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Abstract

Antibiotic combinations are considered a relevant strategy to tackle the global antibiotic resistance crisis since they are
believed to increase treatment efficacy and reduce resistance evolution ( WHO treatment guidelines for drug-resistant
tuberculosis: 2016 update.). However, studies of the evolution of bacterial resistance to combination therapy have
focused on a limited number of drugs and have provided contradictory results (Lipsitch, Levin BR. 1997; Hegreness et
al. 2008; Munck et al. 2014). To address this gap in our understanding, we performed a large-scale laboratory evolution
experiment, adapting eight replicate lineages of Escherichia coli to a diverse set of 22 different antibiotics and 33
antibiotic pairs. We found that combination therapy significantly limits the evolution of de novode novo resistance in
E. coli, yet different drug combinations vary substantially in their propensity to select for resistance. In contrast to current
theories, the phenotypic features of drug pairs are weak predictors of resistance evolution. Instead, the resistance
evolution is driven by the relationship between the evolutionary trajectories that lead to resistance to a drug combina-
tion and those that lead to resistance to the component drugs. Drug combinations requiring a novel genetic response
from target bacteria compared with the individual component drugs significantly reduce resistance evolution. These data
support combination therapy as a treatment option to decelerate resistance evolution and provide a novel framework for
selecting optimized drug combinations based on bacterial evolutionary responses.
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Introduction
The prevalence of antibiotic resistance has become a global
health concern, limiting the efficacy of standard treatments
for acute and chronic bacterial infections (Ventola 2015). As
the development of novel antibiotics is expensive in terms of
time and resources (Luepke et al. 2017), it is important to use
currently available drugs in the best possible way to decelerate
antibiotic resistance evolution and to maximize positive treat-
ment outcomes. Empiric combination therapy is believed to
improve treatment outcomes via increased potency and re-
duced evolution of drug resistance (Blomberg et al. 2001;
Bantar et al. 2004). However, the clinical benefit of combina-
tion therapy remains controversial (Leibovici et al. 1997;
Bantar et al. 2004; Bliziotis et al. 2005; Paul 2014; Skorup
et al. 2014; Tepekule et al. 2017; Lipcsey et al. 2018). The
disparate results might be explained by an incomplete un-
derstanding of the factors that drive the evolution of resis-
tance to combination therapy.

Drug combinations have been mainly studied in regards to
phenotypic characteristics, such as drug interaction
(Hegreness et al. 2008; Torella et al. 2010; Munck et al.
2014; Baym et al. 2016; Barbosa et al. 2018) or collateral
drug responses (Munck et al. 2014; de Evgrafov et al. 2015).

Drug interactions describe the combined effect of multiple
drugs relative to the sum of their individual effects (additive,
synergistic, and antagonistic) (Wong 2017). Collateral drug
responses occur when a bacterium that evolved resistance
to a drug displays higher susceptibility (collateral sensitivity)
or increased resistance (collateral resistance) to other agents
(Szybalski and Bryson 1952; Beutner et al. 1963). These differ-
ent phenotypic characteristics have been correlated with re-
sistance evolution in multiple studies with contradictory
results ranging from accelerated to decelerated evolution
(Hegreness et al. 2008; Munck et al. 2014; Barbosa et al. 2018).

In addition, the genetics underlying the resistance evolu-
tion towards drug combinations have only been studied for a
very limited number of drug pairs (Munck et al. 2014; de
Evgrafov et al. 2015; Suzuki et al. 2015). Two small-scale stud-
ies identified that mutations linked to collateral sensitivity
were less prominent in the combination of collateral sensitive
drugs (Munck et al. 2014; Suzuki et al. 2015), while another
study found that the types of mutations are different in drug
pair evolved lineages compared with single drug evolved ones
(Laehnemann et al. 2014). Yet, the genetic trajectories to-
wards drug combinations have not been characterized sys-
tematically under controlled conditions along with their
potential to predict resistance evolution.
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In order to address this lack of knowledge, we conducted a
systematic high-throughput adaptive laboratory evolution
(ALE) experiment for Escherichia coli, an important model
organism and human pathogen (Bodilsen et al. 2018). The
large number of replicate lineages and the broad range of
drugs tested combined with a systematic assessment of the
evolvability allowed us to analyze the phenotypic and geno-
typic evolutionary responses to single and combinatorial drug
exposure. Based on this comprehensive dataset we identified
for the first time distinct patterns in the genetic responses
towards drug combinations. Moreover, these genetic trajec-
tories are reliable predictors for the evolvability of antibiotic
resistance.

Results

Resistance Evolution towards a Diverse Set of
Antibiotic Combinations
To identify the underlying features that drive the evolution of
resistance to combination therapy, we adapted genetically
barcoded replicate lineages (Jahn et al. 2018) of the well-
studied model organism E. coli K12 MG1655 to a diverse
set of 22 different antibiotics and 33 different antibiotic pairs
(supplementary tables S1 and S2, Supplementary Material
online). These drugs, including both bactericidal (68.18%)
and bacteriostatic (31.81%) drugs, covered 11 different drug
classes and targeted 6 different bacterial processes (supple-
mentary table S2, Supplementary Material online, fig. 1a).
Moreover, we assessed the phenotypic features of the drug
pairs. First, we classified the drug combinations based on the
drug interaction and found that they covered all three pos-
sible drug interactions: synergistic (34.4%), additive (28.1%),
and antagonistic (37.5%) (fig. 1b). The classification was done
by measuring the drug concentration that resulted in a 90%
growth-reduction (IC90) of the wild type (WT) compared
with WT growth in media only for all single antibiotics and
for the antibiotics in combination. Based on these values the
fractional inhibitory concentration index was calculated
(FICI) (Tyers and Wright 2019). While different methods to
calculate drug interactions are used that impact the classifi-
cation of drug interactions, we decided to use a Loewe-
additivity model based on the IC90 (which is similar to the
minimal inhibitory concentration [MIC]) as this is commonly
reported in scientific studies and allows best possible com-
parison of our study with the existing literature (Munck et al.
2014; Gonzales et al. 2015; Stokes et al. 2017; Minato et al.
2018; Tyers and Wright 2019). Further, we defined cut-offs for
the FICI (Materials and Methods) to distinguish between the
drug interactions: antagonistic (ANT, FICI > 1.5), additive
(ADD, FICI ¼ 0.75–1.5), and synergistic (SYN, FICI < 0.75).

Resistance to these drugs and drug combinations was
achieved via ALE (Jahn et al. 2017). Even though adaptive
evolution experiments simplify the growth conditions in hu-
man hosts, they can capture clinically relevant features of
resistance evolution (Imamovic et al. 2018). In addition, adap-
tive evolution reduces the complexity of resistance evolution
in clinical settings and allows studying specific parameters
systematically under controlled conditions (Jansen et al.

2013). We performed the evolution experiment in a stepwise
manner (Jahn et al. 2017), in eight biological replicate lineages
giving a total of 460 lineages (including 20 LB-only controls)
(fig. 1c, methods, antibiotic concentrations in supplementary
table S3, Supplementary Material online). A single isolated
colony was obtained for each revived endpoint lineage for
subsequent genotypic and phenotypic characterizations
(supplementary table S4, Supplementary Material online).
After the adaptive evolution experiment, we measured the
IC90 of all isolates. In order to check whether the isolates were
representative for the lineage they were obtained from, we
calculated the difference between the IC90 of the lineages and
the IC90 of the isolates derived from the respective lineages
and normalized it by the lineage IC90, similar to the calcula-
tion of the Coefficient of variance (CV). The median of these
indices was 0.66 indicating an acceptable agreement between
isolates and lineage IC90s. However, certain antibiotics like
beta-lactams and many drug combinations had higher or
lower lineage resistance compared with the isolates (supple-
mentary fig. S1, Supplementary Material online). This might
be the result of different aspects, such as population dynamics
(Lee et al. 2010), inoculum effect (Brook 1989), tolerance
(Levin-Reisman et al. 2017), and selection bias of the isolates
due to freezing sensitivity (Barbosa and Levy 2000).

We also measured the IC90 of all isolates adapted to single-
drugs towards all single drugs used. The resulting data allowed
us to assess collateral drug responses (supplementary fig. S2,
Supplementary Material online). Therefore, the drug pairs
could be grouped based on the collateral IC90 change index
into one of three categories: collateral resistant (CR, collateral
IC90 change index > 2), collateral sensitive (CS, collateral IC90

change index < 0.5), or neutral (N, collateral IC90 change
index 0.5–2). The collateral IC90 change index provides the
average change in fold resistance relative to the WT between
two isolates adapted to either drug A or B to the respective
other drug (Munck et al. 2014). We found that the drug pairs
displayed all possible collateral responses between the indi-
vidual drugs constituting the pairs (fig. 1b).

Assessment of Evolutionary Responses to
Combination Therapy
Before we analyzed the isolates, we also observed the behavior
of the entire populations during the adaptive evolution ex-
periment. A majority (68.4%) of the lineages adapted to
monodrug exposure exhibited stable growth throughout
the evolution experiments (chi-square test of independence,
X2 ¼ 84.742, P¼ 2.2e-16, df ¼ 1, n(Mono) ¼ 152,
n(Combination) ¼ 256). In contrast, most (59.4%) of the
lineages exposed to drug combinations exhibited declining
OD values over time (chi-square test of independence, X2 ¼
37.028, P¼ 1.164e-09, df ¼ 1, n(Mono) ¼ 152,
n(Combination) ¼ 256) (supplementary fig. S3a–c,
Supplementary Material online). Declining OD values might
indicate that the populations did not evolve resistance at a
sufficient pace to ensure survival. Further, we measured the
resistance level of the lineages at different time points during
the experiment. We calculated the CV of the endpoint IC90

levels of the parallel-evolved lineages and found a significant

Jahn et al. . doi:10.1093/molbev/msab006 MBE

2058



(Mann–Whitney U-test, P¼ 0.003076, U¼ 2552, two-sided,
confidence level ¼ 0.95) difference between the variance of
single-drug (CV¼ 0.388417) and drug pair (CV¼ 0.6410415)
evolved lineages. Usually, a higher degree of phenotypic con-
vergent evolution is associated with a higher selection

pressure and constrained evolution (MacPherson and
Nuismer 2017), yet parallel evolution is also highly depended
on population size (Bailey et al. 2015). As mentioned before
drug pair evolved lineages had often decreasing population

FIG. 1. Drug properties and experimental setup. a Characteristics of the drugs chosen for adaptive laboratory evolution. The antibiotics were either
bactericidal or bacteriostatic and covered multiple drug classes and six different processes in the cell. Drugs chosen for the evolution in drug pairs
are depicted in bold. B The drug pairs, shown in ascending order of the fractional inhibitory concentration index (FICI), exhibit various phenotypic
interactions: synergy (SYN, FICI< 0.75, green), additivity (ADD, FICI¼ 0.75-1.5, white) and antagonism (ANT, FICI> 1.5, blue); collateral resistance
(CR, orange), a neutral collateral response (N, white) and collateral sensitivity (CS, turquoise). The arrows show the fold increase (orange, CR> 2 *
median ancestral wild type (WT) IC90) or decrease (turquoise, CS< 0.5 * median WT IC90) in resistance compared to the WT. The direction of the
arrows indicates the direction of the collateral drug response: e.g. lineages evolved to Trimethoprim display mild collateral resistance to
Ciprofloxacin, while lineages evolved to Ciprofloxacin show mild collateral sensitivity to Trimethoprim. The space around the arrows is colored
based on the classification of the drug pairs as CR, CS or neutral according to the collateral IC90 change index of each isolated biological replicate.
Definitions of antibiotic abbreviations can be found in Table S2. Definitions of the different categories (SYN, ADD, ANT, CS, CR) as well as
definitions of the FICI, IC90 and collateral IC90 change index can be found in materials and methods. The figure lists 32 antibiotic pairs due to the
exclusion of the replicate lineages evolved to Sulfamethoxazole-Trimethoprim, as Sulfamethoxazole appeared unstable upon freezing, resulting in
unreliable resistance determination. c Adaptive laboratory evolution of antibiotic resistance. Genetically barcoded E. coli lineages were evolved in
eight biological replicate lineages with 22 different antibiotics and 33 different antibiotic combinations. The replicate lineages were grown in 96-
deep-well-plates in 1 ml of LB containing antibiotic. Every 22 h, the cells were transferred to a new plate in a 20-fold dilution. In addition, the optical
density was measured immediately before each transfer, and an aliquot of the population was saved as a glycerol stock. The evolution of resistance
in each replicate lineage was monitored by measuring the IC90 at day 0, 8, 13 and 18, as indicated with stars. The evolution was started at
subinhibitory drug concentrations (25 % of the WT IC90), and the WT IC90 was reached on the 7th day of the experiment. The evolution
experiment ended after 18 days, when the WT IC90 was exceeded by more than 10-fold. Isolated colonies were obtained from frozen endpoints
and subsequently used for whole-genome sequencing and susceptibility testing to multiple antibiotics.
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sizes, which might account for the higher phenotypic
variability.

Looking at the IC90 data of the lineages during the evolu-
tion experiment, we found that after completion of the evo-
lution a majority (67.8%) of the drug-pair-evolved replicate
lineages, but a minority (23.5%) of the single-drug-evolved
lineages, only gained resistance levels below the antibiotic
concentration they were exposed to during the ALE (chi-
square test of independence, X2 ¼ 73.117, P¼ 2.2e-16, df ¼
1, n(Mono) ¼ 152, n(Combination) ¼ 256) (supplementary
fig. S3d–f, Supplementary Material online). This observation
suggests a limited capacity of drug-pair-exposed lineages to
evolve resistance.

Combination Therapy Reduces Resistance Evolution
To further examine resistance evolution we assessed the phe-
notypes of the isolated colonies from the end point of the
evolution experiment. We found that isolates evolved to
about half of the drug pairs (15) displayed resistance to the
drug pair and the individual drugs constituting the pair. For
the other drug combinations we observed resistance to the
drug pair and only one of the individual drugs (eight drug
pairs), only to one of the individual drugs (five drug pairs) or
no resistance at all (four drug pairs).

This observation highlights variable abilities to evolve re-
sistance and different dynamics of the drug pairs to select for
adaptations.

To shed light on the factors that impact resistance evolu-
tion, we calculated the evolvability index for all drug pair-
evolved lineages (Munck et al. 2014). The evolvability index
describes the final phenotypic adaptation level relative to
single-drug-evolved isolates (Munck et al. 2014). All the iso-
lates except those evolved to a combination of ciprofloxacin
and azithromycin had a median evolvability index <1, indi-
cating that the drug-pair-evolved isolates became less resis-
tant to the two individual drugs than the isolates evolved to
these drugs alone (fig. 2). In fact, for a majority of the drug
pairs (87.5%), very limited resistance evolution was observed
(evolvability index < 0.5).

These findings highlight that drug pairs in general reduce
the adaptive potential of de novode novo antibiotic resis-
tance evolution in E. coli. Nevertheless, E. coli evolved resis-
tance to specific drug combinations to a markedly different
degree.

Phenotypic Features Impact Evolvability Only
Marginally
Prior studies have suggested that drug features like synergistic
or antagonistic drug interactions or collateral drug responses
play an important role in explaining the difference in resis-
tance evolution toward drug combinations (Hegreness et al.
2008; Munck et al. 2014; Suzuki et al. 2015; Barbosa et al. 2018)
(fig. 3a). We grouped the drug pairs into antagonistic, additive
and synergistic based on the FICI. However, we observed only
a minor contribution of synergistic or antagonistic drug inter-
actions on the evolvability of resistance (fig. 3b). Further, we
did not find a correlation between the FICI and the evolv-
ability index (fig. 3c). Next, we assessed the effect of collateral

responses on evolution of resistance to drug combinations by
grouping the drug pairs based on the collateral IC90 change
index. Again, we observed only a limited effect of collateral
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responses on the evolvability index (fig. 3d) and no significant
correlation between the collateral IC90 change index and the
evolvability index (fig. 3e).

Genetic Responses to Drug Pairs Follow Distinct
Patterns
To determine the genetic basis of resistance and to assess if
the genotypes could explain the varying levels of evolvability
among the different drug pairs, we performed whole-genome
sequencing on 313 of the phenotypically characterized iso-
lates that exhibited phenotypic resistance (IC90 > 2-fold WT
IC90) after an initial screening (supplementary table S6,
Supplementary Material online). In total, we found 1,062
single nucleotide variants, 1,052 gene duplications, and 368
insertions or deletions (supplementary table S7,
Supplementary Material online). Six isolates displayed a
hypermutator phenotype with between 21 and 383

mutations. All hypermutators had a mutation in either
mutS, mutt, or mutD (dnaQ) (supplementary table S7,
Supplementary Material online), which induce the hypermu-
tator phenotype (Jolivet-Gougeon et al. 2011). On average,
we detected�5 mutations per isolate. The number of muta-
tions per isolate was roughly the same between isolates
adapted to a single or to multiple antibiotics (supplementary
fig. S4, Supplementary Material online). However, the types of
mutations differed. While single nucleotide polymorphisms
(SNP) were the dominant response under single drug expo-
sure, gene duplications were most prevalent in drug pair
evolved isolates, as reported before (Laehnemann et al.
2014). The gene that was mutated the most (101 times þ
15 times in the promoter region) was marR (supplementary
table S7, Supplementary Material online), the regulator of the
multiple antibiotic resistance locus (Cohen et al. 1993), a
gene in which mutations can induce a multidrug resistance
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phenotype (Woodford and Ellington 2007). Antibiotic resis-
tance is facilitated through MarR by the transcriptional reg-
ulation of at least 80 chromosomal genes (Pomposiello et al.
2001; Barbosa and Levy 2000; Alekshun and Levy 1997), in-
volving primarily stress response (Alekshun and Levy 1997)
and multidrug efflux (Keeney et al. 2008). Multiple other
mutations are also known to be linked to a multidrug resis-
tance phenotype and often involve AcrB-mediated efflux of
the antibiotic (Okusu et al. 1996) and have been identified in
this study (supplementary table S7, Supplementary Material
online). The multidrug resistance induced through these
mutations can be illustrated by clustering the antibiotic
evolved isolates based on their genetic similarity. We calcu-
lated the genetic similarity of all single drug evolved isolates
based on the Jaccard’s Distance and found that isolates
evolved to different drugs like tetracyclines, chloramphenicol,
beta-lactam and macrolide antibiotics clustered together
(supplementary fig. S5, Supplementary Material online).
This finding highlights that resistance mechanisms evolve
that are not necessarily specific to the mechanism of action
of the antibiotic. In addition, the genetic similarity can also
explain collateral resistance as genetic similarity and collateral
resistance are positively correlated (supplementary fig. S6,
Supplementary Material online).

We grouped drug-pair-evolved isolates into four distinct
genetic responses relative to their genetic response towards
their constituent drugs: 1) mutations conferring resistance to
both constituent drugs are the same and are selected by the
drug combination (Shared genotype); 2) mutations confer-
ring resistance to both constituent drugs are different, yet are
both selected by the drug combination (Mixed genotype); 3)
mutations conferring resistance to both constituent drugs are
different, yet only mutations for one of the constituent drugs
are selected by the drug combination (One Drug genotype);
or 4) mutations selected by the drug combination are differ-
ent from those selected by each of the constituent drugs
(New genotype) (fig. 4a). To classify the drug pairs into these
distinct categories, we performed an analysis of similarities
(ANOSIM) based on the mutations of each sequenced isolate
(supplementary table S7, Supplementary Material online).
ANOSIM is a nonparametric statistical test that is widely
used in ecology to identify differences among ecological
niches based on ranked dissimilarity matrices (Bueno et al.
2018). Here, we used mutated genes as features to identify
differences between various adaptation conditions instead of
characteristics of an ecological niche.

The Shared group contained three drug pairs for which no
significant genotypic differences (R< 0.2 and/or P> 0.005,

FIG. 4. Drug pairs can be grouped in four distinct categories based on their genotypic response in relation to the genotype of isolates adapted to the
constituent drugs. a Schematic overview of the possible genetic responses of drug-pair-evolved isolates compared to those evolved to the
component drugs. b – e Examples of the genotypes of the eight replicates of single-drug-evolved and drug-pair-evolved isolates for each genetic
group.
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supplementary table S8, Supplementary Material online)
were observed between single-drug-evolved isolates or be-
tween single-drug-evolved isolates and drug-pair-evolved iso-
lates (fig. 4b). For example, key mutations found in
doxycycline-adapted isolates were also dominant in
chloramphenicol-evolved isolates as well as isolates exposed
to both drugs simultaneously. All drug pairs belonging to the
Shared group exhibited collateral resistance to each other
(supplementary fig. S7, Supplementary Material online), as
the genetic alterations provide resistance to both individual
drugs as well as to the drug pair.

The Mixed group contained two drug pairs, where a sig-
nificant difference (R> 0.2 and P< 0.005, supplementary ta-
ble S8, Supplementary Material online) between the
genotypes of isolates evolved to individual drugs was ob-
served, but no significant difference was observed between
the genotypes of drug-pair-evolved isolates and those of iso-
lates evolved to individual drugs (fig. 4c). For example, while
the genotypes of isolates evolved to either ciprofloxacin or
azithromycin were completely different, the drug-pair-
evolved isolates exhibited key mutations that were also found
in the isolates exposed to the individual drugs (fig. 4c). This
drug combination was also the only one that had a median
evolvability index >1, indicating that compatible genetic
pathways are unlikely to reduce the evolvability. The two

drug pairs with a Mixed genotype exhibited either neutral
or collateral resistance to each other, further highlighting that
these drug pairs have compatible genetic responses (supple-
mentary fig. S7, Supplementary Material online).

The One Drug group was composed of drug pairs where
the genotype exclusively resembled that of isolates evolved to
one of the individual drugs and contained 14 drug pairs
(fig. 4d). For example, mutations selected against amikacin
were also present in the isolates exposed to amikacin and
chloramphenicol, while none of the mutations found in
chloramphenicol-adapted isolates were selected in the
drug-pair-evolved isolates. Five drug pairs in the One Drug
group reached only final exposure levels around the IC90 of
the individual drugs, mainly due to synergism (supplementary
fig. S7, Supplementary Material online). This finding indicates
that adaptation to highly synergistic drug pairs might be
achieved by selection of mutations against one of the con-
stituent drugs thereby possibly shifting the drug interaction
profile. This would suggest that synergistic drug combinations
could readily loose efficiency if used at insufficient doses, as
previously suggested (Lipsitch and Levin 1997; Pena-Miller
et al. 2013). Other factors influencing the selection of muta-
tions towards one of the drugs might be differences in the
steepness of the dose response curves (Chevereau and
Bollenbach 2015) and accordingly different levels of selection
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pressure applied by the two drugs (supplementary fig. S8,
Supplementary Material online) as well as differences in the
mutation selection window and the ability to select for muta-
tions at subinhibitory concentrations (supplementary fig. S9,
Supplementary Material online).

Another five of the drug combinations in the OneDrug
group were resistant to both individual drugs and drug pairs.
Drugs in these pairs were substrates of the AcrB efflux pump
(Yu et al. 2003). While isolates adapted to one of the constit-
uent drugs alone, such as ciprofloxacin, develop resistance
primarily via other resistance modes, such as mutations in
gyrA, isolates adapted to the other drug, such as doxycycline,
select for efflux-enhancing mutations. In combination, the
efflux mutations are dominant, as these mutations confer
resistance to both drugs simultaneously and are therefore
likely to be selected. Consequently, the resulting genotype
resembles the genotype of the efflux-mutation-selecting sin-
gle-drug-evolved isolates, even though a shared resistance
mechanism is selected. Of the remaining drug combinations
in the OneDrug group, two displayed collateral sensitivity,
which might have suppressed resistance evolution to one
of the drugs.

The New group included drug pairs for which the
ANOSIM gave significant (R> 0.2, P< 0.005, supplementary
table S8, Supplementary Material online) differences in gen-
otypes between individual drugs and drug pairs (fig. 4e). For
example, azithromycin- and trimethoprim-adapted isolates
shared almost no mutations, while the isolates evolved to
the combination of azithromycin and trimethoprim selected
none of these mutations but repeatedly accumulated muta-
tions in the mechanosensitive channel encoding gene mscM.
Drug pairs with collateral sensitivity were found only in the
OneDrug and New groups (supplementary fig. S7,
Supplementary Material online), highlighting that those in-
compatible genetic trajectories to the individual drugs cannot
be co-selected in drug combinations.

Drug Pairs Requiring Novel Genetic Responses Exhibit
the Lowest Evolvability Index
To assess the impact of genotypic response on phenotypic
evolvability, we analyzed the evolvability of the four different
genetic groups. Drug pairs in the New group generally showed
a lower evolvability index and a lower evolutionary rate
(fig. 5a). Of the five drug pairs that composed the New ge-
notype group, three exhibited collateral sensitivity to each
other in at least one direction and two were defined collateral
sensitive based on the collateral IC90 change index. All three
contained an aminoglycoside antibiotic (supplementary fig.
S7, Supplementary Material online). These drug pairs also had
the lowest evolvability indices within the group. However,
isolates evolved to azithromycin and trimethoprim also de-
veloped a distinct new genotype, despite a lack of collateral
sensitivity.

Overall, these findings highlight that drug combinations
work best at decelerating resistance evolution when the re-
sistance modes to the individual drugs are incompatible and
require a novel genetic response (fig. 5b). There appears to be
a low probability of selection of these novel responses, as

evolvability in this genetic group was significantly lower
than that in the other groups (fig. 5). Interestingly, collateral
sensitivity might be an indicator for the genetic incompati-
bility as drug pairs with collateral sensitivity grouped exclu-
sively in the New and OneDrug group (Pearson’s Chi-squared
test, X2¼ 16.381, P¼ 0.01185, df¼ 6). By contrast, drug pairs
that evolved resistance by selecting for mutations against
both drugs, belonging either to the Mixed or Shared group
and in part to the OneDrug groups, had higher evolvability
indices (fig. 5a), demonstrating that combinations of antibi-
otics that have compatible genetic responses are not well
suited to limit resistance evolution.

Discussion
This study aimed to assess the potential of antibiotic combi-
nations in reducing resistance evolution and to identify key
properties of these combinations that can predict resistance
evolution. We observed that de novode novo antibiotic re-
sistance evolution is reduced in E. coli when two antibiotics
are combined. We further assessed the ability of phenotypic
parameters, such as drug interactions and collateral responses
to predict the evolvability.

Previous studies reported conflicting abilities of synergistic
or antagonistic drug interactions in limiting resistance evolu-
tion (Lipsitch and Levin 1997; Hegreness et al. 2008; Torella
et al. 2010; Pena-Miller et al. 2013; Munck et al. 2014; Barbosa
et al. 2018). In line with Munck et al. (2014), we find that drug
interactions are weak predictors for resistance evolution. In
addition to drug interactions we also analyzed the impact of
collateral drug responses on the evolvability of resistance to
drug combinations. Previous work had shown a correlation
between collateral sensitivity and limited resistance evolution.
However, even though drug pairs with collateral sensitivity
had a lower evolvability index as neutral or collateral resistant
drug pairs, the difference was not significant. This could be
due to the small sample size of collateral sensitive drug pairs
or the experimental design that selected for a specific resis-
tance level.

Yet, by systematically analyzing the genetic adaptations,
we observed a clear pattern relating the genetic trajectories to
resistance evolution. Grouping of drug pairs based on geno-
types revealed that resistance evolution to drug pairs that
required a new genotypic response relative to the genetic
adaptations to the constituent drugs was greatly limited.
Future work in identifying further evolutionary constrained
drug pairs and a framework to predict limited resistance evo-
lution will be needed in order to identify the best drug com-
binations for limited resistance evolution.

In general, our data provides a comprehensive resource for
the exploration of de novode novo resistance evolution in
E. coli and of the different phenotypic and genotypic adapta-
tions to monotherapy and combination therapy. However,
the number of isolated colonies for each evolved lineage
could be expanded in order to ensure that population het-
erogeneity and heteroresistance is captured sufficiently in the
analysis and additional drug combinations and organisms
would need to be characterized to elucidate whether our
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findings can be further generalized. In addition, the impact of
drug combinations on the evolution of antibiotic tolerance
should be addressed in future work. Moreover, it remains to
be determined whether our findings can be translated to the
clinic. Adaptive evolution is frequently used to explore the
response to antibiotic exposure (Imamovic and Sommer
2013; L�az�ar et al. 2013; Munck et al. 2014; Jahn et al. 2017).
However, factors, such as horizontal gene transfer, host–path-
ogen interactions, interactions between bacterial populations,
side effects and pharmacodynamics of the antibiotics, as well
as patient condition and disease, need to be considered when
clinical experiments are conducted. Nonetheless, we expect
that this framework for assessment of evolvability of drug
combinations will be the base for further research on the
rational design of drug combinations for efficient and
resistance-limiting therapies.

Materials and Methods

Bacterial Strains and Growth Conditions
Chromosomally barcoded E. coli MG1655 K12 (Jahn et al.
2018) were grown in LB at 37 �C and 600 r.p.m. shaking.
They were grown under the same conditions without shaking
for the IC90 determination.

ALE to Individual Drugs and Drug Combinations
Escherichia coli lineages were evolved each in eight biological
replicate lineages to 22 different antibiotics and 33 different
antibiotic pairs (supplementary table S1, Supplementary
Material online) resulting in 460 individual lineages of which
all E. coli lineages carried a unique genetic barcode (Jahn et al.
2018). Barcodes allowed to track lineages and to ensure that
no cross-contamination between replicates took place.
Moreover, genetically adapted lineages with barcodes can
be provided as a valuable resource for additional experiments.
All antibiotics used in this study, their mechanism of action,
solvent and storage conditions are listed in supplementary
table S2, Supplementary Material online. For the evolution
towards drug combinations, the drugs were combined in a 1:1
ratio based on the WT IC90 values of the individual drugs
(Munck et al. 2014). The WT was exposed to a dilution series
of the drug mixture, the IC90 of the drug combination was
established and used as a reference to define the antibiotic
concentrations used for the adaptive evolution experiment
(supplementary table S3, Supplementary Material online).
The antibiotic pairs were chosen to cover the most important
drug classes (beta-lactams, flourquinolones, aminoglycosides,
macrolides, tetracyclines, chloramphenicol, and peptide anti-
biotics) in all their possible combinations, to include drug
pairs of drugs from the same drug classes and some additional
drug pairs so that we could cover all possible drug interac-
tions and collateral relationships between drug pairs.

The adaptive evolution experiment was carried out in 96-
deep-well plates. The plates were filled with LB by a Hamilton
robot, sealed and stored at room temperature. Antibiotics
were added by the robot the day before the experiment
started and plates were stored at –20 �C. An overnight cul-
ture grown in LB was used to inoculate the ALE experiments.

All passaging of cells was done manually with an 8-channel
pipette. As a control 20 replicates were evolved to LB media
alone. Each 96-well plate also harbored eight negative controls
that stayed uncontaminated throughout the evolution exper-
iment. Cells were grown for 22 h at 37 �C and 600 r.p.m.
shaking, ensuring mixing of the population and aerobic
growth conditions (aerobic growth conditions during the
evolution can be assumed as genetic adaptations to amino-
glycoside antibiotics, whose uptake depends on aerobic res-
piration, were identified as well as a mutational overlap with
other studies that had a greater surface: volume ratio [Munck
et al. 2014] or better mixing [Hegreness et al. 2008]).
Thereafter, 100 ll were transferred to a 96-well plate and
the optical density (OD600) of each lineage was measured in
an ELx808 Absorbance Reader (BioTek) at a wavelength of
600 nm. In addition, 50 ll of cells, corresponding to a 20-fold
dilution (Wahl et al. 2002; Jahn et al. 2017), were passaged to a
new preheated 96-deep-well plate containing LB and a 25%
increase in antibiotic concentration in a total volume of 1 ml/
well. The starting concentration was 25% of the WT IC90 and
the WT IC90 drug concentration was reached on the seventh
day of the ALE (supplementary table S3, Supplementary
Material online). The evolution was stopped after 18 days at
a final concentration exceeding 10-fold of the WT IC90 (Jahn
et al. 2017). All antibiotic concentrations can be found in
supplementary table S3, Supplementary Material online.
The IC90 of the lineages was measured on day 0, 8, 13, and
18 of the ALE in order to track the resistance evolution on the
population level.

After each transfer an aliquot of 100 ll was mixed with
glycerol to a final glycerol concentration of 12.5% and stored
at –80 �C. Cells were streaked on LB agar from the frozen
aliquot saved on the last day with growth (OD600 > 0.1).
Some cells were very difficult to revive as observed before
(Barbosa et al. 2017). If reviving failed, cells were inoculated
into liquid LB before being streaked on LB agar. If cells still
failed to revive, cells were streaked from the aliquot saved the
day before the last day of growth. Despite the effort, some
lineages would not revive at all. A list with all lineages, their
last day of growth in the ALE and the day of the ALE they have
been revived from can be found in the supplementary (sup-
plementary table S4, Supplementary Material online). One
isolated colony was picked randomly for each evolved lineage,
grown in LB and frozen at –80 �C for further phenotypic and
genotypic characterization. Lineages adapted to the following
antibiotics: Erythromycin, Sulfamethoxazole, Fosfomycin as
well as the combination of Sulfamethoxazole and
Trimethoprim displayed inconsistent phenotypes or did not
develop resistance due to technical reasons, such as drug
stability after freezing. Therefore, these drugs were excluded
from this study.

IC90 Determination
100 ll of LB were inoculated with pin-replicators from frozen
stocks of isolated colonies and grown overnight. About 105

cells were transferred with pin-replicators into plates contain-
ing a 2-fold drug gradient ranging over ten different concen-
trations. Plates were grown at 37 �C for 18 h. The OD600 was
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measured for each well. The OD600 data were normalized and
used to create dose-response curves in R as described before
(Munck et al. 2014). In brief, percent inhibition was calculated
by the following formula:

1� OD600 drug exposed � OD600 blank

OD600 media exposed � OD600 blank

The IC90 was defined as the lowest concentration of the
drug that inhibited 90% of the growth (Munck et al. 2014;
Imamovic et al. 2018). All IC90 values were generated at least
in two technical replicates. If the WT IC90 differed >2-fold
from the WT IC90 value established before the ALE started,
the IC90 test was repeated along with the ancestor WT. No
significant (Student’s t-test, P> 0.05) differences between the
susceptibility of the WT and the media adapted WT were
observed. The IC90 values were normalized to the media
adapted WT IC90. The heatmap presenting the collateral sen-
sitivity and resistance of the single drug evolved lineages (sup-
plementary fig. S2, Supplementary Material online) displays
the times increase of the IC90 compared with the media
adapted WT with a significance level of at least P< 0.0001.
Significance levels were obtained as described before
(Imamovic et al. 2018). Briefly, by comparing the growth
data OD600 in ten different antibiotic concentrations of all
technical and biological replicates adapted to the same drug,
with all media adapted technical and biological replicates
exposed to the same drug and concentration. Within the
natural variation of the samples 3,000 additional data points
were computed to identify robust differences among samples.
Times increase or decrease in growth compared with the WT
was calculated in steps of 0.5 ranging from –10.5 to 10.5.
Pairwise t-tests between drug adapted and media adapted
data were performed and the highest times increase/the low-
est times decrease with a significance value of at least
P< 0.0001 was given as output.

Calculation of Important Variables
Based on the IC90 values several calculations were made, that
are explained in the following:

The evolvability index is a measure of the final phenotypic
adaptation level of isolated drug-pair-evolved lineages to the
individual drugs relative to isolated single-drug-evolved line-
ages (Munck et al. 2014). The evolvability index compares
resistance evolution between drug pair and single drug
evolved lineages to individual antibiotics. It was calculated
as described before (Munck et al. 2014). In short, the following
formula was used:

evolvability index ¼

ðIC90AAB=IC90AWTÞ=ðIC90AA=IC90AWTÞ
þðIC90BAB=IC90BWTÞ=ðIC90BB=IC90BWTÞ

2

Two replicate lineages evolved to Amikacin and
Nitrofurantion, as well as two replicate lineages evolved to
Ciprofloxacin and Doxycycline had evolvability indices above
1000. They displayed extremely high IC90 values, when tested
to one of the individual drugs (Nitrofurantion/Doxycycline).

As these values were way outside of a reasonable range of
resistance they were treated as technical errors and therefore
excluded from the entire analysis.

Drug interactions were determined for isolated colonies
using a Loewe additivity model and the IC90 as effect level.
The Loewe additivity model was chosen as it assumes additive
effects of identical drugs (Munck et al. 2014). This is impor-
tant as drugs with the same target and drugs from the same
drug class were combined in this experiment. The FICI was
calculated according to the following formula:

FICI ¼ IC90ABWT� x
IC90AWT

þ IC90ABWT�ð1� xÞ
IC90BWT

x is the molar fraction of A in the drug combination AB.
As it was shown that additive effects are robustly detected at
a cutoff between 1 and 1.25 (Meletiadis et al. 2010), we ap-
plied a low but symmetric cutoff in order to group the drug
pairs into synergistic (<0.75), antagonistic (>1.5), and addi-
tive (0.75–1.5) combinations.

The collateral IC90 change index was calculated for isolated
colonies as described before (Munck et al. 2014). In short, the
following formula was used:

collateral IC90change index ¼
IC90AB=IC90AWT þ IC90BA=IC90BWT

2

All drug pair evolved lineages were grouped into collateral
sensitivity (< 0.5), collateral resistance (>2) and neutral (0.5–
2) effects according to the collateral IC90 change index.

A table including all phenotypic information of the drug
pair evolved lineages can be found in the supplement (sup-
plementary table S9, Supplementary Material online).

Whole-Genome Sequencing and Sequence Analysis
1 ml LB in each well of a 96-well, deep-well plate was inocu-
lated from frozen stocks of isolated colonies and grown at
37 �C and 600 r.p.m. overnight. Cells were spun down at 2,000
r.p.m. for 3 min. LB was removed and replaced by DNA shield-
ing buffer (Zymo Research). Samples were sent to BaseClear
B.V. for genomic DNA extraction (ZYMO research), Nextera
XT library preparation (Illumina) and 125 paired-end whole-
genome Illumina HiSeq 2500 sequencing. The resulting fasta
reads were used in the following workflow:

(1) Single nucleotide variants (SNPs) and small insertions and
deletions (INDELS) were called using CLC Genomics
workbench as described before40. Escherichia coli reads
were aligned to the E. coli K12 U00096 reference genome.
On average, the coverage/base was at least 37-fold. For
SNP calling only positions with a phred score of at least 30
at the position where the SNP occurred and at the three
neighboring positions were considered. In addition, the
SNP had to be detected with a frequency of at least 80%.

(2) CLC Genomics workbench was further used to detect
large insertions and deletions (large INDELS) in the reads
using the INDEL function at default settings. The resulting
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INDELS were considered when they occurred with a fre-
quency of >80% and in >5 different reads.

(3) Large insertions were additionally detected by a custom
made script used before41. The reference genomes of
MG1655 as well as all open reading frames were down-
loaded from the NCBI nucleotide archive and used to
cluster all ORFs with cd_hit (Li and Godzik 2006). The
cluster cut off was 90% identity and coverage. Afterwards
the sequenced reads from this study were quality filtered
using the FASTX-Toolkit package with a minimum quality
of 30 and blasted against the clustered ORFs with a word
size of 16 and an e-value of 0.01. Reads, with >90% cov-
erage mapping continuously to the genome, that mapped
to two different clusters with an overlap between 30%
and 70% were kept for further analysis. Reads were filtered
so they did not cover clusters representing adjacent genes.
Finally, large insertions were only counted when they
were observed in at least 5 individual reads.

(4) Gene duplications were detected using CLC workbench
and a customized script in R as described before(Jahn
et al. 2017). Regions > 100 bp of significantly (P <
0.00001) increased coverage according to a Poisson distri-
bution were identified using CLC workbench. The identi-
fied regions were mapped to the genome and a gene that
was overlapping at least 95% with a region of high cov-
erage was counted as gene duplication.

INDELS that were detected by multiple of the parallel anal-
yses were only counted once. Seven WT lineages adapted to
the media were sequenced as a control and mutations as well
as duplications found in these lineages were excluded from all
lineages as they are likely mutations that have been inserted
prior to the experiment or are involved in media adaptations.
As no significant (Student’s t-test, P> 0.05) phenotypic dif-
ference between the resistance level of the ancestor WT and
the media adapted WT lineages were identified, those genetic
changes are unlikely to cause antibiotic resistance.

Jaccard’s Distance
The genetic data were used to create a presence absence table
for each mutations and lineage. Based on this matrix the
Jaccard’s distance was calculated using the jaccardSets func-
tion in R from the package bayesbio (McKenzie 2016).

Analysis of Similarity
Based on the genetic data including SNPs, INDELS and gene
duplications, a binary presence absence data matrix was cre-
ated for each lineage and all genes. The matrix was summed
for all replicates of the same condition and subsequently used
to calculate a dissimilarity matrix with the package “vegan” in
R using Euclidian distance (Oksanen et al. 2019). We per-
formed an ANOSIM with the anosim function from the pack-
age “vegan” in R for the entire dataset in order to test whether
significant differences between groups could be expected
(Oksanen et al. 2019). Our dataset included significant
(P< 0.01) differences between lineages adapted to different
drugs, wherefore we calculated pair-wise differences between
different drug-adapted groups of replicates with the same

methodology and 1,000 permutations. We calculated three
different similarities for each drug pair: first, we compared
lineages evolved to both single drugs constituting the pair,
second, we compared the group of one of the single drug
adapted lineages to the drug pair evolved lineages and third,
we compared the other single drug evolved lineages to the
drug pair evolved ones. Groups were considered to be signif-
icantly different when they had a P-value <0.005 and an R
statistics >0.2. A R statistics of 0.2 has previously been de-
scribed as measure for mild similarities between groups
(Oksanen et al. 2019). The results were aggregated with the
package “data.table” (Dowle and Srinivasan 2018).

Data Availability and Code
Genomic data are available in NCBI under the accession num-
ber SUB5823083. All phenotypic data and scripts can be pro-
vided upon request. For the calculations and different analysis
the following R packages have been utilized: “plyr” (Wickham
2011), “dplyr” (Wickham et al. 2018), “tidyr” (Wickham and
Henry 2018), “ggplot2” (Wickham 2016), “data.table” (Dowle
and Srinivasan 2018), “gdata” (Warnes et al. 2017), “SciViews”
(Grosjean 2018), “drc” (Ritz et al. 2015), “scales” (Wickham
2018a), “gridExtra” (Auguie 2017), “cowplot” (Wilke 2018),
“stringr” (Wickham 2018b), “ggpubr” (Kassambara 2018),
“magrittr” (Bache and Wickham 2014). For figure 1,
RawGraphs (Mauri et al. 2017) was used to create the figure.
All figures were edited in Abode Illustrator.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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