721 3.077

Average HA_RMSDm (Å) 5.699 3.688

Average Hodgkin’s similarity index 0.206 0.579

N = 603. Statistics for RMSDs computed after redocking of ligands in a non-native

receptor structure are shown in comparison with experimental poses.

actual binders and separate them from decoy compounds. On
the other hand, as we already noted from the data shown
in Figure 1, the Coulomb interaction electrostatic energies
are, on average, 10 times more favorable than interaction
electrostatic energies computed with PB. Then, it makes sense
that the balance between the electrostatic and van der Waals
terms should be also fine-tuned. We assessed this balance
by introducing a smoothed Lennard-Jones term to model
the van der Waals interactions. A good balance seems to
be achieved when the smoothing constant δVDW was set
to 2.0 Å. With this calculation setup, a maximum in the
enrichment is observed, without compromising the docking
poses, according to the results of ligand enrichment with
DUD38, self-docking with the SB2012 dataset (Table 1) and
cross-docking with the Astex dataset (Table 2). A complete
comparison of the effect of the smoothing parameter δVDW is
shown in the Supplementary Material, where the ligand pose
and ligand enrichment can be compared as a function of the
smoothing parameter.

A second effect of the electrostatic treatment given to
the docking calculations can be observed in the distribution
of the net charges of the top-scored molecules in docking
calculations. The analysis of the charge distribution for the
target ace, shown as an example in Supplementary Figure 2,

TABLE 3 | Summary of the enrichment experiment using the DUD38 dataset.

Electrostatic model Coulomb PB

Smoothing parameter δVDW = 0.0 Å

Average 4.50 (56.2%) 4.91 (57.3%)

Median 3.24 (54.9%) 4.70 (56%)

Standard deviation 6.87 (10.4%) 4.42 (8.3%)

Smoothing parameter δVDW = 0.5 Å

Average 5.01 (57.1%) 4.99 (57.5%)

Median 3.93 (56.4%) 5.40 (57.2%)

Standard deviation 6.81 (10.5%) 4.03 (7.7%)

Smoothing parameter δVDW = 2.0 Å

Average 1.80 (53.4%) 5.36 (58.7%)

Median 0.52 (52.2%) 6.09 (58.6%)

Standard deviation 5.14 (8.5%) 3.87 (7.4%)

Dock 6.7 Grid Score

Average 1.3 (42.5%)

Median −1.2 (43.3%)

Standard deviation 9.7 (17.4%)

The values are reported as Adjusted LogAUC and also as AUC, in the parenthesis.

reveals that among the top-scored molecules when the Coulomb
model was used, almost half of them have net charges −2
or −3 e, indicating a favoring of the non-specific electrostatic
interactions to the total docking score. On the other hand,
the PB model favors neutral molecules or molecules with net
charge −1 e (Supplementary Material). No molecule with net
charge −2 or −3 e is observed among the top-scored molecules,
suggesting a much more specific scoring of the biomolecular
interactions. As a piece of evidence of the correctness of the PB
model, an inspection of the distribution of net charges among
the actual binders in the DUD dataset for this target shows
that 66% of the binders have net charge 0, 30% have charge
−1 and 4% have charge −2, indicating that the PB model
more closely reflects the molecular interactions observed in
experimental conditions.

A recent development in the PB calculations introduced a
Gaussian-based approach “to deliver a smooth dielectric function
for the entire space domain” (Li et al., 2013). The authors
showed that the Gaussian-based function resulted in better
assignments of PKa’s and also dielectric values for protein
interior and protein-water interface in agreement with previous
works (Li et al., 2013). Interestingly, a comparison of the
ligand enrichment obtained after docking calculations using
the Non-Gaussian dielectric model and the Gaussian dielectric
model showed a decrease of about 15% in the enrichment
of actual ligands against decoys in the DUD38 dataset. This
decrease is observed for the AMBER Lennard-Jones model
as well as for the smoothed Lennard-Jones model. This still
preliminary observation highlights that even the robust PB
model can still be improved in the context of ligand docking
to result in even more reliable calculations and predictions of
protein-ligand interactions.

What is the actual role of PB calculations in protein-ligand
recognition? A simpler answer to this question would be a
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better treatment of intermolecular electrostatic interactions
avoiding the overestimation of charge-charge interaction,
as observed in the Coulomb model. However, as observed
by Basu et al. (2012), there is a close association between
electrostatic complementarity and shape complementarity
in biological macromolecules. This close association may be
also associated with the findings shown here, where tradeoff
between a better electrostatic treatment for intermolecular
interactions and adjustment of van der Waals interactions
results in better recognition model, directly affecting
sampling (better binding poses for ligands) as well as scoring
(better enrichment of known ligands when compared to
decoy compounds).

In conclusion, here we evaluated the effect of scoring docking
calculations with a Coulombmodel or with a Poisson-Boltzmann
model for electrostatic energies. As the major findings, we
observe that (i) PB model improves both docking pose and
docking scoring capabilities. In the most stringent test for
pose reproducibility, the cross-docking test, the best results
were found for the combination of PB and softcore Lennard-
Jones potential. Here we observed a reduction of the average
RMSD from 3.95 to 3.90 Å and then to 3.71 Å, as the
softcore constant δ goes from 0.0 to 0.5 Å and then to 2.0
Å. (ii) The best enrichment results for the challenging dataset
DUD38 was also observed for the combination of PB and
softcore Lennard-Jones potential. Again, taking the median
values over the DUD38 dataset, we observed an increase
of 15 or 30% if δVDW is set to 0.5 or 2.0, respectively.
These results confirm previous observations that the Coulomb
potential overestimate the electrostatic energy in protein-ligand
interaction calculations and also show that a re-parametrization
of the Lennard-Jones parameters might be necessary. Finally,
given the quick calculations of PB-based electrostatic potentials
in modern workstations, we don’t see a reason for not using
this model in protein-ligand calculations in the context of
ligand docking.
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