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Abstract

DNA methylation is vital for many essential biological processes and human diseases. Illumina Infinium HumanMethyla-
tion450 Beadchip is a recently developed platform studying genome-wide DNA methylation state on more than 480,000
CpG sites and a few CHG sites with high data quality. To analyze the data of this promising platform, we developed
FastDMA which can be used to identify significantly differentially methylated probes. Besides single probe analysis,
FastDMA can also do region-based analysis for identifying the differentially methylated region (DMRs). A uniformed
statistical model, analysis of covariance (ANCOVA), is used to achieve all the analyses in FastDMA. We apply FastDMA on
three large-scale DNA methylation datasets from The Cancer Genome Atlas (TCGA) and find many differentially methylated
genomic sites in different types of cancer. On the testing datasets, FastDMA shows much higher computational efficiency
than current tools. FastDMA can benefit the data analyses of large-scale DNA methylation studies with an integrative
pipeline and a high computational efficiency. The software is freely available via http://bioinfo.au.tsinghua.edu.cn/software/
fastdma/.
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Introduction

DNA methylation is an important type of epigenetic modifica-

tion in the human genome. The function of DNA methylation is

traditionally described as silencing mark [1]. Recent studies

suggest DNA methylation plays more sophisticated roles in

chromatin structure and transcriptional regulation [2]. DNA

methylation is highly dynamic but under strict control during

development [3,4]. While in human diseases, especially in cancer,

the DNA methylation states are usually significantly disrupted and

those changes are strongly associated with cancer hallmarks [5–7].

There are four popular techniques for detecting genome-wide

DNA methylation state: whole genome bisulphite sequencing [8],

methylation array [9], reduced representation bisulfite sequencing

[10] and enrichment based method [11]. Infinium HumanMethy-

lation450 Beadchip is a recently developed methylation array

platform which detects more than 480,000 cytosine sites along the

entire human genome. It covers the majority of reference genes

and shows high data reproducibility between technical replicates.

Because of the lower cost and easier experimental protocol, this

platform is suggested to be suitable for large-scale studies [12]. The

Cancer Genome Atlas (TCGA) program, which aims to providing

a comprehensive molecular portraits of all types of cancer, has

already used this platform to profile the DNA methylation states of

hundreds of clinical samples [13,14].

Here we propose our recently developed software, FastDMA, to

help researchers to analyze the data generated by this platform,

especially for large or clinical datasets. FastDMA uses a unified

statistical model, analysis of covariance (ANCOVA), to do both

single probe analysis and differentially methylated region (DMR)

scanning. Technically, FastDMA is implemented as a standalone

software in C++ which can be easily distributed and further

developed. Besides, by using parallel computing technique, it can

deal with large-scale datasets with very high computational

efficiency.

This article is organized as follows: in the Methods section, we

described the workflow, the computational model and the software

implementation of FastDMA. In the Results section, we first

applied FastDMA on three large-scale datasets from TCGA of

breast invasive carcinoma (BRCA), lung adenocarcinoma

(LUAD), and prostate adenocarcinoma (PRAD). And then, we

compared FastDMA with a recently published software IMA [15]

for both the correctness and the computational performance.

Finally, we discussed the major advantages of the software and its

limitations waiting for further developments.

Methods

Overview
The workflow of FastDMA is shown in Figure 1. FastDMA can

do data normalization and support both single probe and region

based data analyses. The input of FastDMA is usually a data

matrix, processed from the original fluorescence signal, containing

the beta value (a value indicating the DNA methylation level,

between 0,1) and the detection pvalue (a value indicating

whether the signal is believable or not) of each probe on the
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beadchip. For the outputs, FastDMA generated human-readable

table-limited text files and the formatted BED files compatible for

UCSC Genome Browser visualization.

Except for the case-control comparison, multiple-group com-

parison is usually required. For example, it is required to compare

the DNA methylation levels in three groups if we want to identify

the differentially methylated sites among normal, primary tumor,

and metastasis samples. Besides, other clinical co-variables (such as

sex, age, etc.) rather than the group labels should also be

considered. To deal with these issues in a unified framework,

FastDMA used ANCOVA as the main statistical model, a

generalized linear model combining ANOVA and regression.

For clearly presenting the statistical model, we denoted some

variables as follows. The dataset contains n groups, Gi, (1#i#n), to

be compared. For i-th group Gi, there are mi samples, Sij (1#j#mi).

The k-th probe of sample Sij has a methylation level (as beta-value)

bijk. Clinical information (such as sex, age, etc.) is treated as the co-

variable: Cijl stands for the value of the l-th co-variable of sample

Sij. Gaussian noise is assumed and denoted as e. FastDMA rejects

the data points with detection pvalues greater than 0.05 (unreliable

data points).

Normalization
The normalization task assumes that all the studied samples

have the same overall beta value distribution. FastDMA uses

quantile normalization [16]: first, calculate the quantiles of beta

values (logit transformed) in all the samples; then, calculate the

averages of the quantiles; and finally, piecewise linear transfor-

mation is applied on each beta value such that every sample has

the same quantiles as the average. Users can do normalization

with any other methods by themselves and skip this step.

Single Probe Analysis
The first task is to identify the significantly differentially

methylated probes. The null hypothesis is that if a probe is not

differentially methylated, the beta values of that probe have the

same mean values among all the groups. Otherwise, different

means among the groups are required. ANCOVA is used in this

task to compare two linear regression models that one assumes an

overall mean across all the studied groups while the other assumes

different means. For the k-th probe of sample Sij belonging to

group Gi, we have:

The null hypothesis is formulated as

logit(bijk)~cz
X

l

alCijlze ð1Þ

The alternative hypothesis is formulated as

logit(bijk)~ciz
X

l

alCijlze ð2Þ

Cijl stands for the value of the l-th co-variable of sample Sij. The

middle terms in both equations are the effect of the co-variables. It

is assumed to be linear.

ANCOVA compares these two linear regression models and

gives a pvalue indicating to what extent one can reject the null

hypothesis. Then, false discovery rate (FDR) is calculated

according to Benjamini–Hochberg (BH) procedure. The pvalue

and FDR thresholds to call significantly differentially methylated

probes can be manually adjusted by users. To facilitate the

following functional analysis, the probes are annotated (such as

nearby genes) using a well-curated database IlluminaHuman-

Methylation450k.db (Tim Triche and Jr. R package version

1.4.6.).

Figure 1. Workflow of FastDMA.
doi:10.1371/journal.pone.0074275.g001

Table 1. The top 10 hypermethylated probes in the three cancer datasets.

BRCA LUAD PRAD

ID pvalue gene ID pvalue gene ID pvalue gene

cg08370082 3.56E-30 SENP5 cg14001664 1.05E-34 – cg24922143 7.51E-60 –

cg006921703 3.48E-29 ZYG11B cg08566455 2.66E-33 – cg26075747 5.27E-59 HLA-E

cg12669271 1.39E-28 EXT1 cg02627286 2.16E-31 SPG7 cg05063999 1.38E-58 –

cg02953927 1.92E-28 –* cg22167515 2.61E-31 – cg00970396 3.26E-58 –

cg15174623 3.50E-28 – cg12595013 6.04E-31 ZIC1 cg01940855 8.09E-58 CHST11

cg08138586 4.59E-28 PARD3B cg24722073 6.75E-31 – cg09296001 1.36E-57 SND1

cg24699719 7.53E-28 – cg09471659 2.55E-30 – cg00800229 1.17E-56 SALL2

cg09881545 1.07E-27 – cg20019985 3.45E-30 – cg05372113 4.72E-56 CYP2A13

cg23302649 1.95E-27 C14orf23 cg08857994 4.06E-30 – cg24033558 6.84E-56 SHF

cg19870567 3.38E-27 – cg14823851 4.34E-30 TBX4 cg00817367 8.66E-56 GRASP

*No gene is annotated related to this probe.
doi:10.1371/journal.pone.0074275.t001

FastDMA
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DMR Analysis in Predefined Regions
Single differentially methylated probe may be hard to be

interpreted biologically. FastDMA provides region-based analysis,

which can provide additional information. For a predefined region

(such as a promoter or a CpG island) containing several probes, if

the region is uniformly methylated among all the groups, then it is

assumed that the beta values of every probe in that region are

distributed with the same means independent with their group

labels. Otherwise, the region is called to be differentially

methylated. For the n-th region, there are r probes located in it

denoted as P1, P2,…, Pr. The beta value of the probe Pk of the

sample Sij is denoted as b
(n)
ijk to emphasize that the probe belongs to

the n-th region.

Then the null hypothesis for this region is formulated as

logit(b
(n)
ijk )~ckz

X

l

aklCijlze,k[f1,2,:::,rg ð3Þ

The alternative hypothesis is formulated as

logit(b
(n)
ijk )~cikz

X

l

aklCijlze,k[f1,2,:::,rg ð4Þ

Similar to the comparison of the two models in the single probe

analysis, ANCOVA can compare the above two series of models

and calculate the pvalues to evaluate their differences fitting the

same data. And also, FDR is calculated using BH procedure.

Figure 2. Volcano plots of single probe analysis. Panel A, B, and C shows the result on BRCA, LUAD and PRAD, respectively. Each dot in the plot
represents a beadchip probe. The vertical axis indicates the log-transformed pvalue of that probe calculated by ANCOVA and the horizontal axis
indicates the mean difference between the methylation levels in tumor and normal samples (tumor - normal).
doi:10.1371/journal.pone.0074275.g002

FastDMA

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e74275



DMR Analysis in Arbitrary Regions
In the second task, users should predefine the regions. FastDMA

can also scan all the regions covered by probes in the whole

genome. The idea to find arbitrary DMRs is to use a sliding

window across the genome and test whether each sliding window

is a DMR using the above statistical model. Then the overlapped

DMRs are merged to give the final results. The default window

size is set as 200 bp and only the windows with more than 2 probes

are used in the analysis.

It is time-consuming to fit the models in ANCOVA of all the

sliding windows across the whole genome. FastDMA provides

another intuitive way to deal with this task: it directly uses the

FDRs of the probes in a sliding window from the single probe

analysis and simply calculates their geometric mean as the score of

that region. Windows with this score less than 0.05 are treated as

Table 2. The numbers of differentially methylated probes identified by FastDMA and IMA.

Total Tumor-hypermethylated Tumor-hypomethylated

IMA FastDMA IMA FastDMA IMA FastDMA

BRCA Total 227,221 232,648 110,094 111,579 117,127 121,069

Overlap 225,292 108,667 116,625

Genic 152,445 156,088 80,163 81,266 72,282 74,822

Island 64,854 66,422 49,998 51,014 14,856 15,408

Promoter 35,332 36,238 24,904 25,582 10,428 10,656

LUAD Total 176,982 178,028 80,461 81,209 96,521 96,819

Overlap 175,693 79,994 95,699

Genic 117,158 118,058 57,601 58,206 59,557 59,852

Island 57,120 57,801 45,659 46,277 11,461 11,524

Promoter 28,682 29,096 19,818 20,303 8,864 8,793

PRAD Total 228,366 229,458 120,700 120,638 107,666 108,820

Overlap 227,478 120,194 107,284

Genic 148,248 148,989 81,875 81,871 66,373 67,118

Island 56,566 56,979 38,214 38,210 18,352 18,769

Promoter 28,471 28,832 11,588 11,577 16,883 17,255

The thresholds for the two softwares to identify differentially methylated probes are all set as pvalue ,0.01 and FDR ,0.05. Each cell shows the number of differentially
methylated probes identified in that specified condition. Overlap: number of probes found by both FastDMA and IMA; Genic: genic region; Island: CpG island region;
Promoter: promoter region. FastDMA and IMA find more than 98% probes the same.
doi:10.1371/journal.pone.0074275.t002

Figure 3. Several examples for the genomic regions identified as DMRs by FastDMA. All genomic regions shown in this figure are
hypermethylated in cancer and lie in the 59 region of a nearby gene. The green (normal) and red (tumor) vertical bars represent the methylation levels
of the probes located in each region. The cyan horizontal bars show the differentially methylated regions identified by FastDMA. A, B are from BRCA
dataset; C, D are from LUAD dataset; E, F are from PRAD dataset.
doi:10.1371/journal.pone.0074275.g003
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DMRs and the overlapped DMRs are combined as the final

results.

Implementation
The computerized procedures are coded in C++. An additional

script for preprocessing the format of the data is coded in Python.

The software follows the GNU general public license version 3 for

academic use and can be downloaded via the site http://bioinfo.

au.tsinghua.edu.cn/software/fastdma. Both a simplified proce-

dure and the advanced user manual to install and run FastDMA

are provided on the website.

Results

Datasets and Experiments
We applied FastDMA on three large-scale Infinium Human-

Methylation450 Beadchip datasets from TCGA of BRCA, LUAD,

and PRAD. The numbers of samples for the datasets are 120, 69,

and 225 respectively.

Many Probes are Found Differentially Methylated in
Tumor
FastDMA was used to calculate the pvalue and the absolute

difference of the differential DNA methylation level of each probe.

The results of the overall statistics are shown as volcano plots in

figure 2. The top 10 tumor-hypermethylated probes are summa-

rized in table 1. As we can see in figure 2, many probes are

significantly differentially methylated. We set the threshold as

pvalue,0.01 and FDR,0.05. FastDMA identifies about half of

the probes as differentially methylated ones in BRCA and PRAD

datasets. Although less than those two, the LUAD dataset still has

more than one third of the probes identified as differentially

methylated ones (detailed numbers are shown in table 2). These

numbers agree with a recently published study on liver hepato-

cellular carcinoma [17]. These results imply that the cancer

genome is globally changed in the consideration of DNA

methylation state.

To illustrate the support for multiple-group and clinical co-

variable, we constructed a small-scale testing dataset including the

array data of four BRCA metastatic tumor samples and randomly

chosen size-matched primary tumor samples and normal samples

from TCGA. The age at initial pathologic diagnosis is treated as

the co-variable. We ran FastDMA to find the differentially

methylated sites across normal, tumor and metastatic groups. With

the threshold pvalue,0.01 and FDR,0.05, 29 probes are

identified as differentially methylated (this small number is mainly

due to too few available samples).

DMR Analysis Helps to Find Genomic Regions for Further
Study
The DMR scanning can be done either in predefined regions or

in arbitrary regions across the whole genome using the same

computational model. Here, we only reported the results by

scanning arbitrary regions. The statistical significance thresholds

were set the same as the single probe analysis (pvalue ,0.01 and

FDR ,0.05). Under such settings, FastDMA founds 60877,

48930, and 56179 DMR candidates (mainly spanning several

hundred base pairs) in the BRCA, LUAD, PRAD datasets

respectively. Table 3 shows the state (tumor-hypermethylated or

tumor-hypomethylated) and location (CpG island or non-CGI) of

these DMR candidates. Figure 3 is a collection of IGV [18]

screenshots showing several cases. All these cases are hypermethy-

lated in cancer and lie in the 59 region of a nearby gene (promoter

region). These regions contain dense distribution of many

differentially methylated probes and therefore can be interesting

candidates for further functional or biomarker analysis.

To validate our results, we randomly selected 20 candidates in

the LUAD datasets and then perform validation according to

another statistical framework suggested by Jaffe et al [19]. All the

20 candidates have strong statistical significance (with pvalue less

than 0.001).

FastDMA Finds Essentially the Same Differentially
Methylated Probes as IMA does but Performs with much
Higher Computational Efficiency
We compared FastDMA and IMA (under Student’s t-test mode)

on the three cancer DNA methylation with single probe analysis.

The thresholds for identifying differentially probes were set as

pvalue ,0.01 and FDR ,0.05. Table 2 shows the numbers of

identified probes by IMA and FastDMA under different contexts.

It is shown that more than 98% identified probes are overlapped

in FastDMA and IMA, which indicates the correctness.

To compare the computational efficiency, we ran them on a set

of testing datasets (generated from real data of TCGA) with

different data sizes varying from 40 to 220. FastDMA can work in

parallel manner, we ran FastDMA twice using either single thread

or four parallel threads. To measure the time consumption exactly,

we repeatedly ran the software three times on every testing dataset

and calculated the average time consumption with standard

deviation. As indicated in figure 4, FastDMA works with much

higher efficiency.

Discussion

As a promising platform to detect genome-wide DNA methyl-

ation state, Infinium HumanMethylation450 Beadchip begins to

be widely used with relatively lower cost. FastDMA provides an

integrative pipeline and a high computational efficiency solution

for analyzing this kind of data. This software can benefit the

community of DNA methylation, especially for the large-scale

clinical study. FastDMA uses general input format. Except 450 K

Beadchip, it can also be used to analyze the data generated from

other platforms, such as the previous Infinium HumanMethyla-

tion27 Beadchip and the possibly future Infinium beadchips with

the same technique.

It should be noted that FastDMA is not elaborately designed for

the data normalization. Users can use any other sophisticated

normalization procedure (such as in ref. [20]) rather than the

simply quantile normalization if this step is crucial for the

following data analysis. Serious concerns about DNA methylation

array are raised that the platform may contain potential technical

artifacts [21]. To solve this problem, we design a command line

Table 3. Summarization of the DMR candidates identified by
FastDMA.

CpG island non-CGI

BRCA tumor-hypermethylated 23872 9771

tumor-hypomethylated 6362 20871

LUAD tumor-hypermethylated 20525 6404

tumor-hypomethylated 5320 16680

PRAD tumor-hypermethylated 16471 12631

tumor-hypomethylated 9421 17655

doi:10.1371/journal.pone.0074275.t003

FastDMA
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parameter to filter out probes with genomic variants or co-

hybridizing according to a recent work [22]. Also, any biological

interpretations for the differential methylated probes should be

made carefully.

FastDMA can smoothly run under major Linux/Unix systems

using command line. For easier visualization of the results, the

software formats the outputs as widely-used BED files that can be

directly loaded into any genome browser tools. In the future, we

will develop a graphic user interface for boarder users with less

computer background.
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