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The genus Anaplasma (Rickettsiales: Anaplasmataceae), which includes the
species Anaplasma capra, Anaplasma bovis, Anaplasma ovis, and Anaplasma
phagocytophilum, is responsible for a wide variety of infections in both human and
veterinary health worldwide. Multiple infections with these four Anaplasma pathogens
have been reported in many cases. We introduce a novel multiplex PCR for the
simultaneous detection of A. capra, A. bovis, A. ovis, and A. phagocytophilum, based on
species-specific primers against the groEL (A. capra and A. bovis), msp4 (A. ovis), and
16S rRNA (A. phagocytophilum) genes. To verify the specificity of the PCR reactions, we
evaluated four sets of primers to analyze samples containing different blood pathogens.
The sensitivity of the multiplex PCR was evaluated by amplifying 10-fold dilutions of total
genomic DNA extracted from sheep blood infected with A. capra, A. bovis, A. ovis,
or A. phagocytophilum. The reproducibility of the assay was evaluated by testing
10-fold dilutions of total genomic DNA extracted from sheep blood infected with these
pathogens from 100 to 10−3 ng/µL per reaction in triplicate on three different days.
A total of 175 field blood DNA samples were used to evaluate the reproducibility of
multiplex PCR compared with the simplex PCRs. PCR primers used in this study were
confirmed to be 100% species-specific using blood pathogens previously identified by
other methods. The lower limit of detection of the multiplex PCR with good repeatability
enabled the detection of A. capra, A. bovis, A. ovis and A. phagocytophilum at
concentrations of 3 × 10−5, 5 × 10−7, 2 × 10−5, and 7 × 10−7 ng/µL, respectively.
There was no significant difference between conventional and multiplex PCR protocols
used to detect the four Anaplasma species (P > 0.05). The results of the multiplex PCR
revealed that the A. capra groEL gene, the A. bovis groEL gene, the A. ovis msp4 gene,
and the A. phagocytophilum 16S rRNA gene were reliable target genes for species
identification in clinical isolates, being specific for each of the four target Anaplasma
species. Our study provides an effective, sensitive, specific, and accurate tool for
the rapid differential clinical diagnosis and epidemiological surveillance of Anaplasma
pathogens in sheep and goats.
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INTRODUCTION

The genus Anaplasma (Rickettsiales: Anaplasmataceae)
comprises tick-transmitted obligate intracellular bacterial species
including Anaplasma capra, Anaplasma bovis, Anaplasma ovis,
and Anaplasma phagocytophilum, which are responsible for a
wide variety of different infections in both human and veterinary
health (Guo et al., 2018; Kundave et al., 2018; Guimarães et al.,
2019). A. capra is a potential novel tick-borne Anaplasma
species, which was identified in goats in China (Liu et al.,
2012) and provisionally nominated it “Anaplasma capra” as
the causative agent of human infections as reported by Li et al.
(2015). This pathogen may be responsible for anaplasmosis
cases and may be a substantial public health concern; it also
appears to be widely distributed in China and South Korea
(Li et al., 2015; Peng et al., 2018; Yang et al., 2018a). A. bovis
infects monocytes and tissue macrophages of small mammals
and ruminants (Dumler et al., 2001). The DNA of this pathogen
has been detected in cattle, goats, sheep, dogs, and some small
wild mammals (Fukui and Inokuma, 2019; Giglioti et al., 2019;
Yang et al., 2019). It can cause a variety of clinical symptoms,
including weight loss, fever, anemia, listlessness, and death
in some cases (Aktas and zübek, 2015). A. ovis is an intra-
erythrocytic rickettsial pathogen that mainly affects domestic
sheep and goats, but has also been reported to be present in
some wild ruminants and dogs with mild clinical symptoms
(Zaid et al., 2019). However, symptoms may be exacerbated
by stressors such as co-infection, elevated temperature, and
animal movement disorders throughout Asia, Africa, Europe
and the United States (Hornok et al., 2011; Cabezas-Cruz et al.,
2019; Enkhtaivan et al., 2019; Liu et al., 2019). This pathogen
also poses a potential threat to humans (Wei et al., 2017). The
first human case of A. ovis infection was reported in Cyprus
and was characterized by a fever, hepatosplenomegaly, and
lymphadenopathy (Chochlakis et al., 2010). A. phagocytophilum
mainly affects small ruminants in Hungary, Romania, Italy,
Kenya, South Africa, China, Vietnam, Morocco, and Mexico
(Ait Lbacha et al., 2017; Seo et al., 2018a; Han et al., 2019;
Hornok et al., 2019), but can also cause human granulocytic
anaplasmosis. The pathogen infects neutrophils and survives
by inhibiting or delaying important antimicrobial mechanisms
in host cells (Goel et al., 2018; Lee et al., 2018; Dehhaghi
et al., 2019). Simultaneous infection of these four Anaplasma
agents or mixed infections by different Anaplasma species has
also been reported (Halajian et al., 2018; Wang et al., 2018;
Seo et al., 2018b).

Traditionally, laboratory detection of Anaplasma species
in animals or humans was dependent on the microscopic
examination of blood samples (Giglioti et al., 2019). However,
using this method, it was difficult to clearly distinguish
between A. capra, A. bovis, A. ovis, and A. phagocytophilum,
as they are highly similar in terms of their morphological
characteristics (Liu et al., 2012; Li et al., 2015; Wei et al.,
2017; Lee et al., 2018). It was also difficult to distinguish these
agents from other blood pathogenic agents, such as members
of the Theileria and Babesia genera (Al-Hosary et al., 2018;
Pradeep et al., 2019). Especially when the pathogen load is

low, it is difficult to distinguish between these pathogens by
microscopic examination. In recent years, molecular methods
have been increasingly used in microbiology laboratories, such
as duplex PCR based assays and loop-mediated isothermal
amplification assays, as well as other recently developed methods
that could lead to the development of new diagnostic tests
to identify different Anaplasma species (Cui et al., 2017;
Yang et al., 2018a; Giglioti et al., 2019). The development
of multiplex PCR can enable positive detection without
the need for additional reagents or increased amounts of
input DNA (Hao et al., 2019). However, primer design for
multiplex PCR becomes more challenging when the number
of PCR reactions increases. Hence, to the best of our
knowledge, no multiplex PCR assay for the identification of
clinically relevant Anaplasma species in field blood samples has
previously been reported.

In this study, we developed an accurate, specific and sensitive
multiplex PCR, using a combination of specially designed
primers and previously reported primers, for the identification
of Anaplasma species in field blood samples from animals or
patients suspected of being infected with members of this genus.

MATERIALS AND METHODS

Control DNA Samples
Preserved DNA of Anaplasma spp. (A. capra, A. bovis, A. ovis,
A. phagocytophilum) was used as positive controls in this study.
DNA samples positive for Anaplasma marginale, Anaplasma
platys, Theileria ovis, Theileria annulata, Theileria uilenbergi,
Theileria luwenshuni, Babesia motasi, and Toxoplasma gondii
were used as negative controls. T. ovis and T. uilenbergi
positive samples were provided by Professor Mengqi from
Tarim University and the others were maintained at −80◦C
at the Laboratory of Parasitology of Henan Agricultural
University. All the control DNA samples were evaluated with a
spectrophotometer (Nanodrop Onec; Thermo Fisher Scientific,
Wilmington, DE, United States) prior to use to ensure that the
concentration of DNA samples used in the test were >20 ng/µL
and verified it by specific primers before use. Double-distilled
(dd) H2O was used as a blank control.

DNA Extraction
DNA of field samples was extracted from 250 µL of blood
using the Blood DNA Kit (OMEGA Bio-Tek, Norcross,
GA, United States), in accordance with the manufacturer’s
instructions. The DNA of each sample was eluted in 200 µL
of elution buffer. All DNA samples were examined using the
spectrophotometer to test their quality and quantity, and were
stored at −20◦C until use.

Design of PCR Primers Used for the
Detection of Target Anaplasma spp.
Primers were designed against regions of the A. bovis groEL gene
and the A. phagocytophilum 16S rRNA gene using Premier 5
(Premier Biosoft International, Palo Alto, CA, United States).
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These regions were identified through alignments of nucleotide
sequences obtained in this study and sequences available from
the GenBank database (KX987399, KU585932, and KY425449
for A. bovis; KY242452, KR002115, LC060987, KF569915, and
KC916737 for A. phagocytophilum). The specificity of each
primer set was evaluated using the Basic Local Alignment Search
Tool (BLAST) from the National Center for Biotechnology
Information (NCBI) database1. For the detection of A. capra
and A. ovis targeting the groEL and msp4 genes, respectively,
previously described primers were used (Torina et al., 2012;
Yang et al., 2016). The primers are described in Table 1. The
primer sets were synthesized by Sangon Biotech Company
(Shanghai, China).

Optimization of the PCR Conditions
To ensure optimal amplification conditions for the four target
sequences in a multiplex PCR assay, a range of PCR-related
parameters were evaluated such as the annealing temperatures of
the primers, the dosage of primers, and the concentrations of La
Taq DNA polymerase. To examine these parameters, a number of
tests were performed in 25 µL reaction volumes.

PCR conditions were investigated including the variation of
the annealing temperature from 57 to 64◦C, the concentration
of primer sets from 0.08 to 0.56 µM, the concentration of La
Taq DNA polymerase (TaKaRa, Dalian, China) from 0.75 to
1.75 U, and the concentration of PCR buffer (10×) and the dNTPs
(2.5 mM) from 1.5 to 3 µL and 2 to 6 µL, respectively. The
optimization of the multiplex PCR conditions was based on a
previous report by Henegariu et al. (1997).

Plasmid Construction
For the construction of plasmids containing the A. capra groEL
gene, the A. bovis groEL gene, the A. ovis msp4 gene, and
the A. phagocytophilum 16S rRNA gene, the corresponding
PCR products of 874, 529, 347 and 172 bp were cloned into
pMD-18T (TaKaRa) and then propagated in Escherichia coli
DH5α competent cells (Sangon Biotech). Plasmid DNA was
purified from transformed cells using the SanPrep Column
Plasmid Mini-Prep Kit (Sangon Biotech) and quantified using a
spectrophotometer (Nanodrop Onec; Thermo Fisher Scientific).

To generate standard curves for quantitative determinations
and to assess the amplification efficiency, plasmids were 10-fold-
diluted in elution buffer (Sangon Biotech), representing 100–
10−4 ng/µL DNA template. Aliquots of each dilution were frozen
at −20◦C until use. To minimize the potential for contamination,
the standard plasmid DNA was stored in a separate laboratory.

Evaluation of the Specificity, Sensitivity
and Reproducibility of the Multiplex PCR
To rule out the possibility of cross-reactions with other
closely related pathogens of the blood, the specificity of the
multiplex PCR was evaluated by testing positive control DNA
from blood samples infected with A. capra, A. bovis, A. ovis,
A. phagocytophilum, A. marginale, A. platys, Theileria ovis,

1https://blast.ncbi.nlm.nih.gov/ TA
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T. annulata, T. uilenbergi, T. luwenshuni, B. motasi, and T. gondii.
The negative control was ddH2O, and 29.4 ng/µL was the lowest
DNA concentration used in the assay.

Ten-fold dilutions of total genomic DNA extracted from the
blood of sheep infected with A. capra, A. bovis, A. ovis, and
A. phagocytophilum were used to evaluate the sensitivity of the
multiplex PCR. Each experiment consisted of triplicate tests on
two replicates.

The reproducibility of the assay was evaluated by testing 10-
fold dilutions of total genomic DNA extracted from sheep blood
infected with A. capra, A. bovis, A. ovis, and A. phagocytophilum
from 100 to 10−3 ng/µL per reaction in triplicate on three
different days. Kendall’s coefficient of concordance (Kendall’s W)
was calculated to evaluate the repeatability of the method. Its
value can be between 0 and 1; the higher the value, the better
the repeatability.

Quantification of Pathogens in Clinical
Samples
To quantify the pathogen DNA of A. capra, A. bovis, A. ovis, and
A. phagocytophilum in clinical samples, the qTOWER3 G QPCR
System (Analytikjena Technologies, Jena, Germany) was used for
the real-time PCR assay performed in a final volume of 10 µL
containing 5 µL of TB GreenTM Premix Ex TaqTM (TaKaRa,
Dalian, China), 0.4 µM of each primer and 2 µL of the DNA
template. The thermal profile of the PCR was as follows: 30 s at
95◦C for denaturation, followed by 40 cycles of denaturation at
95◦C for 5 s, annealing at 63◦C for 30 s, and extension at 72◦C for
45 s. The final extension step was 1 min at 72◦C.

Application to Clinical Samples
A total of 175 blood samples (sheep 99, goats 76) were collected
at different time points from a simplex farm in Linyou County,
Shanxi Province. The sheep and goats in this farm were grazed
perennially and highly infested with ticks. DNA of these samples
was used to evaluate the efficiency of the simplex and multiplex
PCR protocols. Conventional PCR conditions as previously
described were performed and compared in terms of efficiency
and capability to the multiplex PCR. The used primer sets are
shown in Table 1. Upon detecting Anaplasma in field samples

by the multiplex PCR, all positive PCR products were sent to
a sequencing company for sequencing, and the results were
consistent with expectations. Infection rates were assessed using
the Chi-square test with Yates’ correction, and a P-value ≤0.05
was considered to represent statistical significance.

RESULTS

Optimization of the Multiplex PCR
After optimization, the optimum multiplex PCR assay was
performed in a final volume of 25 µL, containing 2.5 µL of
10× PCR La buffer, 4 µL of dNTPs at 2.5 mM, 1.25 U of
La Taq DNA polymerase, 0.32 µM of each primer, and 2 µL
of the DNA template. The thermal profile of the PCR was as
follows: 5 min at 94◦C for denaturation, followed by 35 cycles
of denaturation at 94◦C for 30 s, annealing at 63◦C for 30 s,
and extension at 72◦C for 1 min. The final extension step was
10 min at 72◦C. The PCR products (5 µL) were analyzed using
a UV gel imaging system following electrophoresis in a 1.5%
agarose gel and staining with DNA GREEN (Solarbio, Beijing,
China) (Figures 1A–C).

Primer Specificity
To characterize the specificity of the reactions, the four sets
of primers were evaluated using samples containing A. capra,
A. bovis, A. ovis, A. phagocytophilum, A. marginale, A. platys,
Theileria ovis, T. annulata, T. uilenbergi, T. luwenshun, B. motasi,
or T. gondii DNA, and ddH2O was used as a blank control.
Fragments of the expected sizes were generated from the positive
DNA templates. Using the mixed DNA of the four Anaplasma
species as templates, four bands of expected sizes were observed,
and the target bands for infection with a simplex Anaplasma
agent appeared separately. No amplification signals were detected
with the negative control (A. marginale, A. platys, Theileria
ovis, T. annulata, T. uilenbergi, T. luwenshuni, B. motasi, and
T. gondii) and blank control templates (Figure 2). The results
showed that the reaction products could be distinguished by
gel electrophoresis and the primer sets used in this study were
species-specific.

FIGURE 1 | Optimization of the multiplex PCR components. (A) Annealing temperature gradients, M: DL2000 marker. Lanes 1–8: 64, 63, 62, 61, 60, 59, 58, and
57◦C, respectively. (B) Dose of Anaplasma primers, lane M: DL2000 marker; Lanes 1–7: 0.08, 0.16, 0.24, 0.32, 0.4, 0.48, and 0.56 µM, respectively; Lane N:
negative control. (C) La Taq DNA polymerase. M: DL2000 marker; Lanes 1–7: 0.75, 1.0, 1.25, 1.5, 1.75, 2, and 2.25 U, respectively; Lane N: negative control.
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FIGURE 2 | Multiplex PCR specificity test. Four primer sets could amplify genus-specific bands of 874, 529, 347, and 172 bp only in samples positive for
Anaplasma capra, Anaplasma bovis, Anaplasma ovis, and Anaplasma phagocytophilum, respectively. M: DL2000 marker; Lane 1: mixed DNA samples from the four
Anaplasma species; Lanes 2–13: samples positive for A. capra, A. bovis, A. ovis, A. phagocytophilum, A. marginale, A. platys, Theileria ovis, Theileria annulata,
Theileria uilenbergi, Theileria luwenshuni, Babesia motasi, and Toxoplasma gondii, respectively; Lane N: negative control.

FIGURE 3 | Multiplex PCR sensitivity tests on serially diluted positive DNA sample templates. At the top of the figure is dilution factor, with a unit of ng/µL. The left
and right sides of the figure show the molecular weight of the DNA. (A) The sensitivity of the multiplex PCR assay for Anaplasma capra was 3 × 10−5 ng/µL. (B) The
sensitivity of the multiplex PCR assay for Anaplasma bovis was 5 × 10−7 ng/µL. (C) The sensitivity of the multiplex PCR assay for Anaplasma ovis was
2 × 10−5 ng/µL. (D) The sensitivity of the multiplex PCR assay for Anaplasma phagocytophilum was 7 × 10−7 ng/µL.
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TABLE 2 | Simplex PCR, multiplex PCR, and conventional PCR testing of
field blood samples.

Target organisms The positive rate of field samples (%)

Simplex PCR Multiplex-PCR Conventional PCR

A. capra 25.1% (44/175) 23.4% (41/175) 24.0% (42/175)

A. bovis 47.4% (83/175) 38.9% (68/175) 44.6% (78/175)

A. ovis 20.0% (35/175) 18.9% (33/175) 20.6% (36/175)

A. phagocytophilum 60.6% (106/175) 60.0% (105/175) 58.3% (102/175)

Sensitivity of the Multiplex PCR
The optimized multiplex PCR was evaluated by
amplifying 10-fold serial dilutions (100–10−4 ng/µL)
of the mixture DNA infected with these pathogens
extracted from sheep blood. The lower limit of detection
of the multiplex PCR could detect A. capra, A. bovis,
A. ovis, and A. phagocytophilum at concentrations of
3 × 10−5, 5 × 10−7, 2 × 10−5, and 7 × 10−7 ng/µL,
respectively (Figure 3).

Repeatability of the Multiplex PCR
Kendall’s W values for inter-assay reproducibility were found to
range from 0.80 to 0.90 (Supplementary Appendix). This shows
that the optimized multiplex PCR has good repeatability.

Application to Clinical Samples
Out of a total of 175 samples, multiplex PCR revealed 41
(23.4%), 68 (38.9%), 33 (18.9%), and 105 (60.0%) blood samples
positive for A. capra, A. bovis, A. ovis, and A. phagocytophilum,
respectively. By comparison, the positive detection rates
of these four Anaplasma species using simplex PCR and
conventional PCR as previously described were 25.1, 47.4,
20.0, and 60.6, and 24.0, 44.6, 20.6, and 58.3%, respectively
(Table 2). There was no significant difference among the
three methods used to detect the four Anaplasma species
(P > 0.05). An example of the multiplex PCR results for
the detection of Anaplasma spp. in field samples is provided
in Figure 4.

DISCUSSION

Anaplasma species are some of the most widespread microbes
with potential human and animal pathogenicity that are
transmitted by ticks (Kim et al., 2014; Sun et al., 2015; Ben Said
et al., 2018). Among these, A. capra, A. phagocytophilum, and
A. ovis are tick-borne zoonotic pathogens that are significant
for public health (Chochlakis et al., 2010; Li et al., 2015; Lee
et al., 2018), they have been detected in many domestic and wild
animals across the world (Kawahara et al., 2006; Seo et al., 2018b;
Yang et al., 2018b; Cabezas-Cruz et al., 2019). Additionally, recent
reports have presented evidence of co-infection with two or
more Anaplasma species in cattle, sheep, goats, and ixodid ticks
worldwide (Rjeibi et al., 2018; Seo et al., 2018b; Wang et al.,
2018; Zhou et al., 2018; Han et al., 2019). It is thus important
to detect several Anaplasma species in a single DNA sample
by using a single PCR reaction. This would also reduce the
cost of the analysis, which is important particular in developing
countries.

PCR assays have been used to sensitively and specifically
detect Anaplasma species in many diagnostic laboratories.
In fact, numerous reports have been published on the PCR
detection of simplex Anaplasma species in infected animals
and humans (Torina et al., 2012; Chi et al., 2013; Lee
et al., 2018). Duplex PCR assays for the detection of co-
infection with A. marginale (targeting the msp4 gene) and
A. phagocytophilum (targeting the msp2 gene) in cattle (M’ghirbi
et al., 2016) and duplex real-time PCR assays for the detection
of co-infection with A. marginale (targeting the msp1β gene)
and Anaplasma centrale (targeting the groEL gene) in sheep
(Decaro et al., 2008) were previously reported. However, no
previous study has developed an efficient and convenient
PCR assay that would be more convenient and efficient
for field diagnosis than the simplex or duplex PCR assays
to detect multiple Anaplasma agents. Early diagnosis and
treatment are required to reduce the morbidity and mortality
associated with these diseases worldwide (Zhuo et al., 2019).
Hence the present multiplex PCR assay could support the
need for epidemiological assessments of the global distribution
of A. capra, A. bovis, A. ovis, and A. phagocytophilum in
animals and humans.

FIGURE 4 | Detection of Anaplasma in field samples using multiplex PCR. M: DL2000 marker; Lanes 1–22: field samples; P: positive control; N: negative control.
Arrows with numbers (1–4) indicate the amplicons of Anaplasma capra 874 bp, Anaplasma bovis 529 bp, Anaplasma ovis 347 bp, and Anaplasma phagocytophilum
172 bp.
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Several molecular techniques have been proposed for
detecting and characterizing species belonging to the Anaplasma
genus. Previous studies indicated that the 16S rRNA, 18S rRNA,
groEL, ankA, citrate synthase (gltA), and major surface protein
(msps) sequences are highly conserved in Anaplasma spp.; thus,
they have been used widely to classify the Anaplasma genus
(Lew et al., 2003; Lee et al., 2018; Song et al., 2018; Cabezas-
Cruz et al., 2019). Currently, epidemiological investigation of
A. capra uses an assay based on the 16S rRNA, gltA and msp4
genes (Yang et al., 2018a). Molecular detection of A. capra,
A. bovis, A. ovis, and A. phagocytophilum in infected ixodid ticks
was based on the 16S rRNA, gltA, msp4, and 16S rRNA genes,
respectively (Han et al., 2019). Additionally, molecular evidence
of coinfection of Anaplasma species in small ruminants was
obtained by targeting the 16S rRNA and msp4 genes of A. bovis,
A. ovis, and A. phagocytophilum (Yang et al., 2019). Here, we
developed a multiplex PCR assay, which was able to specifically
detect A. capra, A. bovis, A. ovis, and A. phagocytophilum
from field samples. These detection limits of A. bovis and
A. phagocytophilum were higher than those reported for the
detection of Anaplasma spp. in a duplex PCR assay by Cui et al.
(2017).

This method had one limitation. A. capra and A. ovis have
slightly lower detection limits. The primers used to amplify
A. capra and A. ovis thus need further improvement. Considering
the convenience and high efficiency of this method, it may still
be suitable for the detection and epidemiological investigation of
Anaplasma in humans, animals and vector ticks.

CONCLUSION

The results of the multiplex PCR revealed that the A. capra
groEL gene, the A. bovis groEL gene, the A. ovis msp4 gene, and
the A. phagocytophilum 16S rRNA gene are reliable target genes
for species identification in clinical isolates, as they are specific
for each of the four target Anaplasma species. Other, closely
related pathogens of blood tested negative in this PCR assay. In
conclusion, our study provides an effective, sensitive, specific,
and accurate tool for the rapid differential clinical diagnosis and
epidemiological surveillance of Anaplasma pathogens (A. capra,
A. bovis, A. ovis, and A. phagocytophilum) in sheep and goats.
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