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PURPOSE. We develop an accessible and reliable RNA sequencing (RNA-seq) transcriptome
database of healthy human eye tissues and a matching reactive web application to query gene
expression in eye and body tissues.

METHODS. We downloaded the raw sequence data for 1375 RNA-seq samples across 54 tissues
in the Genotype-Tissue Expression (GTEx) project as a noneye reference set. We then queried
several public repositories to find all healthy, nonperturbed, human eye-related tissue RNA-
seq samples. The 916 eye and 1375 GTEx samples were sent into a Snakemake-based
reproducible pipeline we wrote to quantify all known transcripts and genes, removes samples
with poor sequence quality and mislabels, normalizes expression values across each tissue,
perform 882 differential expression tests, calculate GO term enrichment, and output all as a
single SQLite database file: the Eye in a Disk (EiaD) dataset. Furthermore, we rewrote the web
application eyeIntegration (available in the public domain at https://eyeIntegration.nei.nih.
gov) to display EiaD.

RESULTS. The new eyeIntegration portal provides quick visualization of human eye-related
transcriptomes published to date by database version, gene/transcript, 19 eye tissues, and
54 body tissues. As a test of the value of this unified pan-eye dataset, we showed that fetal
and organoid retina are highly similar at a pan-transcriptome level, but display distinct
differences in certain pathways and gene families, such as protocadherin and HOXB family
members.

CONCLUSIONS. The eyeIntegration v1.0 web app serves the pan-human eye and body
transcriptome dataset, EiaD. This offers the eye community a powerful and quick means to
test hypotheses on human gene and transcript expression across 54 body and 19 eye tissues.
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From anterior to posterior along the light trajectory, the
human eye is composed of the cornea, lens, retina, RPE,

and choroid. The differentiation, maturation, and function of
these tissues is mediated through spatial- and temporal-
specific transcript and gene expression patterns, also known
as the transcriptome. Today, RNA-sequencing (RNA-seq) is the
predominant technology for quantifying the transcriptome.
Analysis of the transcripts’ expression across tissue, time, and
perturbation allows researchers to decipher the genetic
controls of eye development and function. To this end, a
wide variety of human tissue sources have been used to assess
gene function, including primary tissue (fetal and postmor-
tem), differentiated stem cells, immortalized cell lines, and
most recently, organoids. These tissue types have been deeply
sequenced across the cornea,1–7 lens,8 retina,9–17 and RPE
(choroid).14,17–34

The Genotype-Tissue Expression (GTEx) Gene
Expression Web App Lacks Eye-Specific Tissues

The GTEx Project has generated RNA-seq data across dozens
of postmortem human tissues from hundreds of unique
donors, and presents the gene and transcript level data in a
comprehensive and user-friendly web app (available in the

public domain at https://gtexportal.org/); however eye
tissues have not been included.35,36 Recently Ratnapriya et
al.37 reported on a huge set of postmortem retina, normal and
with varying degrees of AMD and the GTEx project is
providing the data as a download link. These data, as of June
2019, are not available in the interactive GTEx visualiza-
tions.37 The Sequence Read Archive (SRA) and European
Nucleotide Archive (ENA) are the primary repositories for all
raw sequence data and two groups have quantified large
portions of the RNA-seq data, including some human eye
tissues, from the SRA: recount2 and ARCHS4.38,39 To date, no
curation of the sample level metadata has been done;
therefore, it is challenging to parse out which eye tissues
are present and even more difficult to determine whether any
samples were chemically or genetically perturbed. More
targeted web resources that allow researchers to quickly
assess gene expression in eye tissues include iSYTE, EXPRESS,
and retina.Tigem.it.16,40,41 However iSYTE only includes lens
samples, EXPRESS is limited to a subset of mouse lens and
retina samples, and retina.Tigem.it is retina only. Thus, we
aimed our efforts at developing an easily accessible and
reliable RNA-seq based transcriptome database of healthy
human eye tissues and a matching reactive web application to
query gene expression in eye and body tissues.
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The eyeIntegration App Interactively Serves Huge
GTEx and Human Eye Tissue Datasets (Eye in a
Disk [EiaD])

The eyeIntegration web resource (available in the public
domain at https://eyeIntegration.nei.nih.gov), originally re-
leased in 2017 at version 0.6, provides the largest set of
transcriptomes from hand-curated human eye tissues along
with hundreds of GTEx tissue samples.42 This interactive web
app allows for quick transcript and gene comparisons across
many eye tissues and dozens of other body tissues. The dataset
that the original eyeIntegration web app served was created
with a series of scripts, several of which were run interactively
to manually assess quality control for the samples. The
interactive nature of some of the steps precluded efficient
and regular data updates for the data.

To better meet the needs of the eye research community we
have rewritten the bioinformatic pipeline that creates the eye
and body RNA-seq dataset to allow for regular, versioned
updates for eyeIntegration. We call this reproducible and
versioned transcriptome dataset ‘‘Eye in a Disk’’ (EiaD). The
pipeline automates the EiaD creation, ensures full reproduc-
ibility of the results, allow for external data comparison,
provides consistent sample quality control, and improves
efficiency for future sample updates. The 2019 EiaD dataset
contains several new tissue types, full gene product quantifi-
cation, along with hundreds of new samples and improved
sample labeling. The eyeIntegration web app also has been
rewritten to provide many new features, including versioned
EiaD datasets, custom URL shortcut creation, new visualiza-
tions, improved data table searching, easy download of core
datasets, and local install of the entire interactive resource with
three commands. Additionally, we are prototyping new tools to
display single cell RNA-seq (scRNA-seq) data to provide
researchers access to cell type–specific information about
gene expression across murine retinal development.

The EiaD Dataset Can Be Used to Identify Potential
Avenues to Improve Retina Organoid Maturation

Retina organoids are an increasingly popular means to model
human retina development. We used our pan-study EiaD
dataset to show that, at a pan-transcriptome level, organoids
are highly similar to early fetal retina tissue. We also showed
that important temporal gene expression patterns in the fetal
retina tissue are recapitulated in the organoids. As the organoid
differentiation methods do not yet produce fully mature retina,
we focused on identifying differentially expressed processes
between organoid retina and embryonic retina, and detected,
for example, identifying protocadherin and HOXB family gene
expression differences that suggest targetable pathways to
improve and benchmark organoid differentiation methods.

METHODS

Identification of Potential Eye Samples

We exhaustively searched the SRA with the SRAdb R package for
eye related tissues using the query ‘corneajretinajRPEjmaculaj
foveajchoroidjsclerajirisjlensjeye’ across all columns and rows in
the ‘SRA’ table.43,44 As the SRAdb is being deprecated, we also
ran searches on the SRA and Gene Expression Omnibus (GEO)
web pages with as follows: ((‘‘Homo sapiens’’[orgn:__txid9606])
AND (transcriptomic[Source]) AND (‘‘2019/01/01’’[Publication
Date] : ‘‘3000’’[Publication Date]) AND (retina[Text Word] OR
RPE[Text Word] OR macula[Text Word] OR fovea[Text Word]
OR choroid[Text Word] OR sclera[Text Word] OR iris[Text

Word] OR lens[Text Word] OR cornea[Text Word] OR ‘trabec-
ular meshwork’[Text Word] OR ‘canals of schlemm’[Text Word]
OR ‘cillary body’[Text Word] OR ‘optic nerve’[Text Word] OR
‘laminar cribosa’[Text Word] OR retina[Title] OR RPE[Title] OR
macula[Title] OR fovea[Title] OR choroid[Title] OR sclera[Title]
OR iris[Title] OR lens[Title] OR cornea[Title] OR ‘trabecular
meshwork’[Title] OR ‘canals of schlemm’[Title] OR ‘cillary
body’[Title] OR ‘optic nerve’[Title] OR ‘laminar cribosa’[Title]))’’.
We hand selected relevant studies and selected healthy,
control or unmodified samples spanning primary adult tissue,
primary fetal tissue, induced pluripotent stem cell (iPSC)–
derived tissue, stem cell–derived organoids, and immortalized
cell lines. To compare gene expression in the eye against
expression in other body tissues, we obtained samples from
54 different body tissues from the GTEx project. Using SRA
metadata from each study, we extracted sample and run
accessions, library type, tissue of origin, and subtissue of
origin. Any of the preceding information missing from the
SRA metadata was added by hand, when available. Stem cell-
derived tissues and cell lines are marked as subtissues of the
tissue they model.

Raw Data Download and Quantification

We downloaded the relevant SRA files for each sample directly
from the NCBI ftp server using the file transfer software
Aspera. SRA files were converted to FASTQ format using the
tool fastq-dump from the SRAtoolkit software package.43

Samples only available in the BAM format were converted to
FASTQ format using SAMTools.45 Sample transcriptomes were
quantified using the alignment free quantification software
Salmon, using transcriptomic index built from gencode v28
protein coding transcript sequences using the transcriptomic
aligner Salmon.46,47 Using the resulting expression quantifica-
tion, we identified lowly or unused transcripts within the
gencode annotation, and removed transcripts that accounted
for 5% or less of the total expression for its parent gene as per
Soneson et al.48 Samples were requantified against a tran-
scriptomic index built on the filtered transcript sequences. The
Salmon count values were quantified as (transcript) length
scaled Transcripts Per Million (TPM) to the transcript and gene
level using tximport.49

Quality Control

We first removed samples with a Salmon calculated mapping
rate less than 40%. This value was selected as being the far left
tail of the distribution of mapping rates across samples
(Supplementary Fig. S2). We removed lowly expressed genes
by calculating the median expression across all samples for
each gene and kept genes that had a median count >200 across
all samples. To reduce the noise from experimental variability
between each study, we normalized samples by sequence
library size using the calcNormFactors function from the edgeR
R package, and then quantile smoothed expression data using
the R package qsmooth at the tissue level.50,51 In a change from
our previous eyeIntegration work,42 we now correct our
counts for mapping rate and tissue type with the limma
batchEffects function.52 The transformed values are used for
the box plot and t-SNE visualizations.

To identify outliers we followed an approach similar to a
method reported by Wright et al.53 Briefly, we first selected the
3000 genes with the highest variance across all samples and
then for each subtissue type T and each sample i in T , we first
calculated ri, the average correlation between i and all other
samples in T . Next, we calculated Di, where Di ¼ ri�rð Þ

median ri�rð Þ
and r is the grand mean of all ri for i in T . We removed samples
with Di ,�17.5; we determined this threshold by generating a
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tSNE plot of our samples, and visually identifying outliers in
adult retina tissue. The (max Dið Þ) among these outliers was
�17.58 and from this we chose�17.5 as our outlier threshold.

To calculate Pearson correlation (R2) between GTEx-calculat-
ed TPM gene values and our GTEx TPM gene values, we
downloaded ‘‘GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_
gene_tpm.gct.gz’’ and matched against our GTEx TPM values,
running the Pearson correlation with log2 TPM þ 0:01ð Þ values as
per Zhang et al. with the cor function in R.54

Differential Gene Expression Analysis and GO
Term Enrichment

We used the nontransformed length scaled TPM values to
determine differential gene expression between different
subtissue types. First, we generated a synthetic body set to
serve as single representative subtissue type for pan-body gene
expression by randomly sampling GTEx tissues. We used the
voom function from the limma R package to convert gene
expression to precision weights, and then performed pairwise
differential expression tests for all combinations of eye
subtissues (using mapping rate as a covariate), the synthetic
body tissue, and human body tissues using an empirical Bayes
test.52,55 We extracted significant genes (FDR P < 0.01) for all
882 comparisons and used these to calculate GO enrichment.
The significant gene list for each eye subtissue was split into
upregulated and down regulated sets and each set was tested
for enrichment using the enrichGO function from the
clusterProfiler R package (q-value < 0.01).56

eyeIntegration Web App and R Package

The data generated in the above steps is consolidated into a
SQLite database, with the original dataset for eyeIntegration
and the new 2019 EiaD dataset each getting a separate database
file. The code that creates the eyeIntegration web app is
written in Shiny and R and has been wrapped into an R
package (available in the public domain at https://github.com/
davemcg/eyeIntegration_app/) that can be deployed on a local
computer or a web server (available in the public domain at
https://eyeIntegration.nei.nih.gov). The app can be deployed
on a local computer with 50 GB of free disk space by running
three commands in R: ‘‘devtools::install_github(‘davemcg/eye-
Integration_app’)’’, ‘‘eyeIntegrationApp::get_eyeIntegration_
datasets()’’, and ‘‘eyeIntegrationApp::run_eyeIntegration()’’.

Snakemake Reproducible Pipeline

While the sample search and metadata parsing in a semicurated
process, the processing from the raw data to the creation of
the SQLite EiaD database underlying eyeIntegration is wrapped
in a Snakemake pipeline, which ensures full reproducibility of
the results.57 We make the code for the pipeline available at
https://github.com/davemcg/EiaD_build.

scRNA-seq Processing

The eyeIntegration site, as of June 2019, hosts two large
scRNA-seq datasets from Macosko et al.58 and Clark et al.59 We
use the processed gene count data directly from each group, as
well as their cluster assignments, which specify what cell type
each individual cell is. The count data are mean averaged to the
cell type, age, and gene level for the single cell expression
section of eyeIntegration. We also displayed t-SNE and UMAP-
based two-dimensional visualizations of the Macosko and Clark
data, respectively, in the web app. For detail so the t-SNE
processing we did on the Macosko dataset, see the methods of
Bryan et al.42

Power Calculation

We used the ssizeRNA R package to calculate power (p) across
samples (n) at an FDR of 0.05.60 Important parameters for ssize
RNA include the variability (dispersions for the samples and
genes), which were calculated directly from our EiaD length
scaled TPM values by the edgeR packages estimateCommon-
Disp and estimateTagwiseDisp. The code to calculate the
power is given as ‘power_calc.R.’

Manuscript as Code and Reproducibility

The figures, tables, and most numbers, are all created and laid
out in an R markdown document that interweaves code and
text. The knitr and pandoc program is used to lay out the
figures and tables and output a docx file. The code that
generates this study can be found at https://github.com/da
vemcg/eyeIntegration_v1_app_manuscript.

The relevant code-bases (https://github.com/davemcg/eye
Integration_v1_app_manuscript, https://github.com/davemcg/
EiaD_build) and the EiaD dataset itself have been deposited
into Zenodo with accession 10.5281/zenodo.3238677 to
ensure the data can be accessed in the future, even should
eyeIntegration and GitHub become inaccessible in the future.

RESULTS

EiaD 2019 Contains 24 New Human Eye RNA-seq
Studies, 448 New Retina AMD Samples, 207 New
Eye Samples, and 16 Total Eye Subtissue Types

Our query on May 8, 2019 to the SRA found 107 potentially
relevant studies. We removed nonpertinent studies and
selected healthy or unmodified tissue from each relevant study
for a total, including 46 studies, 30 of which are new to the
2019 EiaD dataset. The 2019 EiaD dataset contains 835 human
eye tissue samples and also includes 1314 GTEx samples across
54 tissues for easy comparison (Table; Supplementary Table
S1). The 2019 EiaD contains six undifferentiated iPSC, 56
cornea, four lens, 648 retina, and 121 RPE (choroid) samples;
in total we have added 655 new samples to the 2019 EiaD (Fig.
1). We refer to native-tissue extracted RPE as RPE (choroid)
because it is not possible to remove the choroid from the RPE
without culturing.

Stem cell-derived cornea, stem cell-derived lens, and fetal
retina are three new types of subtissues that are now available
in EiaD. We also have substantially improved the granularity of
the cornea tissue metadata, now delineating whether the tissue
is from the endothelium or epithelium (Fig. 1); previously
these had been grouped together as adult tissue. Another
substantial addition to the 2019 EiaD are nonprotein coding
genes; while protein-coding is the most common gene and
transcript typse, there are dozens of different noncoding
classes. The 2017 version of eyeIntegration only quantified
protein coding genes and transcripts. We now quantify
expression across 41 gene and 45 transcript types, including
protein coding, retained intron, lincRNA, antisense, and
pseuodogenes (Supplementary Table S2).

We also have added the large retina AMD postmortem
Ratnapriya et al.37 cohort to EiaD 2019. This cohort contains
hundreds of samples ranging from non-AMD (Minnesota
Grading System [MGS] 1) to severe AMD (MGS 4). While
eyeIntegration is intended to be a source for normal tissues, we
have made an exception for this study, as this is a large cohort
and AMD is a common disease. We found our corrections
methods did not group the non-AMD Ratnapriya et al.37

samples with our other collected retina samples (see Retina
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MGS in Supplementary Fig. S3). This may be related to the
lower mapping rate of the Ratnapriya et al.37 data (see Retina
MGS in Supplementary Fig. S2).

467 More GTEx Samples and Nine New GTEx to
2019 EiaD

Our previous dataset for eyeIntegration version 0.6 held
approximately 20 samples per GTEx tissue type. We ran
power calculations to assess our ability to detected ‡1
log2(Fold Change) in gene expression between two conditions
to determine whether this is a sufficient number of samples
(Supplementary Fig. S4). Our calculations suggested, for
example, that we had 83% power to detect a 1 log2(Fold
Change) difference in gene expression with two groups of 20
samples. To increase our power to make significant eye-to-body
comparisons, we added approximately 10 more samples per

GTEx tissue types (which at 30 samples, would give
approximately 90% power). We also took this opportunity to
add bladder, bone marrow, cervix uteri, fallopian tube, ovary,
prostate, testis, uterus, and vagina GTEx tissue samples
(Supplementary Table S1).

Rigorous Quality Control and Reproducible
Workflow System Ensures High Quality
Transcriptomes That Consistently Cluster Together
by Tissue Type

We built an automated pipeline for processing and analyzing all
data for the web app using the program Snakemake, a python-
based workflow management system that allows for efficient
parallel execution of the analysis, facilitates reproduction by
others, and simplifies long-term maintenance of the EiaD data
(Fig. 2; Supplementary Fig. S5).57 To create a high quality final

FIGURE 1. Substantial increase in eye tissue count and type from 2017 (180, lighter color) to 2019 (835, darker color) EiaD. We also improved the
metadata labeling, the cornea samples (green) now delineates endothelial and epithelial tissues and the retina samples (orange) distinguish retina
organoid and RGC from stem cells. Counts for each bar plot given in the boxes. The y-axis is a log2 transformed count of samples passing our QC
filters.

TABLE. EiaD Contains a Large Set of Diverse Eye Tissues, Including Embryonic Stem Cells (ESC)

Tissue

Pre-QC

Count Count Subtissue Types (Count)

Cornea 62 56 Adult tissue (25), cell line endothelium (9), endothelium (16), fetal endothelium (2),

stem cell endothelium (4)

ESC 12 6 Stem cell line (6)

Eye lid 4 0

Lens 9 4 Stem cell line (4)

Retina 681 648 3D organoid stem cell (52), adult tissue (107), adult tissue AMD mgs 2 (172), adult

tissue AMD mgs 3 (112), adult tissue AMD mgs 4 (61), adult tissue mgs 1 (103),

fetal eye (3), fetal tissue (35), RGC stem cell (3)

Retinal endothelium 4 0

RPE 144 121 Adult tissue (48), cell line (50), fetal tissue (7), stem cell line (16)

Eyelid and retina endothelium samples were included, but all failed to pass our QC filters.
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dataset across the 2291 initial samples (Supplementary Table
S3) and 67,315,523,736 reads, we developed a rigorous quality
control procedure as part of our analysis, considering a
sample’s read mapping rate and median count level as well
as behavior relative to samples of the same subtissue type (see
Methods). To identify tube mislabeling or sample extraction
issues, we used sample-level gene correlation metrics (see
Methods) to identify variability within samples of the same
subtissue and ensure overall consistency in data processing
(Fig. 3). After these steps 81 eye samples and 61 GTEx samples
were removed.

To ensure there are no substantial differences in quantifi-
cation of gene TPM values, we calculated the R2 between
GTEX and EiaD generated TPM values for our shared GTEx
samples (see Methods); we computed an R2 of 0.89. Zhang et
al.54 reported that RNA-seq quantifications done between
alignment-free methods (used in EiaD) and alignment-based
methods (used by GTEx) get a R2 ranging from 0.89 to 0.93. As
Zhang et al.54 compared quantification methods with identical
gene references (we use Gencode GRCh38 gene models and
GTEx uses hg19) and did not scale TPM score differently, our
result falls in line with expectations.

After our quality control and processing workflow, we
found that samples of the same tissue type and origin cluster
well together (Fig. 3; Supplementary Table S4). For example, in

the retina group, primary adult tissue clusters tightly and
distinctly from other cell types, and retinal organoids and fetal
retina samples cluster together. Our ability to uniformly cluster
data by known biological source independent of study origin
demonstrates that our workflow can effectively account for
technical variation between studies.

While t-SNE is a powerful algorithm for grouping samples, it
is not consistent for determining the relationships between
clusters.61 PCA is more useful in this regard. We ran a PCA
dimensionality reduction (Supplementary Fig. S6) on all
samples, finding that the eye tissues still generally group
together and apart from all other human body tissues. Adult
retina is most similar to the brain tissue. RPE and cornea are
most similar to blood, bone marrow, and skin.

The eyeIntegration Web App Provides Interactive
Visual Portal to All Data

The EiaD 2019 dataset is used directly by the eyeIntegration
web app (available in the public domain at https://eye
Integration.nei.nih.gov). The web app was designed to provide
a simple interface that has the same general concept – select
specific genes and tissue and view relevant information. The
web-app is divided into four general categories: expression,
two-dimension sample relationships, gene networks, and data
tables.

Custom Gene and Tissue Expression Boxplots

The ‘Expression’ tab of the webpage provides a wealth of
information about gene- and transcript-level expression for eye
and body tissues, giving the user the ability to compare the
expression of different genes within a single tissue, as well as
the expression of genes across multiple tissues (Fig. 4A). The
user first selects either the 2017 or 2019 gene or transcript
EiaD dataset, then Hugo Gene Nomeclature Committee
(HGNC) genes names (or ENSEMBL transcripts), then tissues.
A boxplot then is generated after hitting the ‘‘Re(Draw) Plot’’
button with overlaid individual data points. On mouse-over, the
metadata for the individual sample is displayed. A tabular
report is generated based on selected genes and tissues: a table
with links to Ensembl, GeneCard, and OMIM for each gene for
quick referencing, and a table containing expression levels for
each selected gene in each selected tissue. The tables can be
arranged or sorted to the user’s preference and can be easily
downloaded for local use.

Heatmap built by the R package ComplexHeatmaps based
on expression can be drawn for selected genes and tissues and
gene expression can be compared across many genes and
tissues (Fig. 4B).62 Finally, a session can be saved or shared by
building a custom link for the session with the ‘‘Build URL
Shortcut’’ button.

Differential Expression and Gene Ontology
Enrichment Tests Allow Quick Comparison of
Gene Differences Between Groups

We performed multiple differential comparisons at the
subtissue level within all eye tissues and against a pan-body
synthetic set comprised of a stratified sample of all tissues
present in our subset of the GTEx dataset, allowing quick
identification of eye-specific genes across 882 different
comparisons. We expanded the differential tests in the 2019
EiaD by adding the GTEx tissues as direct comparisons to our
eye subtissues. The user can view the results selecting
‘Differential’ under the ‘Expression’ tab (Supplementary Fig.
S7D). As with ‘Expression,’ the user can select which version of

FIGURE 2. Raw RNA-seq data from the SRA is run through our pipeline
to create the EiaD, which is used by eyeIntegration app to serve
interactive gene expression visualizations across 73 tissues.
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the web app to draw data from as well as select for gene- or
transcript-level comparisons. The user additionally has the
option to select different gene classes to examine, for example,
protein coding, lincRNA.

The results of differential expression are presented in a
tabular format showing log2 fold change, average expression,
and P values. Depending on the comparison, there are 1 to
33,380 differentially expressed genes (Supplementary Files).
The table can be easily searched for any given gene, viewed
and ordered to the user’s preference, and downloaded in CSV
format. Differential expression can be visualized through fold
change bar graphs with the ‘Pan-tissue plots’ selection under
‘Expression.’ Additionally, we performed GO enrichment for all
differential comparisons. Enriched GO terms are presented
first as a word cloud, for quick comparison of GO enrichment.
We provide tables, with similar viewing options as the
differential expression table, for enriched GO terms in each
class of a given differential comparison.

Murine scRNA-seq Enables Testing of Retina Cell
Type Specific Expression

We incorporated scRNA-seq data from murine retina across
two studies.58,59 This allows researchers to quickly examine
gene expression across individual cell types in the retina.
Single cell gene expression data are visualized through a
heatmap showing the expression of a gene across multiple
retinal cell types and different developmental time points, from
embryonic day (E)11 to postnatal day (P)14 (when available),
and a table of expression values is generated containing the
expression data used to draw the heatmap (Fig. 4C). We also
provide t-SNE/UMAP–based clustering using cell type–specific
labeling created by the publishing authors (Fig. 4D, see

Methods). The plots show all cell types present at a given
developmental stage, and highlights cells expressing a gene
above a user-selected given level.

EiaD 2019 Suggests That iPSC-Derived Organoids
and Fetal Retina Have Closely-Related
Transcriptomes

There are currently two major approaches to studying
developing human retina: postmortem fetal tissue and stem-
cell derived organoids. We looked at how well these
approaches to studying developing retina compare at a
transcriptomic level, for tissue–organoid relationships and
how well they correlate across early development.

To evaluate how the tissues and organoids compare at a
transcriptome level, we looked at the same t-SNE plot from
Figure 3 and focused in on the three types of retina tissue
(adult, fetal, and organoid; Fig. 5A). Here, we saw three distinct
groupings: adult retina (1), developing fetal retina and stem
cell-derived organoid (2), and undifferentiated and early
differentiating stem cells (3). We identified several organoid
samples in cluster 3, but these share one important difference
from the rest of the organoid samples in cluster 3: they have
been differentiating for less than 30 days (shape ‘X’). All of the
organoid retina samples in cluster 2 were older than 50 days.

To assess how similarly the fetal and organoid retina
develop through time, we plotted expression of retinal
progenitors, photoreceptors, and retinal ganglion markers by
time in days (Fig. 5B). Each row is a gene marker of either
retinal progenitor, photoreceptor, or RGC. The rows are
hierarchically clustered to put more similar expression patterns
closer together, as denoted by the height of the dendrogram.
We split the organoid tissues into three groups: Kaewkhaw et

FIGURE 3. t-SNE two-dimensional transcriptome profiles by sample demonstrate effective quality control and transcriptome processing. Colors
match different tissue types and shapes of points define the origin of the tissues.
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FIGURE 4. Screenshots from eyeIntegration web app. (A) Pan-tissue gene expression box plots with accompanying data tables. The data tables
display the rank (lower is more highly expressed) of each gene in each sub tissue, decile of the rank (10 is the highest decile of expression), and
gene’s mean log2(TPMþ 1) score for each sub tissue. (B) Heatmap visualization.
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al.12 GFPþ and GFP- samples, and Eldred et al.63 samples. The
Kaewkhaw samples are flow sorted for a GFP marker (GFPþ)
under the control of the CRX promoter, an important regulator
of photoreceptor development. GFPþ cells would be enriched
in photoreceptor populations. We saw that the retinal
progenitor, photoreceptor, and RGC groups are largely
clustered together, with patterns of expression consistent
across the fetal retinal and organoid groups.

Differential Gene Expression of Organoid Retina
Versus Fetal Tissue Identifies Sets of Genes Relating
to Patterning (HOXB Family), Cell Adhesion
(Protocadherin Family), and RGC Identity (BRN3/
POU4F, NEFL, GAP43, SNCG)

To identify specific changes between retinal organoid and fetal
retina tissue, we performed differential gene expression and
GO term enrichment analyses. The GO term enrichment
identified cell adhesion (protocadherins) and patterning
(HOXB family) as enriched gene sets in retinal organoids. As
there is some evidence suggesting that protocadherins
influence RGC viability and we noticed that several RGC
markers appeared to have lower expression in the organoids
compared to the fetal tissue Figure 5B, we looked more closely
into RGC marker expression.64

We plotted HOXB family, protocadherin family, and RGC
genes in a heatmap visualization, with columns as age in days
of fetal or organoid retina. Rows are genes, split by the three
different groups of genes and are internally clustered by how
similar the expression patterns are. We observed that there are
strong, consistent gene expression differences in these three
groups of genes between fetal retina and the organoid samples
(Supplementary Fig. S8). We also plotted the differential
expression values between all organoids and all fetal retina
samples; all genes across all three groups are significantly
differentially expressed with an FDR corrected P < 0.01.

Limitations of the RNA-seq Quantification in
EyeIntegration

Salmon quantification, while highly performant and accurate,
has a higher variance for lower read depth samples and shorter
transcripts.54 Extra care should be taken with comparisons
with lower counts of samples (cornea, RGC) as smaller sample
numbers decrease the confidence in differential expression.
We do not recommend you directly compare our TPM values
with your counts data as there are many important variables
that will differ. Instead run our Snakemake pipeline (available
in the public domain at https://www.github.com/davemcg/
EiaD_build), adding your samples. Finally, we would like to
remind any users that RNA-seq methods measure mRNA levels,
but the functional unit is the protein; Westerns are still the gold
standard with which to evaluate expression and localization.

Data Accessibility

Individual data files for gene expression and sample metadata
can be downloaded from the ‘Data’ tab on the web app. All
data and code used to generate the web app can be installed
from the R command line by running devtools::install_github
(‘davidmcg/eyeIntegration_app’). The code for the EiaD data
processing pipeline can be found at https://github.com/
davemcg/EiaD_build.

DISCUSSION

EiaD 2019 contains a large set of carefully curated, reproduc-
ibly processed human eye RNA-seq datasets alongside a human
body tissue comparison set from the GTEx project. It is
available for local install as an R package at https://www.
github.com/davemcg/eyeIntegration_app and it is served via a
web app, eyeIntegration at https://eyeIntegration.nei.nih.gov.
The web app offers a wide range of user-driven visualizations
to compare expression of genes across dozens of human body

FIGURE 5. Organoid retina, stem cell retina, and fetal retina tissue have highly similar transcriptomes. The zoom inset (A) shows the retina samples.
The ‘‘Subtissue Cluster’’ shading shows the cluster membership of the three major groups. The shapes of the points show the different origin types
– notable types include the square for adult, the ‘X’ for organoid under 30 days of differentiation, and the diamond for organoid over 30 days of
differentiation. (B) Major markers of retina progenitor, photoreceptors (cone and rod), and RGCs have similar gene expression patterns across
development in retina fetal tissue and organoids.
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and eye tissues. Furthermore, murine scRNA-seq datasets have
been incorporated, allowing for examination of retina cell
type–specific gene expression. Several human and nonhuman
primate studies have been posted in the past year on the
preprint server bioRxiv and as the raw data becomes publicly
available, we will be updating this section of eyeIntegra-
tion.65–67

If you wish to have your data added to EiaD in the future,
we suggest you: (1) deposit data into GEO/SRA; (2) use clear,
descriptive, consistent, and detailed metadata for each sample;
and (3) (optional) contact the corresponding author. Contact-
ing the corresponding author is only necessary if you feel your
data should be included in EiaD and were deposited into the
SRA before May 8, 2019.

As human fetal tissue is difficult to obtain and, thus, not
very amenable for chemical or genetic modification, it is crucial
for organoid-based models to be developed. Our merging of
these datasets and analysis at the transcriptome level (com-
pared to cross-analyzing using a limited number of known
marker genes) indicated that these two approaches success-
fully recapitulate fetal retina tissue, to a first approximation, at
the whole transcriptome level. However as organoids do not
develop to full function, it is important to look at how gene
expression differs between retinal organoid and fetal tissue so
as to suggest areas for improvement.

We used our large dataset to narrow in on three core
processes that differ significantly and substantially between
retinal organoids and fetal retina. First we showed that the
HOXB family is overexpressed in the organoids. The homeo-
box family is well known to initiate polarity of the embryo
during early development.68 Retinoic acid is applied at
approximately day 20 in culture to help differentiate stem cell
to organoids and also is known to activate gene members of
the HOXB family. The lack of HOXB expression at any age in
fetal retina and the broad chromatin and gene expression
changes HOXB family members can mediate suggests that
HOXB activity may be unwanted for organoid maturation.

Next, we detected several protocadherins more highly
expressed in the fetal tissue, relative to the organoids.
Protocadherins mediate cell-to-cell connections and, in the
developing mice, are shown to be important for spinal
internneurons and RGC survival.64,69 We would predict that
decreased protocadherin expression reduces the number and
maturation of RGC. Indeed, we observed that many canonical
RGC markers, while present in detectable levels in the
organoids, are significantly underexpressed relative to fetal
tissue. This result suggested that modifying culture conditions
to promote protocadherin expression may result in higher
RGC yield and survival.

We built the EiaD dataset and the accompanying web app,
eyeIntegration in the hopes that easily accessible gene
expression across tissue space and time will be a useful tool
for hypothesis generation and refinement in eye research.
Wrapping all of the data processing steps in a Snakemake
pipeline has several important advantages for the community:
our code is publicly available for review, our analyses are
reproducible, future sample updates can be streamlined in
with less effort, and because all the processing is in modular
pieces it is easier to add new analysis steps. In the future, we
plan on regularly adding new samples to EiaD, offering de novo
eye tissue transcriptomes, expanding the single cell RNA-seq
expression tooling, adding nonhuman eye samples, and
epigenetic datasets.
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Amended August 6, 2019: In the third paragraph of the article, the 
URL https://eyeIntegration.nei.nih was corrected to be https://

eyeIntegration.nei.nih.gov.
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