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Abstract: Mycotoxins are secondary metabolites produced by fungal species that commonly have a
toxic effect on human and animal health. Different foodstuff can be contaminated and are considered
the major source of human exposure to mycotoxins, but occupational and environmental exposure
can also significantly contribute to this problem. This review aims to provide a short overview of
the occurrence of toxigenic fungi and regulated mycotoxins in foods and workplaces, following the
current literature and data presented in scientific papers. Biomonitoring of mycotoxins in plasma,
serum, urine, and blood samples has become a common method for determining the exposure to
different mycotoxins. Novel techniques are more and more precise and accurate and are aiming
toward the simultaneous determination of multiple mycotoxins in one analysis. Application of
liquid chromatography (LC) methodologies, coupled with tandem mass spectrometry (MS/MS) or
high-resolution mass spectrometry (HRMS) has become a common and most reliable method for
determining the exposure to mycotoxins. Numerous references confirm the importance of mycotoxin
biomonitoring to assess the exposure for humans and animals. The objectives of this paper were
to review the general approaches to biomonitoring of different mycotoxins and the occurrence of
toxigenic fungi and their mycotoxins, using recent literature sources.

Keywords: mycotoxins; biomonitoring; human health; exposure

Key Contribution: This is a review of the current methods for biomonitoring human exposure to
mycotoxins and the most common sources of mycotoxins contamination.

1. Overview

Food safety has become an important term for authorities and consumers. The aim
is to keep the consumers safe from any harmful compounds and to ensure the producers
from economical losses in case of an outbreak of contaminants in the production chain.
The recommendations and the measures taken by the companies and the legal bodies are
based on risk evaluations reported by food safety authorities [1]. Current regulations are
established on scientific opinions given by eminent institutions such as FAO/WHO Joint
Expert Committee on Food Additives of the United Nations (JECFA) and the European
Food Safety Authority (EFSA). This includes the involvement of AOAC International
(Association of Official Analytical Chemists) and the European Standardization Committee
(CEN) who are obligated to monitor and implement the requirements for adequate sam-
pling and analytical methods [2]. The important stages of risk evaluation studies are to
identify and characterize contaminants and to evaluate the exposure to certain hazardous
materials [2–4]. This often means the implementation of long-term monitoring of the occur-
rence of concerning substances in food. Food contaminants consist of different compounds.
But this review will be limited to the most common contaminants—mycotoxins (single or
mixed) and other toxins produced by various fungal species [1], some of which belong to
the genus Aspergillus, Penicillium, Fusarium, and Alternaria [5]. Mycotoxins and general
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exposure to their effect have become a major concern for the scientific and popular commu-
nity. Mycotoxins are a big group of compounds, with a range of chemical structures and
toxicological properties [6]. The most common mycotoxins included in legislation belong
to several types: aflatoxins (AFs) and ochratoxins (OT’), fumonisins (FBs), trichothecenes
and zearalenone (ZEA), patulin (PAT), and citrinin (CIT) [7]. The main food groups af-
fected by fungal metabolites are different cereals, dried fruits, nuts, coffee, and spices [5].
Well-developed strategies including contamination control measures and improvements in
processing technologies are efficient in mycotoxins prevention but despite these efforts, up
to 80% of food still ends up contaminated by mycotoxins [8,9] and it has been estimated
that cca. 25% of cereals worldwide are contaminated with mycotoxins [8]. Reduction of
mycotoxins contamination via food processing (higher temperatures or high pressure) is
minimal and allows them to linger in food items. Destruction in the gastrointestinal tract
is also minimal. This is why they can act in such a harmful way and affect human and
animal health. Their pronounced influence on the global economy is also tremendously
important [10].

To regulate human exposure to food contaminants, especially mycotoxins, human
biomonitoring (HBM) emerged as a recognized, efficient, and cost-effective method [11].
By applying HBM, it is possible to track exposure points and set minimum and maximum
exposure limits. The research possibilities of HBM application can be used to understand
the population range values and identify consumer groups and individuals or groups (e.g.,
geographically). This aims to detect higher exposures and also to confirm the regional
and temporal variability for trends within a population [12]. To conduct valid research,
several set-points regarding HBM need to be addressed. It is very important to provide a
sufficiently sensitive and validated analytical method to obtain accurate measurements of a
biomarker that correlates with the external dose [12]. The most commonly used biological
material for HBM is urine, plasma, or blood. Urine is, however, preferred in field studies
due to the noninvasive sampling method. This generally helps to gain higher acceptance
by study participants [13]. The suitability of the biomarker or matrix greatly depends on
the toxicokinetic profile of the studied compound. Detailed knowledge of the compounds’
toxicokinetics, such as general metabolism properties and excretion timeline, is necessary
to translate the existence of HBM biomarker data into daily intake estimates [12].

Exposure to mycotoxins does not always have to be related to food consumption.
There are studies [14–22] that explored the occurrence of mycotoxins in working or living
environments and the results showed that exposure to mycotoxins can be related to these
places too. This will be further discussed in Section 2.

2. Exposure
2.1. Food

The occurrence and co-occurrence of different mycotoxins are common in available
foodstuffs. Tables 1 and 2 contain basic information on the most relevant mycotoxins and
fungi detected in different foodstuffs and environments. Exposure via food is practically
inevitable since fungi can withstand different conditions that would normally be harmful to
other microorganisms. The additional threat is that fungi produce mycotoxins when found
in unfavorable conditions and mycotoxins also can “survive” the hostile environmental
conditions during food processing, such as higher temperatures and high pressures.

Dietary exposure to mycotoxins and chronic dietary exposure to a combination of
mycotoxins is something that occurs daily [23]. As can be seen from Table 1, mycotoxins can
be found in many types of food. Many reviews and original articles deal with worldwide
exposure to mycotoxins [3,5,22–26].

The toxicological effects of different mycotoxins are reported in many in vivo studies.
Descriptions of mycotoxicoses such as gastrointestinal problems, genotoxicity, estrogenicity,
and even death can be found in numerous scientific reports [23,27–29].
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Table 1. The general overview of the most common mycotoxins that can be found in different foods.

Food Mycotoxin(s) Source

Pistachio Aflatoxins B1, B2, G1, G2 [30,31]

Peanuts Aflatoxins B1, B2, G1, G2
Ochratoxin A [30,31]

Almonds Aflatoxins B1, B2, G1, G2 [30,31]

Dried figs [31]

Cereals

Aflatoxins B1, B2, G1, G2
Ochratoxin A

Deoxynivalenol
Zearalenone
Enniantins

[30,32–34]

Barley Deoxynivalenol
Beauvericin [30,33]

Malt

Aflatoxins B1, B2, G1, G2
Ochratoxin A

Patulin
Deoxynivalenol

[24,30,35]

Wheat flour
Aflatoxins B1, B2, G1, G2

Ochratoxin A
Deoxynivalenol

[30]

Cereal porridge Aflatoxins B1, B2, G1, G2
Deoxynivalenol [30]

Breakfast cereals Aflatoxins B1, B2, G1, G2 [36]

Cornflakes and corn-based
foods

Fumonisins
Beauvericin [37,38]

Rice

Total aflatoxins,
Aflatoxin B1,
Ochratoxin A
Beauvericin

[39–41]

Baby food
Baby fruit foods

Aflatoxins B1, B2, G1, G2
Patulin

Beauvericin
[30,42]

Breast milk

Aflatoxin M1
Beavericin

Dihydrocitrinone
Alternariol monomethyl ether

Enniatin A
Enniatin B

Ochratoxin A
Ochratoxin alpha

Ochratoxin B
Sterigmatocystin

[25,43,44]

Dried milk Aflatoxins B1, B2, G1, G2 [30]

Milk Aflatoxin M1 [30,43,45]

Milk porridge Aflatoxin M1 [30]

Cheese Aflatoxin M1 [46]

Yoghurt Aflatoxin M1 [31]

Fruit drink Patulin [30]

Fruit foodstuffs Patulin [30]

Pork meat Ochratoxin A [47]

Pork hams Ochratoxin A [47]
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Table 1. Cont.

Food Mycotoxin(s) Source

Wine Ochratoxin A [48]

Beer
Ochratoxin A,

Deoxynivalenol,
Sterigmatocystin

[24,49–51]

Coffee Ochratoxin A [52]

Cacao beans Ochratoxin A [53]

Chocolate Ochratoxin A
Aflatoxins [26,54,55]

Spices

Ochratoxin A,
Sum of Aflatoxin B1,

Aflatoxin B2, Aflatoxin G1
and Aflatoxin G2

[31]

Portable water
Surface water
Groundwater

Industrial effluents
Wastewater

Zearalenone
Aflatoxin B1, B2, G1

Ochratoxin A
[56–59]

From Table 1 it is visible that the most common mycotoxins are DON (deoxynivalenol),
patulin, OTA and B (ochratoxin A and B), and AFs (aflatoxins). They can be found in
everyday foods that are consumed all over the world. Mycotoxins can also be found in
water, as confirmed by several studies. Special attention is paid toward the regulation of
mycotoxins found in baby foods. Infants are susceptible to developing difficulties when
in contact with these kinds of contaminants. To reduce the risk of developing health
problems, many of the stated mycotoxins are regulated by the European legislative but
many of them are still treated as emerging issues and their effect on human health is not
yet well-described.

Besides the sites in which mycotoxins or fungi can reside, a novel approach to the study
of mycotoxin exposure was described by Assunção et al. [60]. They published a review
about the influence of climatic changes on aflatoxin exposure and overall human health
issues related to these mycotoxins in Portugal. Global warming could result in higher num-
bers of hepatocellular carcinoma related to aflatoxins, as certain forecasts have predicted
that aflatoxin contamination in European crops could become a food safety issue within
the next 100 years. Battilani et al. [61] identified cereals and maize as crops susceptible to
contamination due to climate change. Higher levels of mycotoxins detected in breakfast
cereals have already confirmed the effect of climate change in this respect on cereal-based
foods [60,61]. This shows that global warming affects fungal metabolism, and that when
such fungi encounter unfavorable conditions (warmer temperatures, drought, stress),
they produce more mycotoxins.

2.2. Environment

As mentioned before, biomonitoring means not only a follow up on mycotoxin intake
via food, but active monitoring of possible exposure through inhalation, from the environ-
ment. To investigate something like this, it is immensely important to implement a suitable
analysis method. The most common source of bodily fluids for mycotoxin detection is
urine [62]. The presence of mycotoxins in a certain environment, such as working or living,
and repeated exposure to contamination can pose a serious threat to human health. It is
immensely important to provide the appropriate working safety equipment and conditions
for exposed workers. In the following sections, the emphasis will be put on different sources
of mycotoxin contamination, the most common mycotoxins, and exposure potential.



Toxins 2021, 13, 113 5 of 23

Table 2. The most habitual fungi in different environments.

Fungi Environment Fungal Domicile Source

Aspergillus spp.,
Eurotium spp.,

Cladosporium spp.,
Penicillium spp.

Apartments Air

[63]
Penicillium spp.,
Aspergillus spp.,

Cladosporium spp.
Basements Air

C. herbarum,
D. macrocarpa,
P. crustosum,

A. puulaauensis,
P. italicum,

P. waksmani
R. stolonifera

Library or archive Air
Surfaces [64]

Aspergillus spp.,
Cladosporium spp.,
Penicillium spp.,

Rhizopus spp.
Trichoderma spp.

Passenger vehicles
Filter or

air-conditioning
system

[65]

Although these studies did not measure mycotoxins it is important to know the
fungal microbiome surrounding us. It is proven that these fungi synthesize mycotoxins
and therefore a possibility of mycotoxin contamination in the human body is not to be
taken lightly.

2.3. Occupational Exposure to Mycotoxins

Exposure can be related to workplaces, especially in the field of agriculture (farms) and
the food industry (mills, bakeries) [15,17,62,64,66,67]. Working environments with poor
ventilation, inappropriate protective clothing, and equipment [68,69] expose workers to a
higher risk of contamination. The accurate risk assessment of mycotoxins in agricultural-
related workers is an important tool in ensuring the health of workers. Exposure to
mycotoxins in working environments relies on the same methods of assessment, measuring
their residual levels (or specific metabolites) as biomarkers in biological fluids including
blood and urine [62,70]. In such cases, it is important to analyze and compare the urine
from potentially exposed subjects and those who are nonoccupationally exposed (i.e.,
a control group) [62].

However, according to Föllmann et al. [62], the measured biomarkers in urine samples
from the two groups, control (with dietary intake only) and the mill workers, showed dom-
inantly dietary mycotoxin exposure, concluding that inhalational exposure of mill workers,
is presumably very low. Nevertheless, the possibility of contamination still exists and
attention should be paid to preserve the health of workers whenever possible.

3. Mycotoxins, Biomarkers, and Matrix Analysis

Mycotoxins that can be harmful to humans are included in the legislation of many
countries. And, as can be seen from Table 1, these are the most detected mycotoxins in
marketed foods. Some of them are not as common but are very toxic and thus included in
the legislation. Aflatoxins, ochratoxin A, zearalenone, deoxynivalenol, fumonisins, and the
methods of their detection and biomonitoring are well described by [21]. Some of it will be
conveyed in this section.

Combining information from web source [5,71] mycotoxin biomarkers can be detected
using three approaches:
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• direct-or exposure-based biomarkers are specific; standardized analytical methods (op-
timized and validated), mainly for parent compounds, because not many metabolites
are available as reference substances.

• Indirect—indirect (or biomarkers of effect) are generally non-specific and represent
structural or functional alterations produced in the body under exposure to certain
drugs or toxins.

• Non-targeted—the determination of unknown mycotoxin derivatives.

Easily accessible biological matrices (urine, serum, plasma and breast milk) are key
elements in HBM. Urine samples are easily obtainable by non-invasive methods, it can con-
tain biomarkers of different mycotoxins [13]. However, urine biomarkers are susceptible
to daily variations in mycotoxin intake, demanding at least 24 h sampling. Urine volume
is individual for each person so this results in changes in the concentration of excreted
compounds in the samples. This discrepancy can be reduced by applying a common—but
still questionable—method for adjusting the mycotoxin levels in creatinine concentra-
tions [72,73]. Namely, it is still unclear if the mycotoxin/creatinine ratio is applicable for
comparison between individuals since creatinine is influenced by many factors (muscle
mass, sex, age, season, diet, etc.) [74].

Breast milk is a great point to estimate the exposure in breastfed babies to different
mycotoxins, but it is used to monitor only lactating women.

Other bodily fluids, such as serum and plasma, require somewhat invasive meth-
ods and educated medical staff to be collected, but can contain higher levels of studied
chemicals [75] and are often used in long-term exposure studies [76].

Some mycotoxins can end up in the blood unchanged, and some can go through dif-
ferent modifications while in the human (or animal) metabolic system [77–83]. To calculate
the exposure to mycotoxins, the metabolized form, very often the biomarker, needs to be in-
cluded in the calculation [84,85]. Examples of well-established biomarkers for follow up on
mycotoxins exposure is the production of glucuronic acid conjugates from deoxynivalenol.
As mentioned before, some mycotoxins are resilient to endogenous metabolism and may
be detected in their original form. A good example of this is the non-polar fumonisins (FB),
which show off low rates of absorption and metabolic activity [77,86–88]. Since dietary
analyses are broadly utilized in assessing the intake of food contaminants in the general
population, certain tools need to be employed to reduce and clarify the variance among
populations. For that reason, recent reports point to an increased interest in using dietary
biomarkers to detect possible analytical errors in external exposure estimates [89].

Due to the complexity of blood, plasma, and serum samples, matrix components
might interfere in analyte retention. They can also affect to reducing purification, recovery,
and method sensitivity when mass spectrometry (MS) detectors are used.

Table 3 shows the most common and efficient methods for the determination of
different mycotoxins or their biomarkers. Depending on the mycotoxin, extraction methods
vary (IAC—immunoaffinity columns, SPE—solid phase extraction, LLE—liquid-liquid
extraction, QuECHERS® —quick, easy, cheap, effective, rugged, and safe, etc.), but some
methods include a practical dilute-shoot or Filter-shoot preparation which makes the
analysis more simple. Sample volumes also differ (10–0.1 mL), depending on the method.
Detailed information can be found in an extensive review by Escrivá et al. [90].
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Table 3. Most common methods for determination of different mycotoxins or their biomarkers in various human samples.

Mycotoxins Matrix Detection Technique Source

OTA Serum

ELISA
CE-LIF (CE/laser-induced FD)

HPLC-FD
HPLC-FD LC-ESI-MS/MS

[91–99]

AFB1 Serum ELISA [70]

OTA, OTα Serum HPLC-FD [34]

OTA Urine HPLC-FD
HPLC-ESI-MS/MS [100–102]

OTA, OTα Urine HPLC-FD [103]

AFB1-N7-Gua Urine HPLC-ESI-MS/MS [104]

DON-GlcA Urine LC-MS/MS [105]

STG Urine LC-MS/MS [106]

DON, DOM-1 Urine LC-MS/MS [107]

DON, DON-GlcAs Urine LC-MS/MS [108]

DON, DOM-1, DOM-1-G, DON-G1, DON-G2 Urine HPLC-APCI-MS/MS [109]

FB1, FB2 Urine HPLC-ESI-MS/MS [110]

ZON, α-ZOL, β-ZOL,
ZAN, α-ZAL, β-ZAL Urine HPLC-EC [111]

CIT, HO-CIT Urine LC-MS/MS [112,113]

DON, DOM-1 Urine LC-MS/MS [114,115]

OTA, OTA-GlcA, OTA-sulfates Urine LC-MS/MS [116]

AFM1, FB1, FB2, OTA, OTα Urine HPLC-ESI-MS/MS [117]

AFB1, AFB2, AFG1, AFG2, OTA, DON, ZON, FB1, FB2,
T-2, HT-2 Urine LC-QTRAP-MS/MS [118]

AFM1, OTA, DON, DOM-1, α-ZOL, β- ZOL, FB1 Urine HPLC-Qtrap-MS/MS [119]

DON, NEO, AFB1, AFM1, HT-2, HT2, OTA, OTα, ZON,
α-ZOL, β-ZOL, FB1 Urine LC-MS/MS [120]

DON, OTA, FB1, AFB1, ZON, T-2, HT-2, AFB1, CIT,
DOM, DON-2-GlcA, ZON-14-GlcA, α-ZOL, β-ZOL,

4-OH-OTA, OTα, AFM1, AFB1-N7-Gua
Urine LC-MS/MS [121]

DON, DON-3-GlcA, DON-15-GlcA, DOM-1, NIV, T-2,
HT-2, ZON, ZON-14-O-GlcA, α-ZOL, β-ZOL, FB1, FB2,

OTA, AFM1
Urine HPLC-ESI-MS/MS [122]

DON, DON-3-GlcA, DON-15-GlcA, ZEN, ZEN-14-GlcA. Urine LC-MS/MS [123]

DON, DOM-1, AFM1, FB1, ZON, α-ZOL, β-ZOL, OTA Urine
UPLC-MS/MS

LC-QTrap MS/MS
UPLC-API 5000 MS/MS

[124]

AFM1, OTA, FB1, DON, DON-GlcAs, FB2, DOM-1,
ZON, ZON-14-GlcA, α-ZOL, β-ZOL, T-2, HT-2, NIV Urine LC-MS/MS [125]

AFB1, AFB2, AFG1, AFG2, AFB1-N7-gua, AFM1, CIT,
DON, DON-3-GlcA, DOM-1, FB1, HFB1, OTA, OTα,
4-OH-OTA, T-2, HT-2, ZON, ZON-14-GlcA, α-ZOL,

β-ZOL
Urine LC-MS/MS [126,127]
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Table 3. Cont.

Mycotoxins Matrix Detection Technique Source

AFB1, AFB2, AFG1, AFG2, AFM1, CIT, OH-CIT, DON,
DON-3-GlcA, DON-15-GlcA, DOM-1, DOM-1-3-GlcA,

3-ADON, 3-ADON-15-GlcA, 15-ADON,
15-ADON-3-GlcA, DAS, FB1, FB2, FB3, FUS-X, OTA,

OTα, T-2, HT-2, ZON, ZON-14-GlcA, α-ZOL,
α-ZOL-7-GlcA, α-ZOL-14-GlcA, β-ZOL,

β-ZOL-14-GlcA.

AFB1, DAS, FusX, 3-AcDON, 15-AcDON, α
-ZEL, β-ZEL, OTα, DOM-1, FB1, FB2, FB3, DON, ZEN,

T2, HT2, DON-3-GlcA, DOM-GlcA, ZEN-14-GlcA,
β-ZEL-7-GlcA, β-ZEL-14- GlcA, α-ZEL-7-GlcA,

α-ZEL-14-GlcA, 15-AcDON-3-GlcA, 3-AcDON-15-GlcA,
OTA, CIT and AFM1

Urine LC-MS/MS [128]

DON, DON-3-GlcA, T-2, HT-2, HT-2-4-GlcA, FB1, AFB1,
AFB2, AFG1, AFG2, AFM1, ZON, ZAN, α-ZOL, β-ZOL,

ZON-14-GlcA, ZAN-14-GlcA, α-ZOL-14-GlcA,
β-ZOL-14-GlcA, OTA, OTα, ENN B, DH-CIT

Urine LC-MS/MS [129]

DON, DON-3-GlcA, T-2, HT-2, HT-2-4-GlcA, FB1, AFB1,
AFB2, AFG1, AFG2, AFM1, ZON, ZAN, α-ZOL, β-ZOL,

ZON-14-GlcA, ZAN-14-GlcA, α-ZOL-14-GlcA,
β-ZOL-14-GlcA, OTA, OTα, EN B, DH-CIT

Urine LC-MS/MS [130]

DOM-1, DON, 3-ADON, FUS-X, DAS, NIV, NEO, HT-2,
T-2, ZON, α-ZOL, β-ZOL, ZAN, α-ZAL, β-ZAL Urine GC-MS/MS [131–133]

DON, DOM-1, 3-ADON, 15-ADON, ZON, α-ZOL,
β-ZOL, ZAN, α-ZAL, β-ZAL Urine GC-MS/MS [134]

OTA Breast milk HPLC-FLD [135]

AFM1, OTA Breast milk HPLC-FD, ELISA [136]

ZON Breast milk ELISA, HPLC-FD [137]

DON, 3-ADON, NIV, FUSX, NEO, DAS, HT-2, T-2, ZON,
α-ZOL, β-ZOL, FB1, FB2, FB3, EN A, EN A1, EN B, EN
B1, BEA, AFB1, AFB2, AFG1, AFG2, AFM1, STG, OTA,

OTα

Breast milk UHPLC-HRMS [138]

AFB1, AFB2, AFG1, AFG2, AFM1, OTA Breast milk HPLC-FLD
LC-MS/MS [139]

OTA, OT_ Serum urine HPLC-FLD
HPLC-ESI-MS/MS [140,141]

CIT Serum urine HPLC-FLD [141,142]

ENs, BEA Serum urine LC-MS/MS [143]

OTA, OTB Feaces HPLC-FLD [144]

TCT, AFs, OTA
Urine and

nasal
secreations

ELISA,
Fluorometry [145]

AFB1, AFB2, AFG1, AF2, AFM1, AFM2, OTA, DON,
NIV, T-2, HT-2, 3-ADON, 15-ADON, NEO, FUS-X, DAS,
MAS, ZON, ZAN, α-ZOL, β-ZOL, α-ZAL, β-ZAL, T-2

triol, T-2 tertraol, DOM-1, FB1, FB2

Urine, blood,
feces, saliva,

nasal
secretions,

breast milk,
amniotic
fluid of

pregnant
women

HPLC-MS/MS [146]
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Aflatoxins are one of the most well-studied mycotoxins with a metabolism that is
familiar to scholars. Four different aflatoxins aflatoxin B1 (AFB1), aflatoxin B2 (AFB2),
aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2) are often detected and quantified as foodstuff
contaminants. However, AFB1 is the most important not only because it is abundant but
because of its toxicity. Biochemical reactions (hydroxylation and epoxidation) occurring
in metabolism determine the form it will end up in. Hydroxylation at C-7 leads to the
formation of aflatoxin M1 (AFM1) and epoxidation at C-8, C-9 ends up either in endo-
or in exo-configuration. This makes AFM1 the first described metabolite and validated
biomarker of aflatoxin exposure with an average conversion rate of about 1.5% [147] and
can be determined in different biological fluids such as urine and breast milk [148]. Epoxi-
dized form of AFB1 reacts with DNA (exo-epoxide only), glutathione, or is hydrolyzed
to AFB-diol. Further complex metabolism of AFB-DNA-adducts is described in [21],
but in short, aflatoxin B1-N7-guanine (AFB1-N7-guanine) and aflatoxin B1-glutathione
conjugates are excreted via urine as aflatoxin B1-mercapturic acid conjugates (Aflatoxin
B1-N-acetyl-cysteine, AFB1-NAC) and can serve as biomarkers [149,150]. For blood sam-
ples, the aflatoxin biomarker is an aflatoxin-albumin adduct and is the most common
matrix for aflatoxins detection in urine, breast milk, and blood. It is usually determined
via high-performance liquid chromatography coupled with fluorescence detection (HPLC-
FLD) [64,65,151–153]. A faster and cheaper method, enzyme-linked immunosorbent assays
(ELISA) can also be applied in aflatoxin and aflatoxin-metabolite analysis in blood and
urine. Xue et al. [154] reported an almost completely non-invasive and utterly simple
AFB1-albumin adduct detection from dried blood spots.

Ochratoxin A is characterized as nephrotoxic and carcinogenic mycotoxin, often found
in food and feed [30,155,156]. It can be found in human serum even after 30 days [157]
and serves as a biomarker for ochratoxin A exposure [158]. Detection of ochratoxin A in
urine is not as precise and accurate since only quantities of ingested OTA end up in urine
(<3% per day) [157,159], but a less invasive method, many research data originate from
values obtained from urine samples [81,140,160]. Continuous and current studies are inves-
tigating the metabolic pathways involving OTA [116,161,162] and its forms (hydroxylated
ochratoxin A (4R-OH-OTA) and ochratoxin α (OTα)) [140,160,163]. OTA can be detected
in blood plasma [163–166] and method improvement is ongoing [5,140]. OTA can also
be detected in dried blood spots and quantified using HPLC-MS/MS technique [167,168].
ELISA can also be applied for the analysis of ochratoxin A in plasma and has been widely
used for the screening of samples [169–171]. Orti et al. [172] reported the first method
for the analysis of OTA in human urine, but with simultaneous detection of ochratoxin A
and aflatoxin B1. Some scholars [13] worked toward the improvement of these methods.
In 2010 Munoz et al. published the protocol for HPLC-MS/MS analysis of OTA and OTα
in urine [140]. Several authors [173,174] reported working on a molecular imprinted poly-
mers method which can be employed for OTA purification from urine. In 2020 a group of
scholars [175] conducted research on mycotoxin exposure assessments in a multi-center
European validation study by 24-h dietary recall and biological fluid sampling where they
established a positive correlation between the ochratoxin A (and several other mycotoxins)
levels, 24 h exposure time and serum. This could help scholars and professionals to identify
chronic exposure biomarkers and to easier assess a single-time point exposure.

Zearalenone (ZEN) is a Fusarium toxin that exhibits estrogenic properties after inges-
tion. In the gastrointestinal tract, it undergoes both, phase I and phases II metabolism
described in detail by Metzler et al. [176]. In short, it can be reduced to α- or β-zearalenol
(α-/β-ZAN) with α-ZAN being predominantly found in humans and pigs while β-ZAN
can be found in cows. Following biochemical reactions lead to forming α-/β-zearalanol
(α-/β-ZAN). This form can be found in sheep [177]. Oxidative metabolism can result in
the formation of 8-hydroxy ZEN which was confirmed in vivo in the liver and urine of rats
dosed with ZEN but not yet in humans [178,179]. Glucuronic acid conjugates of ZEN, ZAN,
α-/β-ZAN, and α-/β-ZAN are known but only ZEN-14-O-β-glucuronide (ZEN-14-GlcA)
is detected in human urine [122,129,180]. Analysis of ZEN and its metabolites in blood and
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urine samples using the HPLC-MS technique is currently the most used method and many
scholars are working on improvements [122,181–183].

Deoxynivalenol and its acetylated forms, 3-acetyl-deoxynivalenol (3-AcDON), and 15-
acetyldeoxynivalenol (15-AcDON) are designated as the most prevalent mycotoxins [184].
However, plant metabolites relating to deoxynivalenol are also gaining popularity and
significance among scientists. DON causes gastrointestinal problems and oxidative dam-
age, inhibits DNA, RNA, and protein biosynthesis by interaction with ribosomes [185–187].
The metabolism of DON is studied in animals and a small amount of data exist considering
human metabolism. DON needs a short time to be excreted from the body [188]. They re-
ported that cca 30% of DON uptake is excreted via urine in 24 h, but 40% of DON in urine
can be recovered as the unmodified mycotoxin [188]. DON metabolism results with its
masked forms (deoxynivalenol- 3-O-β-glucuronide (DON-3-GlcA), deoxynivalenol-15-O-β-
glucuronide (DON-15-GlcA) and deoxynivalenol-O-glucuronide (DON-7-GlcA), deepoxy
DON (DOM-1), and its glucuronide, DON-3-sulfate are some successfully detected in
humans [126,189–194]. Due to the polarity of DON, blood screening is of no importance for
biomonitoring [188], but detection and quantification of DON in urine and its metabolites
via the HPLC-MS/MS technique is a common and reliable method [129,182,188]. Report-
edly, DON levels, after oral administration, in human samples of urine span from 0.003 to
0.008 µg/mL [109]. Urinary daily excretion of 35.2 µg DON was determined in humans
after 49.2 µg of DON daily intake, representing 68.3% of the established DON provisional
maximum tolerable daily intake (PMTDI) [131].

Type A trichothecenes—T-2 and HT-2 toxin, nivalenol (NIV), and fusarenon X (FUS-X)
are also considered toxicologically relevant food contaminants. T-2 toxin is a type A
trichothecene. It is a result of the metabolism of different Fusarium spp., and can be
found in cereals and cereal-based products [195]. T-2 toxin is an inhibitor of protein
synthesis and mitochondrial function and displays immunosuppressive and cytotoxic
effects. Toxicity of HT-2 toxin (HT-2) has been less investigated because T-2 toxin is rapidly
metabolized to HT-2 in vivo and for that reason, the Joint FAO/WHO Expert Committee
on Food Additives (JECFA) reported that the toxic effects of T-2 and HT-2 cannot be
differentiated. T-2 toxin is rapidly absorbed, as the other trichothecenes, and excreted in
feces and urine [196]. On that note, HT-2, as the dominant compound in in vitro and in vivo
studies, should be considered as the main T-2 biomarker in urine and plasma samples [197].
Hydroxylated products and glucuronide forms could also be used as biomarkers for T-2
exposure. Hence, several studies detected T-2 and HT-2 in human urine [130,133]. The lack
of commercial reference standards only HT-2-4-glucuronide has been detected in human
urine [130]. The implementation of novel methods should allow the detection of additional
T-2 metabolites, especially the dominant metabolite, 3′-OH-HT-2. NIV is classified as a
type B trichothecene. It is common in wheat [198] and displays immunotoxic, hematotoxic,
myelotoxic, developmental, and reproductive toxicity properties. Exposure to dietary NIV
has been associated with an increased incidence of oesophageal and gastric carcinomas
in certain regions of China [199]. Since NIV is water-soluble it can be easily absorbed,
distributed, and eliminated without accumulation in all investigated animals (rodents, pigs,
and poultry) [200,201]. Scholars investigating NIV in human urine determined moderate-
to-high NIV concentrations in the urine samples due to the limit of detection (LOD) used
in their study (>4.0 ng/mL) [182]. NIV can presumably be excreted in the glucuronidated
form, similar to DON (>90% DON-3-glucuronide and DON-15-glucuronide) [126]. In short,
NIV was scarcely studied regarding its metabolic and toxicokinetic properties but its high
similarity with DON molecules can indicate that NIV-glucuronides are yet to be identified.
However, deepoxy-NIV can be found in feces. FUS-X is also a type B trichothecene that
can be found in cereals. It usually co-occurs with DON and NIV, but in lower levels [202].
As reported by [203], its toxicity is more potent than other type B-trichothecenes. It affects
hematopoietic tissues, the spleen, and the thymus, and exerts intestinal inflammation,
inhibits protein synthesis, induces apoptosis, and alters genetic material causing cell cycle
delays, chromosomal aberrations, and sister chromatid exchanges [204]. According to
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several studies, FUS-X is absorbed from the gastrointestinal tract of different animals and
oral bioavailability is dependent on the particular species in question [205–207]. FUS-X is
converted to NIV (>90%) in the liver and kidney. FUS-X biomarker analysis should focus
on quantification of NIV both in urine and in plasma [208].

Fumonisins (FUM) also originate from Fusarium fungi. Even though more than
30 compounds are designated as fumonisins, the most familiar are fumonisin B1 (FB1)
and fumonisin B2 (FB2). Fumonisins are classified as carcinogens and can cause different
anomalies in children [86,209]. FB1 in urine is the basis for HBM [87,210], based on data
retrieved from research on humans that showed a 0.12–2% excretion via urine which is
enough since high amounts of FB1 can be found in food [87,211,212]. Analytical methods
for the detection of FB1 are usually based on urine and are done via the HPLC-MS system.
The oral bioavailability is generally below 5% for FB1 [171].

Multi-mycotoxin detection unites several fungal species (Fusarium sp. Aspergillus,
Penicillium) and monitors the co-exposure to several mycotoxins. Saving money and adding
a new dimension to BMH, this method is getting more attention. In 2010 Ahn et al. [117]
developed a method for urine samples in which they detected AF, OTA, and FUM via
HPLC-MS/MS. Rubert et al. [118] determined T2/HT-2, DON, FB1, FB2, AFB1, AFB2,
AFG1, AFG2, ZEN, and OTA. Emerging mycotoxins and mycotoxin metabolites should be
included in multi-mycotoxin HBM [213,214] and legislative frames. However, they demand
an unspecific sample treatment [129,215] which makes the analysis that much difficult
and complex.

Based on data collected from the consumption of contaminated foodstuffs and the
average occurrence of the toxin, the exposure to certain contaminants can be derived
by calculation [31]. However, the classical analytical approaches provide valuable data.
The estimation of exposure via biomarkers correlates the direct exposure assessment with
the dietary mycotoxins ingestions [22]. HBM is by definition the analysis of mycotoxin
biomarkers in body fluids and tissues and serves to estimate the internal exposure of
humans to food contaminants [216,217]. Assessing exposure through mycotoxin levels
in biological matrices has a certain advantage when compared to solely analyzing the
occurrence of toxins in food and combining the obtained data with information on food
consumption. Namely, HBM can neglect the contamination source (orally or by inhalation)
since this information is not important for this method. HBM also requires a single deter-
mination per person and food sampling methods and consumption data collection are not
necessary. For that reason, HBM should be conducted continuously and worldwide [218].

Biomarkers, however, have to be validated to assure that they accurately represent the
level of intake of the considered food, that the sample type and time of sampling are appro-
priate for the intended use, and that the analytical method is valid according to current
standards. Validation of biomarkers is an important factor for analytical validity measured
according to the prescribed standards as well as a matter of biological (nutritional) validity.
Different variables affect the content of biomarker precursors in foods and subsequently
their metabolism and kinetics in individuals. Therefore, validation criteria must refer to
biological aspects of the biomarkers as well [219–221].

4. Exposure Assessment

Exposure assessment is a difficult and synergistic approach including all available
data is crucial for a sound conclusion. According to several authors, HBM, in correla-
tion with different dietary surveys can be more useful for confirmation of exposure to
mycotoxins, because it connects exposure to certain foods but it can expose the influence
of other factors (differences in exposure due to socioeconomic or regional factors) to the
results [116,222,223]. In short, HBM can be more of use in human health and dietary studies,
than its use in exact exposure assessment of daily intake [224]. Exposure assessment of daily
intake from blood or urine concentration remains difficult unless the human toxicokinetics
and inter-individual differences are better understood [116,224].
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4.1. Relevant Strategies for Data Collection

To assess the shifts in mycotoxins exposure, food consumption surveys are regu-
larly updated. However, increased consumption of nutty cereals or beer may increase
the exposure to mycotoxins present in nuts and cereals (malt), such as deoxynivalenol,
aflatoxins, or ochratoxin A. Monitoring studies and data collections are important for
analyzing trends in mycotoxin occurrence in raw materials and foods. The timely and con-
tinuous follow-up results with an updated exposure assessment, which is very important
for HBM studies, and most importantly can lead to appropriate reactions and reduction
recommendations. There are several methods, described below, that ensure data collection
for further processing.

Food consumption surveys are conceived as questionnaires filled by volunteers who
individually and in detail reminiscence at least two days of their diet. Such data sets are
useful in aiming the assessment of dietary exposure to certain mycotoxin in the general
population [225,226]. The major EU institution for such assessments is the European Food
Safety Authority (EFSA), which formed the Comprehensive European Food Consump-
tion Database, also called EFSA Comprehensive Database [227]. Global assessments are
done by the Food and Agriculture Organisation (FAO) of the United Nations. EFSA also
implemented the food classification system named FoodEx1 which serves to codify all
foods and beverages present in the database. FoodEx2 is an upgraded version and enables
more precise reporting of consumption patterns. These databases are holding information
about food consumption pattens of infants, toddlers, children, adolescents, adults, and the
elderly for the different Member States. Complex statistical methods are applied and the
amount of data resulting from these surveys is vast. However, these summary statistics is
a useful and quick screening tool in assessing chronic and acute exposure to hazardous
substances. EFSA uses the detailed underlying consumption data at the individual level
to perform more refined exposure assessments, both acute and chronic. System for Food
Contamination Monitoring and Assessment Program, commonly known as GEMS (Global
Environment Monitoring)/Food operated by WHO implements the program in cooper-
ation with a network of Collaborating Centers and acknowledged worldwide national
institutions. WHO and FAO have actively worked toward obtaining as much new data and
have recently developed a new database for Individual Food Consumption Data which
provides summary statistics at three levels of food categorization and can be used for an
indication of the dietary exposure at a national level.

Data Collection

Data collection for exposure assessment can be related to several methods described
in the following sections.

Food monitoring studies aim to investigate the prevalence and concentration of
various contaminants, in an ingredient or food [1]. The procedure of sampling includes
a random collection of samples from various points in the supply chain. An important
point, is that this allows for the tracking of food products and relates this tracking back
to the producer. Sampling can be done over a designated time. Samples can also be
provided by surveys which are frequently published in the literature and available to
the public [228–231]. For such studies, classification and description of foodstuffs play an
important role in exposure estimations for the general population based on the geographical
origin. This also contributes to the diversification of consumers to sensitive groups in the
population (infants or people with specific diets) [232]. Important parameters such as
sample size, sampling strategy, and sample preparation have to be noted as they could
influence the results [233]. Immunoassays can be utilized as a screening method and can
be a useful tool in assessing exposure. If not to determine the presence of a compound then
to exclude its presence above a certain limit.

Total diet studies evaluate food samples which collectively make up a sample of the
whole diet. Samples are collected, prepared, and pooled into composite samples per food
category, as described in Ref. [234]. In such studies it is important to include seasonality
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because some foods may contain various mycotoxins levels due to climatic conditions).
Geographical variation [235] is also important to incorporate since it covers the potential
geographical differences. According to food safety authorities, EFSA, WHO, and FAO,
the food list should cover about 90% of the food intake, should be as close as possible to the
actual whole diet, and should include beverages and drinking water [234]. Representative
food items and food processing habits should be as close as possible to the habits of the
investigated population. In a total diet-like study, the food items for which contamination
levels of the relevant (group of) substances are expected are sampled separately [235].

EFSA employs two types of total diet studies [235]:

a) total diet study for screening (limited number of composite food samples for common
food categories). In the case of high exposures, further examinations are performed
to identify the source.

b) total diet study for refined exposure assessment (a large number of samples for
smaller, more refined, food categories).

Duplicate diet studies aim to provide a copy of all food items and beverages as
consumed by one person at a certain time, e.g., during a 24 h period. Such studies
measure the actual exposure of consumers to compounds of interest, but the effects of food
processing and preparation are also considered [236]. Duplicate diet studies have various
different version. For example, where only a portion of the diet is collected, or where foods
are collected based on standardized or average diets [1]:

a) cyclic sub-portion duplicate diet,
b) subpopulation duplicate diet,
c) targeted food duplicate diet and,
d) the total population diet.

Some of the methods for exposure assessment are described in the Dietary Assessment:
A resource guide to method selection and application in low resource settings, a detailed
handbook issued by the FAO in 2018 [237].

4.2. Exposure Assessment

Exposure assessment is defined as the qualitative and/or quantitative evaluation of
the likely intake of chemical agents via food as well as exposure from other sources if
relevant [1]. According to several authors, to estimate the dietary exposure of humans to
mycotoxins, it is important to manage as much information on prevalence and levels in
foods as possible and to combine them with consumption data [3,237]. Strategies employed
to assess exposure can detect acute or chronic exposure.

Point estimate—a single mycotoxin concentration is combined with a single input
parameter for consumption. The result is a single exposure estimation with a high degree
of uncertainty. Data on concentration commonly originates from a food monitoring study
or a total diet study which makes the conduct of such studies considerably facile [1].

Observed individual mean—is defined as the mean mycotoxin concentration per food
product, combined with the food consumption per day per consumer, averaged over the
days available in the survey and, divided by the individual’s body weight [238] (average
exposure/kg of bw/person/day).

A probabilistic approach is designated to assess acute and chronic exposure.

a) acute exposure—can be assessed by combining daily individual consumption patterns
from a food consumption survey with randomly selected levels per food product
from a databank with mycotoxin levels in individual samples [1].

b) chronic exposure—statistical models that use the same input as the observed individ-
ual mean approach (see the previous section) help in gaining exposure to the certain
mycotoxin.

The positives and negatives for both methods are in detail described in [1].
Dietary exposure using duplicate diet studies conducts the analyses of the compounds,

resulting in an actual exposure level per day for that individual. The collected food
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consumption data can be used to evaluate the possible sources of exposure. Acute exposure
can be evaluated if duplicate portions are collected on one day per individual.

The heterogeneous distribution in the matrix, differences between geographical re-
gions, climate, and processing methods can make the assessment of mycotoxins to be
difficult and complicated. Low concentrations, co-occurrence, and biotransformation to
modified forms also make this kind of research complicated.

5. Prospects and Conclusions

Human biomonitoring studies are relevant tools for monitoring the global health
situation. As mentioned in the review, climatic changes will only enhance the relevance of
biomonitoring since mycotoxins levels in cereals important for human consumption are
expected to rise. Improvements of analytical methods and techniques will surely strive
toward higher levels of precision and accuracy and novel, emerging mycotoxins will be
defined and detected in lower and lower doses. Intensive research of metabolic pathways
will lead to the discovery of new biomarkers whose detection and quantification could
simplify and evade the invasive methods such as drawing blood. Finally, a combination
of different strategies and methods, combining research fields and overlapping scopes,
should result in much more efficient and wider data collection for future research and,
most importantly, application in human health protection.
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