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Heat stress as a result of global warming has harmful consequences for livestock and is
thus becoming an urgent issue for animal husbandry worldwide. Ruminants, growing
pigs, and poultry are very susceptible to heat stress because of their fast growth, rapid
metabolism, high production levels, and sensitivity to temperature. Heat stress
compromises the efficiency of animal husbandry by affecting performance,
gastrointestinal health, reproductive physiology, and causing cell damage. Selenium
(Se) is an essential nutritional trace element for livestock production, which acts as a
structural component in at least 25 selenoproteins (SELs); it is involved in thyroid hormone
synthesis, and plays a key role in the antioxidant defense system. Dietary Se
supplementation has been confirmed to support gastrointestinal health, production
performance, and reproductive physiology under conditions of heat stress. The
underlying mechanisms include the regulation of nutrient digestibility influenced by
gastrointestinal microorganisms, antioxidant status, and immunocompetence.
Moreover, heat stress damage to the gastrointestinal and mammary barrier is closely
related to cell physiological functions, such as the fluidity and stability of cellular
membranes, and the inhibition of receptors as well as transmembrane transport protein
function. Se also plays an important role in inhibiting cell apoptosis and reducing cell
inflammatory response induced by heat stress. This review highlights the progress of
research regarding the dietary supplementation of Se in the mitigation of heat stress,
addressing its mechanism and explaining the effect of Se on cell damage caused by heat
stress, in order to provide a theoretical reference for the use of Se to mitigate heat stress
in livestock.
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INTRODUCTION

Ruminants, pigs, and poultry (hereafter grouped as livestock) are
extremely susceptible to high temperatures owing to their fast
growth rate, fast metabolism, high yields, and sensitivity to
temperature. Heat stress caused by global warming has
attracted much attention from researchers owing to its harmful
effects on livestock, especially high-yielding animals. Heat stress
refers to the physiological conditions when the core body
temperature of a specific species exceeds the range stipulated
by its normal activities. It is caused by the total heat load
(internal production and environment) exceeding the heat
dissipation capacity (1). Heat stress affects feed intake,
the antioxidant system, mitochondrial function, and heat shock
protein expression; it disrupts the body’s free radical homeostasis
and reorganizes the use of protein, fat, and energy; it
subsequently affects animal production, reproduction, and
health. The effect of heat stress on livestock and its molecular
response are as follows: (I) Inhibition of feed intake: the energy
requirements of animals increase under heat stress, but heat
stress stimulates the hypothalamus to inhibit feed intake of
animals by up-regulating the expression of leptin, adiponectin,
and their receptors (2, 3). (II) Damage to mitochondria: heat
stress can also cause histological and morphological damage of
mitochondria (4), induce fat and protein degeneration (5), and
activate the apoptosis pathway based on the release of
cytochrome C (6), which intensifies heat stress damage to the
body. (III) Oxidative stress: the excessive production of free
radicals and reactive oxygen species caused by heat stress (7)
can damage the body’s proteins (8), lipids (9), polysaccharides
(10), and deoxyribonucleic acid (DNA) (11), and then induce the
body to maintain a concentration of reactive oxygen species
(ROS) by mobilizing endogenous antioxidants (12, 13) and
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increasing the activity of antioxidant enzymes (14). (IV) Heat
shock protein: the expression of heat shock protein induced by
heat stress is a repair mechanism for cells to cope with stress,
which can prevent the loss of normal protein function induced
by the interaction of denatured protein with neighboring
proteins (Figure 1).

Selenium (Se) is an essential nutrient trace element for animal
husbandry. It belongs to the same family as oxygen and sulfur
and can be combined with a variety of elements to form
compounds that are very similar to sulfide. Se exists in nature
and organisms in organic and inorganic forms; soil (0.1–0.7 mg/
kg), plants (0.02–0.40 mg/kg) (15), animal food sources (0.03–
0.34 mg/kg) (16), water (generally ≤10 mg/L) (17), and air (1–10
ng/m3) (18, 19) all contain trace amounts of Se. The main
inorganic forms of Se include selenite (SeO3

2-), selenate
(SeO4

2-), selenide (Se2-), and Se (20). Organic forms include
selenomethionine (SeMet), selenocysteine (SeCys), and hydroxy-
4-methylselenobutyric acid, a new type of organic Se with higher
bioavailability (21) (Figure 2A). Se is mainly absorbed in the
duodenum and cecum of livestock, and its absorption efficiency
in ruminants is much lower than that of monogastric animals
(22). Dietary protein, vitamin E (VE), and vitamin A (VA) can
enhance Se absorption, while diets rich in carbohydrates or
nitrates, sulfates, calcium, arsenic, vitamin C, mercury, or
hydrogen cyanide can affect absorption (23). Se is stored in
different organs and tissues in the form of SeMet in animals as
follows: liver 30%, muscle 30%, kidney 15%, plasma 10% and
other organs 15% (24). Se is mainly excreted in urine in
monogastric animals, while in ruminants, owing to its low
intestinal absorption rate, it is mainly excreted in feces (22).
The specific metabolism and excretion pathways of Se in animals
are shown in Figures 2B, C (25, 26). Studies have confirmed that
Se can stimulate the formation of antibodies (27, 28), enhance
A C

DB

FIGURE 1 | The effect of heat stress on livestock and its molecular response. (A) Mitochondrial damage (B) Heat shock proteins (C) Antioxidant system (D) Feed
intake.
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the production of neutrophil chemokines (29), prevent cancer
(30, 31) and cardiovascular diseases (32, 33), and enhance animal
reproduction (34–36). In addition, the biological functions of Se
are mainly mediated by the protein selenoprotein (SEL)
containing SeCys, which is the main structural element of SELs
such as glutathione peroxidase, thioredoxin reductase, and
deiodinase (37, 38). Currently, 30 SELs have been identified in
25 mammalian genes, and they all play a key role in biological
functions such as antioxidant, thyroid hormone synthesis,
reproduction, and DNA synthesis (17).
DIETARY SUPPLEMENTATION OF Se TO
IMPROVE THE PERFORMANCE OF
LIVESTOCK UNDER HEAT STRESS

In tropical, subtropical and arid regions, high-temperature
environments have become the main environmental factor
affecting animal production (26). As the frequency, intensity,
and duration of extreme weather events increases, a rising trend
Frontiers in Immunology | www.frontiersin.org 3
of global temperature has been noted. It is estimated that by
2100, the average global surface temperature will have risen by
about 3.7°C (39). Heat stress can severely affect the production
and quality of meat, eggs, and milk, as well as the metabolism
and health of livestock (40–42), and can even lead to fatalities
(14, 43), causing serious economic loss to the livestock industry.
In the USA, for example, the annual economic loss caused by
heat stress is as high as US$1.2 billion (of which, the dairy
industry accounts for US$900 million, and the beef cattle and
pigs around US$300 million) (44).

Growth Performance
Heat stress has an adverse effect on the food intake, digestion,
and growth performance of livestock (45, 46). Studies indicate
that dietary Se supplementation can significantly reduce the
negative impact of heat stress on the growth performance of
broilers (47–53). Dietary supplementation of VE and Se can
reduce the adverse effects of high ambient temperature on the
growth performance of Japanese quail (54), and a combination of
250 mg VE and 0.2 mg Se can maximize their growth
performance (55). Supplementing nano-Se in the diet of
A

CB

FIGURE 2 | Sources and forms of selenium in nature and its metabolism and excretion in animals. (A) The source and form of selenium in nature (B) Metabolism
diagram of selenium in animals (C) Metabolism and excretion of selenium in animals.
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rabbits suffering severe heat stress can significantly improve their
growth performance (56, 57), and dietary supplementation of Se
and VE can significantly alleviate weight loss in heat-stressed
sheep and improve their feed conversion efficiency (58). Such
effects are owing to the following factors: (I) Se can improve feed
utilization by regulating the metabolism of carbohydrates, lipids,
and proteins (59); (II) Se can improve the antioxidant status of
animals, reduce oxidative stress induced by heat stress, and
reduce the inflammatory response, thereby promoting growth
performance; (III) Se can enhance the ability of livestock to
regulate their body temperature (for example, dietary Se
significantly inhibits rectal temperature increase in sheep (60),
lactating cows (61), and growing pigs (62) affected by heat stress;
(IV) Se can maintain and improve growth performance by
reducing the adverse effects of heat stress on skeletal muscle (63).

Production Performance
Heat stress leads to energy balance and metabolic disorders,
resulting in a decline in the yield and quality of livestock
products (64–67). Studies have found that heat stress reduces
egg weight, eggshell thickness, egg yolk index, and egg quality
(65, 68, 69). Rozenboim et al. (70) found that supplementing Se
to poultry under heat-neutral conditions can increase their egg
production and Huff units, and that the supplement SeMet has a
stronger protective effect than Na2SeO3 in reducing oxidative
stress caused by heat stress in poultry (71). In addition, dietary Se
supplementation could effectively alleviate decreased meat
production and the deterioration of meat quality caused by
chronic heat stress (72, 73). This is because Se can regulate
thyroid hormone metabolism, DNA synthesis, cellular
antioxidant levels and immune system responses (74–76)—
reducing the adverse effects of heat stress on the metabolism
(77) and meat production of livestock (78–81). Heat stress
increases free radical and ROS levels in animals, which induce
oxidative stress and metabolic disorders (82), and damage the
nutrient content (essential fatty acids) and storage stability (flesh
color and lipid oxidation) of meat (83–86). Lipid oxidation leads
to the production of volatile secondary lipid oxidation products
and lactic acid, and reduces meat quality. Studies indicate that
the content of the secondary lipid oxidation product
malondialdehyde in heat-stressed broiler breast meat can be
increased more than two-fold (45, 84). However, the addition
of dietary Se can enhance the oxidative stability of lipids in thigh
and breast meat, and 125 mg/kg VE and 0.5 mg/kg Se combined
supplement is the most effective lipid oxidation inhibitor (78).

Dietary supplementation of Se to heat-stressed sheep can also
increase productivity by reducing lipid oxidation in their meat
(87). Dietary Se can effectively alleviate the lipid oxidation
induced by heat stress, which may be related to an increase in
muscle Se content (88–90). Studies have confirmed that the iron,
zinc, and Se content of meat is highly correlated with its
oxidizing ability (91), and Se is known to be important for
improving poultry health and meat quality. Heat stress increases
the excretion of minerals in broilers (92, 93), thereby reducing
the content of vitamins (VA and VE) and minerals (e.g., iron,
zinc, Se) in their tissues (78, 94), resulting in a decrease in
oxidative capacity (91). Dietary Se supplementation can be
Frontiers in Immunology | www.frontiersin.org 4
deposited in muscle tissue, which in turn maintains the
oxidative stability of its lipids. In addition, Yang et al. (95)
reported that the color of meat depends on myoglobin content,
which is reduced after oxidation under heat stress. High ambient
temperature will reduce red and yellow coloring and increase the
pale color of breast meat in chickens (96). The decrease in value
caused by such color changes has resulted in more than a one-
billion-dollar loss to the USA meat industry annually (97). An
Se-rich probiotic diet has been found to increase the redness and
yellowness of broiler breast muscles, and reduces the light color
caused by heat stress, so it is a beneficial nutritional supplement
for improving meat quality in summer (98).

In dairy farming, the temperature and humidity index (THI)
has been widely used to measure the heat stress experienced by
dairy cows. The following formula is currently proposed by NRC
(99) to ca l cu la te THI (THI=[1 .8×Tdb+32]– [0 .55–
0.0055×RH]×[1.8×Tdb-26]; where Tdb = dry bulb temperature,
°C ; RH = Relative humidity, %). Furthermore, it is recognized
that when the average daily THI exceeds 68, heat stress will cause
a decrease in milk production in dairy cows (100). Zimbelman
et al. (100) found that when THI increased from 60 to 80, the
milk production of dairy cows decreased linearly (for every
increase in THI, milk production decreased by 0.13 kg/d);
Bohmanova et al. (101) found that when THI was higher than
74, an increase of 1 THI resulted in a decrease in milk production
of 0.3 kg/d; furthermore, West et al. (102) confirmed that when
THI increased from 72.1 to 83.6, for each THI increase of 1, milk
production decreased by 0.88 kg/d.

Further studies have confirmed that heat stress lowers milk
quality, which is mainly reflected in the reduction of milk
protein, milk fat, and lactose content (103, 104). Compared
with other seasons, milk protein content in summer can be
reduced by 6% (103); in a different study of heat stress
conditions, the protein content of milk was reduced by 4.8%
(105). Compared with spray-cooled cows in the dry period, the
milk protein content in the following lactation was significantly
lower in heat-stressed cows (106). Moreover, milk fat percentage
in summer is low (104, 107, 108), and heat stress during the dry
period also reduced lactose production of cows in the following
lactation (109, 110). Studies have shown that Se can effectively
slow down oxidative stress and inflammation in dairy cows,
thereby improving health, reducing morbidity, and promoting
milk protein synthesis (111–113). However, whether Se can slow
down the effects of heat stress on milk production and milk
composition needs to be further studied.
DIETARY SUPPLEMENTATION OF Se TO
RELIEVE INFLAMMATION AND ENHANCE
IMMUNOCOMPETENCE OF HEAT STRESS
LIVESTOCK

The mammalian immune system defends against environmental
challenges. Stressors suppress immune system components,
thereby enhancing the susceptibility of animals to diseases and
inducing inflammatory reactions (114). The negative impact of
January 2022 | Volume 12 | Article 820853
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heat stress on the immune system is mediated by cellular
immunity and humoral immunity. Cortisol production during
acute stress will stimulate the immune system, and during
chronic stress, its secretion is related to immunosuppression
(115, 116). Se has been shown to be used by almost all tissues and
cell types, including those involved in innate and adaptive
immune responses (117–119). By increasing Se intake, cell-
mediated and humoral immune responses are enhanced (120,
121). Relevant studies have confirmed that dietary Se
supplementation can slow down the inflammatory response
induced by heat stress through regulating the immune
response, thereby improving livestock production.

Inflammation Reduction
Damage to gastrointestinal physiology and barrier function
under acute stress and other pathological conditions can
induce various diseases. The gastrointestinal mucosa is covered
by the lamina propria and a single layer of epithelial cells. These
epithelial cells are connected by tight junctions to form a barrier
that restricts the free entry and exit of materials from the
intestinal lumen (122–124). The lamina propria contains
immune cells, including eosinophils, neutrophils, macrophages,
lymphocytes, and mast cells, which can protect the intestines
from microbes and their toxic products (125). However, when
livestock are in a hot environment, blood is redistributed from
visceral tissues to peripheral tissues to maximize radiant heat
(126), so the gastrointestinal tract may experience fever, hypoxia,
and even inflammation (127–129). Heat stress damages
intestinal tight junctions, resulting in impaired intestinal
barrier integrity and increased epithelial permeability, which in
turn leads to the entry of bacterial endotoxins that trigger local
inflammation and immune responses (125), and induce
intestinal barrier dysfunction (130). Moreover, there is
evidence that oxidative stress caused by heat or other factors
can lead to the accumulation of ROS and reactive nitrogen
species, which are important predisposing factors of
gastrointestinal diseases such as inflammatory bowel disease,
intestinal fibrosis and ulcers, colitis, and colon cancer (122, 131).
Study found that organic Se from Se-enriched Agaricus bisporus
can increase the expression of glutathione peroxidase (GPx) by
restoring epithelial ion transport and barrier functions, thereby
protecting the gastrointestinal tract of rats from heat-induced
oxidative stress (132). Increased dietary Se and VE alleviates the
effect of heat stress on the integrity of the porcine jejunum and
ileal barrier (133). Furthermore, Se has a protective effect on
barrier damage and inflammation caused by heat stress in the
jejunum of growing pigs (134). Therefore, Se can effectively
alleviate intestinal barrier damage induced by heat stress, and
follow-up studies should continue to focus on its impact on the
structure and function of the intestinal tract of livestock.

According to reports, chronic heat stress significantly reduces
liver weight and affects the body’s oxidation response, immune
defense, and metabolism (64, 135, 136). It is known that long-
term acute heat stress can cause chronic liver damage (137).
Moreover, exposure of aged rats to acute heat stress (40–42°C for
24–48 hours) causes liver damage, increased levels of ROS, and
Frontiers in Immunology | www.frontiersin.org 5
changes intracellular signal transduction (138). Further studies
have confirmed that dietary Se supplementation can reduce liver
oxidative damage after heat stress in rats. This may be related to
the ability of Se to activate liver marker enzymes, liver
antioxidant status, and liver stress related genes (for example,
antioxidant, inflammation, fibrosis, apoptosis, and heat shock)
(139). Heat stress significantly increased the activities of
aspartate transaminase, alkaline phosphatase, and lactate
dehydrogenase in liver tissues; it also increased the content of
malondialdehyde, but significantly reduced the level of serum
total protein, superoxide dismutase (SOD), and total resistance.
Supplementing with Se-rich probiotics can slow down liver
damage induced by heat stress by inhibiting liver oxidation,
inflammation, and necrosis in a high temperature environment.
Compared with a heat stress group, Se supplementation reduced
the expression of liver pro-inflammatory cytokines and nuclear
factor kappa-B (NF-kB), and reached levels similar to those of a
control group that were not exposed to heat stress (139–142).
These findings are consistent with previous reports that Se has
anti-inflammatory properties (142, 143), and its anti-
inflammatory function may be owing to (I) the presence of
specific SELs reducing oxidation-induced inflammatory changes
in the liver, such as GPx (143–147); (II) Se can improve
immunity by up-regulating the ability of immune active cells
to respond to inflammation (148–150).

Wooden breast is a type of degenerative myopathy seen in
modern broilers, which decreases the quality of breast meat.
Studies have confirmed that dietary supplementation of organic
Se can improve broiler meat production and increase carcass
integrity, thus reducing the incidence of wooden breast. This
effect is most likely to be achieved by simultaneously improving
the exogenous and endogenous antioxidant status, reducing
oxidative stress, and improving tissue healing processes (151).
Moreover, heat stress can induce inflammatory damage to mouse
lungs, leading to pulmonary edema and lymphocyte infiltration.
Lastly, under heat stress conditions and a low-Se diet, the poultry
lung exudes large numbers of inflammatory cells (152, 153),
which may indicate that the addition of Se in the diet is an
important substance to prevent inflammatory damage to lungs.

Immunocompetence Enhancement
Under heat stress, an animal’s continuous panting changes its
blood pH value, leading to respiratory alkalosis. In addition,
changes in blood pH can impair immune function and hormonal
activity (154). Heat stress seriously damages the growth
performance and immunity of livestock, but dietary Se
supplementation has been shown to improve immune response
in heat stressed broilers (63, 74); Se also supports the immune
systems production of inflammation-related enzymes to kill
pathogens (155). As mentioned before, heat stress can lead to
oxidative stress, including inflammation (156, 157), the first line
defense in all forms of cell damage, leading to removal of cell
damage, and initiation of cell repair. However, when an
inflammatory response is excessive, it causes damage to the
surrounding normal cells. When an animal is subjected to
oxidative stress such as heat stress, it manifests as the
January 2022 | Volume 12 | Article 820853
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overexpression of lipopolysaccharide or ROS in the body, which
is recognized by Toll-like receptors on the surface of immune
cells such as monocytes and macrophages (158). The NF-kB
pathway initiates the expression of inflammatory genes and
produces interleukin (IL) 1, IL-4, IL-6, tumor necrosis factor-a
(TNF-a), and other cytokines, which induce an immune
response (159, 160). Additionally, heat stress activates the
hypothalamic-pituitary-adrenal axis of livestock, which releases
glucocorticoids when activated, inhibits the synthesis and release
of cytokines, and disrupts the balance between pro-inflammatory
and anti-inflammatory factors. The resulting decreased
immunity of livestock causes inflammation and reduced feed
intake and growth rate, that lead to economic losses in animal
husbandry (114, 161).

According to report, the source and level of Se have no
notable effect on the performance of broilers subjected to heat
stress, via spleen and bursal index, blood biochemical indicators,
and antibody response to infectious bursal disease virus (162).
However, adding SeMet to the diet can improve the feed
efficiency of heat-stressed broilers and enhance cell-mediated
immunity and humoral immunity (74). Another study showed
that Se supplementation had no notable effect on the
performance and relative quality of lymphatic organs, but it
did improve the antibody response and blood lipid
characteristics of heat-stressed broiler red blood cells (163).
That is, heat stress significantly reduced the relative quality of
the immune organs of broilers and the primary and secondary
antibody responses to their red blood cells, while dietary Se
supplementation effectively mitigated the negative impact of heat
stress on red blood cell secondary antibody responses (163). In
addition, studies have found that when sheep are exposed to heat
stress, higher dietary Se levels can enhance antibody titers of red
blood cells. Supplementation of Se did not affect serum antibody
titer of the anti-Newcastle vaccine in broilers (74), and the
antibody titer of serum anti-H5N1 increased with the increase
of dietary Se level; furthermore, organic Se had a better effect on
antibody titer, indicating that Se supplementation using a
specific Se source can improve the immune function of heat-
stressed broilers (164).

Under heat stress conditions, corticosteroids released in the
blood reduce the number of lymphocytes (165), and the immune
system is stimulated to increase the number of heterophile cells,
which are the first line of defense against stress damage (166).
Leng et al. (167) found that organic Se supplements can enhance
poultry immune system function by improving the ability of
immune active cells to resist infection. Studies have found that:
under heat stress, as the dietary Se level increases, the number of
heterophils, monocytes, and eosinophils gradually decrease, and
serum total protein and albumin levels gradually increase (168); a
5 mg Se treatment can reduce the rectal temperature of sheep by
0.3°C, reduce weight loss by 4.5%, and increase the number of
eosinophils (60); injection of antioxidants containing Se, copper,
zinc, manganese, VA, VE, etc. before and after weaning of calves
in summer can increase their blood immunoglobulin (IgG, IgM,
and IgA) concentrations and serum total white blood cells
(neutrophils and monocytes) (169); dietary Se supplementation
Frontiers in Immunology | www.frontiersin.org 6
can increase the number of hemameba and hemoglobin in
poultry blood (170); 0.25 ppm Se can significantly improve the
growth performance of broiler chickens, promote their immune
response and lymphatic organ development, and can also
increase their serum antioxidant activity and the ratio of
heterophile cells to lymphocytes, and reduce the gene
expression of heat shock protein (HSP) 70 (171). Furthermore,
heat stress-induced cell damage is usually accompanied by
abnormal expression of SEL coding genes and SELs, and Se
supplementation mainly reduces cell damage induced by heat
stress via regulating the expression of SELs; that is, Se restores the
expression of most SELs in heat-stressed cells at both mRNA and
protein levels; in addition, organic Se has a better effect than
inorganic Se.

It is known that Se can improve the immune response by
changing the production of certain cytokines in immune cells
and enhancing the resistance of immune cells to oxidative stress
(172). Se added in the diet alone or in combination with vitamins
can alleviate the damage caused by oxidative stress and improve
immunity (173). Abdel-Moneim et al. (63) supplemented heat-
stressed broilers with Se and the levels of immunoglobulins in
broilers were notably increased. Moreover, the study found that
the addition of dietary Se prevented the up-regulation of six
inflammation-related genes induced by heat stress (IL-6, IL-8,
intercellular cell adhesion molecule-1, interferon-b, and
inducible nitric oxide synthase-2), reduced the expression of
pro-inflammatory cytokines in porcine small intestinal epithelial
(IPEC-J2) cells under heat stress, and effectively alleviated the
adverse effects of acute heat stress on the expression of TNF-a
and IFN-g, thereby reducing immune dysfunction (174).
Compared with inorganic Se, an organic Se group had a lower
expression of pro-inflammatory genes and better protection
(175). Studies have also found that although dietary Se
supplementation can inhibit the expression of TNF-a in heat
stressed broilers, it cannot prevent the down-regulation of TNF-
a expression in IPEC-J2 cells induced by heat stress; therefore, Se
can resist heat stress induced inflammatory damage, but this is
not achieved by inhibiting the expression of TNF-a (172).
DIETARY SUPPLEMENTATION OF Se TO
IMPROVE ANTIOXIDANT STATUS OF
HEAT STRESS IN LIVESTOCK

Oxidative stress is one of the important factors leading to animal
inflammation and immune disorder. As an antioxidant, the
moderating effect of dietary Se on inflammatory response
induced by heat stress is closely related to its ability to improve
antioxidant status of animals. An imbalance between the
production of oxides in the body and the antioxidant defense
system is the root cause of oxidative stress (176). The
biochemical and physiological reactions related to heat stress
will increase the production of free radicals (45, 46). Excess free
radicals will interact with protein, carbohydrates, lipids, and cells
to destroy their structure and function (177); that is, oxidative
January 2022 | Volume 12 | Article 820853
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stress occurs. Free radicals include lipid peroxides, lipid free
radicals, ROS, and reactive nitrogen free radicals. Among them,
ROS is produced endogenously by organisms during oxidative
metabolism. Under normal circumstances, ROS is an important
secondary messenger that affects intracellular signal transduction
and redox regulation (178), and there is a balance between its
production and antioxidant defense. However, under heat stress,
the antioxidant defense of cells is unbalanced, and excessive ROS
can cause severe damage to biomolecules (lipids, proteins, and
nucleic acids), leading to the destruction of cell membrane
fluidity and cell apoptosis (179, 180). Studies have shown that
heat stress prevents the increase in ROS production in IPEC-J2
cells, and the redox balance is disrupted to trigger oxidative
stress. Supplementing Se in an organic form can reduce ROS
levels and thus alleviate oxidative stress (175).

Se mainly functions passes through Se such as GPx,
thioredoxin (Trx), TrxR, and SELP. Proteins exert an
antioxidant function, and there are 25 types of SELs with
important physiological functions. The increase in antioxidant
capacity is attributed to the inducible Se-dependent antioxidant
enzymes. Se is a component of glutathione peroxidase, which
combines with VE to counteract free radicals (181). VE is the
main fat-soluble antioxidant found in cell membranes. It plays an
important role as a chain-cut lipid antioxidant and free radical
scavenger in the membranes of cells and subcellular organs
(182). Recent studies have shown that VE supplementation has
a beneficial effect on meat quality (183), and its combined use
with Se can more effectively improve the antioxidant defense
system of cells and tissues (78). Glutathione peroxidase can
remove ROS, protect cells from oxidative stress damage (184,
185), and prevent lipid and protein oxidation. Studies have
shown that dietary Se supplementation can increase the serum
Se content and the activity of GPx in broilers, calves, lactating
dairy cows, and other animals (63, 169, 186).

At present, the Se sources that researchers add to the diet
mainly include SS, SeMet hydroxy analogs, yeast Se, and nano-
Se. Different Se sources can increase the activity of GPx in
animals under heat stress (63, 186–188). In ruminants, the
efficiency of rumen microorganisms using organic Se is 3.8 to
4-fold greater than that of inorganic Se; it is therefore more
conducive for rumen microorganisms to synthesize antioxidant
enzymes from organic Se in the diet through redox reactions
(189). Sun et al. (186) found that the addition of 0.3 mg/kg DM
Se in the form of organic Se to the diets of Holstein dairy cows in
mid-lactation allowed them to remain stable under heat stress,
while GPx activity in the serum of the cows in a similar inorganic
Se group decreased gradually. Furthermore, Trx is a
multifunctional acidic protein, which exists in two subtypes of
Trx1 and Trx2 in animals; TrxR is a pyridine nucleotide/disulfide
oxidoreductase, including two isoenzymes TrxR1 and TrxR2.
Research has found that the content of Trx in the culture of
Bovine Mammary Epithelial Cells was significantly lower than
that of heat-treated cells after adding 1 mM SS (190).

The concentration of oxidative stress biomarkers such as
SOD, biological antioxidant potential (BAP), and advanced
oxidation protein products (AOPP) can also reflect the degree
Frontiers in Immunology | www.frontiersin.org 7
of cellular damage under heat stress. During heat stress, the
accumulation of reactive oxygen metabolite ROM in the body
leads to a decrease in plasma BAP. The ratio of the two (ROM :
BAP) is defined as the Oxidative Stress Index (OSI). AOPP is a
marker of protein oxidation when the body is subjected to heat
stress, and it also mediates inflammation. Chauhan et al. (191)
fed a diet containing 100 IU VE/kg DM and 1.20 mg Se/kg DM
to heat-stressed ewes; the results showed that the serum active
oxygen metabolites of the ewes were significantly reduced (114
vs. 85 units/dL; P <0.005), physiological antioxidant potential
increased (3688 vs. 3985 mmol/L; P = 0.070), heat stress index
(ROM/BAP) decreased by 30%, and there was a downward trend
of AOPP (19.4 vs. 18.8 mol/L). However, Liu et al. (62) found
that feeding 1.0 ppm yeast Se to sows did not alleviate the
decrease in blood BAP affect the increase in AOPP during heat
stress, but only increased GPx activity by 13%. The above results
suggest that when supplementing Se in livestock diets, we should
fully consider whether the background value of Se in the basal
diet meets the nutritional needs of experimental animals to
determine whether additional Se sources can improve oxidative
stress. However, it should be noted that Se and VE have a
synergistic effect, therefore supplementing the two together
may have a better effect.

Oxidative stress activates the heat shock response (192). Heat
shock proteins (HSPs), molecular chaperone proteins expressed
by the body under stress, can sense oxidative stress and restore
physiological protein conformation during and after such stress.
The significant increase in their expression is an adaptive
mechanism for cells to respond to oxidative stress. When heat
stress occurs, Heat shock transcription factor (HSF) is separated
from HSP, and HSF enters the nucleus to induce heat shock
elements to regulate gene expression and activate the
transcription and translation process of HSP (19). According
to molecular weight and amino acid sequence, HSPs can be
divided into six families: HSP110, HSP90, HSP70, HSP60, small
molecule HSPs (HSP27, HSP33, etc.), and ubiquitin. Most HSPs
have molecular chaperone protein activity to prevent misfolded
protein aggregation that causes damage to cells and promotes the
formation of the correct structure of newly synthesized proteins
(193). Supplementing Se can significantly reduce the production
of HSPs in cells, alleviate the need of cells for HSP protection
under high temperature stress, and alleviate oxidative
stress (190).
DIETARY SUPPLEMENTATION OF Se TO
INCREASE NUTRIENT DIGESTIBILITY
AND REGULATE THE
GASTROINTESTINAL MICROBIOME OF
HEAT STRESSED LIVESTOCK

Feed Intake and Nutrient Digestibility
Loss of livestock performance is mainly owing to energy loss
caused by reduced feed intake, consumption of feed of low
nutrient content, and temperature regulation. Therefore,
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maintaining the nutrient concentration required for the health
and production of heat-stressed livestock is challenging (194).
Heat stress adversely affects the feed intake of broilers (195), pigs
(196–198), sheep, and dairy cows (191), and the poor health and
feed intake associated with heat stress further negatively affects
the yield and quality of livestock products. It has been shown that
diets supplemented with Se can alleviate the adverse effects of
heat stress on animal feed intake and mortality (199).

The effect of heat stress on feed intake (198, 200) is related to
heat damage to the intestinal epithelial cells (201, 202). Thus, the
effect of Se on the feed intake of heat-stressed livestock may be
closely related to its mitigation of intestinal injury. Studies found
that when broilers were exposed to heat stress, the flow of blood
and nutrients to their gastrointestinal tract was reduced, which
led to intestinal hypoxia, adenosine triphosphate consumption,
intracellular acidosis, and oxidative and nitrative stress, resulting
in changes in intestinal function and integrity (203).
Increased intestinal permeability increases the leakage of
lipopolysaccharides to the internal environment, leading to
eventual multiple organ failure (203). There are also report
indicating that heat stress up-regulates the mRNA and protein
expression of HSP70, HSP90, and nuclear factor kappa-B, but
reduces epidermal growth factor in the jejunal mucosa of black-
bone chickens (204). Damage to the gastrointestinal tract reduces
Se absorption, which further leads to Se deficiency. In addition,
Se can affect gastrointestinal tissues by regulating the production
of inflammatory cytokines and increasing the antioxidant status.
Se deficiency can lead to the production of harmful free radicals
including oxygen and nitrogen free radicals, and at the same time
reduce the antioxidant capacity of the intestinal tract, resulting in
oxidative damage to the intestinal tissues of chickens (205).
Current research shows that: 1.2 ppm of nano-Se supplements
can reduce lipid peroxidation and help broilers maintain
intestinal structure under heat stress (206); adding 1–3 ppm
sodium selenite (SS) to the diet for 90 days increases the Se
concentration and the expression of SEL in the gastrointestinal
tract of poultry (207); the addition of 0.4 mg of SS per kilogram
of diet can enhance the activity of GPx in the blood and liver of
broilers and the activity of thioredoxin in the duodenal mucosa,
liver, and kidney (208). Therefore, dietary supplementation of Se
can effectively reduce heat stress damage to the gastrointestinal
tract of livestock, thereby effectively maintaining feed intake.

The reduction of feed intake under high temperatures is mainly
to reduce heat production to adapt to the hot environment (196,
197), and the effect of Se on heat-stressed livestock feed intake may
be related to its ability to promote digestion and absorption and
improve the digestibility of nutrients. Under heat stress conditions,
the reduction of feed intake limits total nutrient intake.
Furthermore, in order to prevent heat stroke, livestock must
prioritize heat dissipation and survival to combat heat stress
over other biological processes such as animal production (67,
209). For example, related studies have shown that accelerated
respiration for heat dissipation, increases the synthesis of heat
shock proteins to prevent cell damage (133, 210), inflammation
(211), and the physiological process of repairing damaged tissues
(133)—further increasing the mobilization of a sow’s body
Frontiers in Immunology | www.frontiersin.org 8
reserves and impairing production performance and energy
availability, as well as nutrient supply. Studies have shown that
adding Se to the diet can effectively improve the gastrointestinal
function of livestock and the apparent digestibility of nutrients:
Wei et al. (212) confirmed that dietary supplementation of 0.3 mg/
kg DM Se can promote rumen fermentation and the apparent
digestibility of crude protein (CP), neutral detergent fiber (NDF),
acid detergent fiber (ADF), and Se in mid-lactation dairy cows;
Hassan et al. (57) found that adding 0.5 mg/kg of Se-enriched
spirulina to the diet increased the apparent digestibility of DM,
organic matter (OM), CP, ether extract (EE), and nitrogen free
extract in heat-stressed rabbits; Alimohamady et al. (213) showed
that dietary Se supplementation increased the digestibility of DM,
OM, CP, NDF, and ADF in 4 to 5 month old lambs.

Both inorganic Se and organic Se can be added to livestock
diets. Inorganic Se is more easily reduced to elemental Se that is
difficult for the body to use under acidic conditions; whereas
organic Se can directly form microbial protein without being
reduced to the intermediate product H2Se, which improves
utilization efficiency (189). The study by Zhang et al. (214)
found that coating the Se source is also a way to improve its
utilization, and they found that a 0.3 mg Se/kg inorganic Se
coating treatment significantly increased the apparent
digestibility of DM, OM, and CP in dairy cows. Blood flow
plays an important role in controlling body temperature:
although under heat stress, blood flow distribution shifts from
internal organs to peripheral capillaries to quickly lower body
temperature, decreased visceral blood flow can lead to hypoxia in
gastrointestinal tissues. When the body lacks an adequate supply
of oxygen (such as during metabolism), oxidative stress occurs
(215). Hypoxia in the gastrointestinal tract, especially in the
intestinal tissues, increases the permeability to pathogens and
related endotoxins that cause oxidative stress damage (216, 217),
which disturbs the function of the intestinal immune system,
promotes deformation of mucous membranes and villi, and
causes intestinal infections, which in turn lead to interruption
of the digestion and absorption of nutrients (218, 219).
Therefore, dietary Se supplementation to alleviate animal heat
stress may be related to its ability to alleviate oxidative stress in
the gastrointestinal tract and improve nutrient digestibility.

Gastrointestinal Microbiome
Growing evidence shows that interaction between hosts and their
gastrointestinal microorganisms is involved in mammalian nutrient
metabolism, immune homeostasis, and pathogen resistance (220,
221). For monogastric animals, it is reported that heat stress affects
the structure and composition of the microbiota for from one week
to several months (222–226). Xiong et al. (227) and He et al. (223)
found that heat stress can increase the relative abundance of
Proteobacteria, Gammaproteobacteria, Pseudomonadales,
Moraxellaceae, and Acinetobactae in the intestines of pigs and
ducks; Zhu et al. (226) found that heat stress increases the relative
abundance of Bacteroidetes in the intestines of laying hens; Shi et al.
(228) found that heat stress increased the relative abundance of
Firmicutes, Tenericutes, and Proteobacteria in the intestines of
broilers, but decreased the relative abundance of Bacteroidetes and
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Cyanobacteria; Qu et al. (229) found that heat stress increased the
relative abundance of Oscillospira and Clostridium in murine
intestines, but decreased the relative abundance of Lactobacillus
and Bacteroides. Study have showed that the Lactobacillus was
positively associated with serum total antioxidant, while some
other microbial species were found negatively associated, such as
Pseudomonadales and Acinetobacter (230). The increase of
Firmicutes/Bacteroidetes ratio was considered to be a typical
characteristic of obesity-driven dysbiosis in humans and animals
(231). Thus, heat stress may affect animal health by affecting
intestinal microorganism. There are still few studies on the effects
of dietary Se supplement on the intestinal microbial ecosystem of
heat stressed livestock. Further study could focus on this and
provide a basis for moderating the heat stress of animals by
regulating gastrointestinal microbes. Se in the intestine can
enhance the intestinal environment for microorganisms by
reducing local inflammation, and can also change susceptibility to
infection caused by specific microorganisms (232). A small number
of studies have evaluated the effects of dietary Se supplementation
on the intestinal microbiota of fish (233, 234) and mammals. These
studies confirmed that dietary Se supplementation has a positive
effect on bacterial diversity in the intestine (234), produces an
increase in beneficial bacteria number (235, 236), and reduces the
frequency of intestinal infections (232).

In ruminants, rumen fermentation parameters are closely related
to rumen microbes and can reflect their nutrient utilization. Under
heat stress, lactating dairy cows significantly increased the
production of lactic acid, decreased the production of total
volatile acids and acetic acid, and decreased the pH of the rumen,
which inhibited the activity of cellulolytic bacteria, resulting in a
relative increase in Streptococci, Enterobacteriaceae, Ruminobacter,
Treponema, and Bacteroidaceae in the rumen (199). Dietary Se can
promote the growth of rumen microorganisms and rumen
fermentation, and can significantly increase the production of
propionic acid and total volatile acids. Previous studies have
shown that the relative abundance of rumen bacteria, fungi,
cellulose, and amylolytic bacteria (such as Ruminococcus,
Fibrobacter, and Ruminococcus) increased after adding sodium
selenate to the diet of lactating dairy cows; furthermore, the
activity of cellobiase, carboxymethyl cellulase, xylanase, and
protease were greatly promoted (214). The supplementation of
yeast Se in the diet of sheep can increase the relative abundance
of flora associated with rumen carbohydrate and protein
metabolism (237). Therefore, dietary supplementation of Se may
be related to its regulatory effect on gastrointestinal microbes. Future
studies can further explore this hypothesis and clarify the role of Se
supplementation in livestock diets and its interaction with
gastrointestinal microbiota under heat stress.
RESPONSE OF HEAT STRESS
CELLS TO Se

Research on the cellular effects of heat stress began in the 1970s.
Results initially showed that heat stress could induce a variety of
Frontiers in Immunology | www.frontiersin.org 9
abnormalities in cell function, including cell membrane fluidity
and stability, inhibition of receptors and transmembrane
transporters (14), and even induction of oxidative damage and
cell death (238). Under stress conditions, structural lipids such as
phosphatidylcholine are hydrolyzed to produce phosphatidic
acid (239, 240), and cleavage products such as the non-
esterified fatty acid may be re-inserted into different membrane
sites—leading to changes in membrane structure and membrane
fluidity (241). Studies have confirmed that Se supplementation
can protect cells from apoptosis induced by heat stress (175). Se
regulates the expression of SELs, which participates in a series of
cellular defense reactions, thereby protecting cells from stressors
such as protein aggregates, heavy metal ions, heat shock, and
oxidative damage (242–244).

Intestinal Cells
The intestinal epithelium plays an important role in the digestion
and absorption of nutrients and the development of immune
function (245). Studies have shown that reducing the integrity of
the intestinal barrier and increasing intestinal permeability
through heat stress endangers the health of livestock and their
production performance (127, 236, 246). Heat stress will increase
the concentration of intestinal endotoxins and pathogenic
bacteria in the portal vein and systemic blood (214), leading to
gastrointestinal damage and eventual death from heat exhaustion
(247, 248). As mentioned above, Se supplementation can reduce
intestinal epithelial cell damage induced by heat stress (55, 74,
249, 250).

Heat stress can damage intestinal barrier function, leading to
an increase in permeability, and the concentration of
lipopolysaccharides in the portal vein and systemic blood
(215). Intestinal epithelial cells are closely bound together by
tight junction proteins between cells; the latter regulate the
permeability of cells and are essential units in the epithelial
barrier. Tight junctions are complex structures composed of
more than 50 proteins. Studies on the expression of three tight
junction proteins: claudin 1, occludin, and zonula occludens-1
(ZO-1) have shown that supplementation of SeMet reduces the
down-regulation of ZO-1 and claudin 1 expression under heat
stress conditions. Furthermore, SS supplementation alleviates the
down-regulation of claudin 1 expression caused by heat stress
(175). claudin 1 is a tightly connected structural skeleton and
seals the space between two adjacent epithelial cells (251). ZO-1
is a plaque protein that combines with other proteins to form a
scaffold or interacts with specific transmembrane proteins to
stabilize them in the cytoplasm (252). Interestingly, the first PDZ
structural domain of ZO-1 interacts with claudin 1 protein (253),
and a decrease in gene and protein expression indicates an
increase in the permeability of the epithelial barrier. Both SS
and SeMet supplements effectively slowed down the damage of
tight junctions, and SeMet even increased the expression of these
two tight junction proteins in IPEC-J2 cells exposed to heat stress
(175). In addition, occludin mainly regulates the inter-
membrane diffusion and paracellular diffusion of small
molecules (254), while SS and SeMet supplementation has no
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significant effect on the protein expression of occludin in IPEC-
J2 cells under heat stress (175).

Cells accumulate HSP70 when undergoing heat stress and
increased lipid peroxidation, which may serve as a tissue
biomarker of potential damage caused by stress (255). In other
words, an increase in HSP70 expression usually indicates an
increase in the intensity of heat stress. In addition, HSP70 plays a
key role in the process of heat resistance by maintaining cell
homeostasis (256, 257) as it can protect cells from endotoxemia,
hypoxia, and metabolic stress (258); inhibit the activation of
caspase3 to prevent heat stress-induced cells apoptosis (259,
260); and activate protein kinase B (Akt) to promote cell
survival (261). It is reported that heat stress significantly
increases the expression of HSP70 in rat intestinal epithelial
IEC-18 cells, which may play a role in protecting such cells from
oxidation and heat damage (262). Study showed that SeMet
supplementation promotes the expression of HSP70 mRNA and
protein in IPEC-J2 cells under heat stress, indicating that it has a
beneficial effect on intestinal epithelial cells, i.e., Se reduces heat
stress, so cells do not need to synthesize relatively more HSP70
protein to combat heat damage (175).

Heat stress can damage the integrity of the intestinal epithelial
barrier of pigs (210, 217, 263), and its mechanism may involve
oxidative stress. Although the intestinal oxidative stress markers
are closely related to the duration and intensity of heat stress,
their expression in the intestinal tract of heat-stressed rats (264,
265) and pigs (209) is significantly increased. Oxidative stress
destroys tight junctions (266) and reduces the viability of
epithelial cells (258), so it may play a role in the integrity of
the porcine intestinal barrier induced by heat stress. Dietary
supplements that can alleviate oxidative stress can prevent heat
stress caused by intestinal barrier dysfunction. Studies have
shown that the expression of SEL in IPEC-J2 cells is affected
by heat stress (161). Heat stress induces the expression of 10 SEL-
related genes. These genes play an important role in anti-
oxidation by promoting hydrogen peroxide metabolism and
regulating the level of intracellular stress (161). Study
confirmed that heat stress enhances intestinal oxidative stress
and reduces barrier integrity, while high levels of dietary Se and
VE can reduce the occurrence of oxidative stress and intestinal
leakage (133). Studies have shown that Se yeast supplements
enhance the resistance of poultry to oxidative stress and high
temperature exposure associated with intestinal bacterial
infections. This effect is closely related to the improvement of
the body’s redox state after Se supplementation (267).
In addition, related studies confirmed that the addition of
Se to a cell culture medium of caco-2 significantly increased
mRNA expression levels of GPx1, thioredoxin reductase
(TrxR) 1, and SelP (268). Moreover, supplementation of
hydroxyselenomethionine promotes the protein expression of
GPx4, thioredoxin reductase (TXNRD) 1, and SELS and down-
regulates the expression of seven inflammation-related genes in
jejunal mucosa affected by heat stress (134).

The above results suggest that Se supplementation can
enhance antioxidant capacity, and thus mitigate damage to the
intestinal epithelial barrier of livestock under heat stress. This
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information provides a research base for alleviating heat stress
induced intest inal in jury and improving l ivestock
intestinal health.

Other Cells
The main function of HSP is to resist the effects of stress on cells
(269). Heat shock factor (HSF) 1 leads to the expression of stress-
induced genes, and HSP90 is the main defense protein against
heat stress (270, 271). Under normal circumstances, HSF1
combines with HSP (usually HSP90). When cells are
stimulated, HSP separates from HSF1. HSF1 subsequently
enters the nucleus and induces downstream heat shock
elements to regulate gene expression (272). Studies have shown
that the expression of HSF1 and HSP90 genes in bovine
mammary epithelial (MAC-T) cells are notably increased after
heat shock. Se pretreatment reversed this effect (190), and Se
deficiency also increased the level of HSP in chicken livers (273)
and the expression of HSP90 in chicken red blood cells (274).

Studies have found that heat stress can increase the
production of ROS, which in turn disturbs the steady state of
redox balance, leading to oxidative stress in cells (14). Dietary
supplementation with Se can increase the activity of glutathione
peroxidase in lactating dairy cows and enhance the ability of the
antioxidant system (275). Studies have confirmed that oxidative
stress in MAC-T cells after heat shock increases the production
of ROS and reduces the activities of SOD and total antioxidant
capacity (T-AOC), while Se pretreatment can significantly
improve the antioxidant effect of MAC-T cells (190). In
addition, heat shock and Se pretreatment can affect the
expression of HO-1. The endogenous carbon monoxide
produced by HO-1 activates Akt/PKB (protein kinase B). Akt
has a negative effect on GSK-3b (glycogen synthase kinase 3b)
that activates nuclear factor E2-related factor 2 (Nrf2) (276).
Nrf2 is a major transcription factor that regulates the expression
of antioxidant proteins. Under oxidative stress, its ubiquitination
stops and it translocate into the nucleus where it combines with
antioxidant response elements, ultimately activating the defense
system (277). TXNRD1 is an intracellular SEL and an isoenzyme
that provides one of the main enzyme defense systems for ROS in
vascular endothelial cells. Studies have found that different forms
of Se tend to activate different genes in the Nrf2-antioxidant
pathway of dairy cow arterial endothelial cells: SM pretreatment
tends to inhibit the expression of Nrf2, while SS tends to reduce
the protein level of TXNRD1 (278).

Studies have found that environmental factors greatly affect
cell differentiation (279). In the differentiation of mouse
myoblasts, Se supplementation reduces the negative effect of
heat stress on the myogenic differentiation of C2C12 cells to a
certain extent. This process may be related to the change of SEL
expression pattern and the effect of SeMet is superior to that of SS
(280). It was shown that heat stress increases the expression of
most SEL-encoding genes in myoblast (C2C12) cells (281).
Among them: the GPx family can use glutathione to catalyze
the reduction of hydrogen peroxide and lipid hydroperoxide
(282); iodothyronine deiodinase 2 is located in the endoplasmic
reticulum (ER) membrane (283) and is an oxidoreductase that
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participates in thyroid hormone metabolism by catalyzing the
activation of tetraiodothyroxine to triiodothyronine (284); SELS
and SELK have similar structural features, and they participate in
the ER-related degradation of unfolded and misfolded proteins
(285); SELT, known as glycosylated transmembrane protein,
may have potential functions related to SELW. Studies have
shown that: increasing the expression of SELW can compensate
for the knockdown of SELT in mouse fibroblasts (286); SEL15
contains a Cys-rich domain in the N-terminal of the protein,
which may play a role in catalyzing isomerization or reduction of
disulfide bonds (287); the protein encoded by selenophosphate
synthase 2 participates in the biosynthesis of SELs, can catalyze
the synthesis of monoselenophosphate, and is the main donor of
Se (147). Follow-up studies can focus on the expression of the
above SELs and further explore the interaction between Se
supplementation and heat stress-induced muscle cell damage.
DIETARY SUPPLEMENTATION OF Se TO
IMPROVE THE REPRODUCTIVE
PHYSIOLOGY OF HEAT STRESSED
LIVESTOCK

Female Livestock
Heat stress is the main risk factor that affects the reproductive
efficiency and production performance of female mammals in
summer (14, 288). Existing evidence shows that heat stress can
cause abnormal atresia of follicles in the ovary, impaired
secretion of ovarian steroid hormones, and even lead to
infertility (289). Heat stress can cause a significant increase in
body temperature and a decrease in egg production, egg weight,
ovarian weight, and follicle number (70). Compared with acute
heat stress, the impact of chronic heat stress is relatively weak,
but owing to its lengthy duration, it also brings serious economic
losses to the livestock industry (137). Granulosa cell apoptosis is
an important marker and inducer of follicular atresia, and it plays
a vital role in maintaining normal ovarian follicular growth,
hormone synthesis, and other physiological functions (290).
Heat stress inhibits the proliferation of ovarian granulosa cells
and induces their apoptosis, which is closely related to the
ovarian dysfunction caused by heat stress in various species
(291–293); that is, maintaining normal physiological functions of
granulosa cells under heat stress may help prevent or reduce
ovarian damage caused by heat stress. In addition, in eukaryotes,
the endoplasmic reticulum is an important organelle for
the folding, modification, and maturation of new and
mature proteins.

Many pathological factors can disturb the balance between
the protein load and folding ability of the endoplasmic reticulum,
which can trigger endoplasmic reticulum stress (294–296). If
homeostasis of the endoplasmic reticulum microenvironment is
not restored, severe or continuous endoplasmic reticulum stress
will eventually induce cell apoptosis (297). There is accumulating
evidence that endoplasmic reticulum stress is related to various
pathological reactions caused by reproductive diseases and heat
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stress-induced cell death. Previous studies have shown that
endoplasmic reticulum stress-mediated apoptosis of granulosa
cells plays an important role in the progression of follicular
atresia through 78-kD glucose-regulated protein (GRP78) and
CHOP activation in the goat ovary (298). Owing to its
antioxidant function, Se has been widely used to regulate
metabolic disorders and reproductive physiological functions,
such as effectively protecting certain cells from apoptosis induced
by poisons and endoplasmic reticulum stress (35). Studies have
confirmed that heat stress can reduce the viability of mouse
granulosa cells and increase the expression of caspase3, which
induces apoptosis, and key apoptosis-related proteins B-cell
lymphoma-2-associated X protein and ER stress activation
markers GRP78 and CHOP. Sodium selenite can significantly
inhibit the decrease in cell viability induced by chronic heat
stress, increase the protein expression levels of apoptosis-related
genes and endoplasmic reticulum stress activation markers, and
inhibit the decrease in estradiol expression in heat stress-induced
granulosa cells (299).

Male Livestock
For male animals, heat stress can change the structure and weight
of the testicles, reduce the number of sperms, reduce sperm
quality, and cause abnormal sperm morphology and DNA
fragmentation (300). The negative effect of heat stress on male
fertility is related to the production of ROS (301). For example,
studies have found that acute heat stress increases the oxidative
stress and ROS levels of SOD 1 knockout mice, where even
exposure to 42 C for 15 minutes can cause damage to sperm
(136). Therefore, the use of antioxidants may mitigate the
negative impact of heat stress on male fertility. The function of
Se in the male reproductive tract is independent of other
physiological processes in the body. Se acts on the reproductive
organs and participates in the biosynthesis of testosterone and
the formation and development of sperm (302). In addition, Se is
a component of at least 25 SELs, including glutathione
peroxidase and other functional and structural proteins of the
testis, epididymis, and sperm (303, 304). For example: GPx1 and
GPx3 are expressed and located in epididymal epithelia and
sperm to protect epididymal parenchyma and mature sperm
from oxidative stress; GPx4 can protect developing sperm from
DNA damage caused by oxidative stress, it is also a structural
component of the middle mitochondrial sheath of sperm and is
an important part of sperm stability and motility (305).

Studies have shown that under heat stress, supplementation of
0.3 mg OSe/kg DM in basal diet for rabbits can improve heat
tolerance and health status, thereby significantly improving
semen quality and subsequent fertility (306). Moreover, the
body’s antioxidant/pro-oxidant balance is considered a key
determinant of chicken health, embryonic development, sperm
quality, and possible production and reproduction characteristics
of poultry (307, 308). Studies have found that supplementing
organic Se in the diets of heat-stressed roosters increases the
number and vitality of sperm, reduces the mortality of sperm, and
enhanced the antioxidant status of seminal plasma, thereby
improving the quality of seminal fluid (309). Furthermore, the
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combination of dietary vitamin E and organic Se has a synergistic
effect in reducing lipid peroxidation and improving the
antioxidant status of poultry seminal plasma, which is
specifically increases the number and vitality of sperm under
heat stress conditions and reduces sperm mortality rate (310).
CONCLUSION

In this review, we summarized the effect of Se as dietary source
on heat stressed livestock, while focusing on the performance,
inflammation, reproduction and cell damage, as well as the main
regulatory mechanism, that is, regulating gastrointestinal
microorganisms, nutrient digestibility, antioxidant status, cell
damage, and immune capacity of livestock. Hence, Se
supplement could serve as a nutritional strategy to help
animals to reduce negative effects on their production
performances and health during heat stress period.
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