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Abstract
Background. The median survival for patients with glioblastoma (GBM), the most common primary malignant brain 
tumor in adults, has remained approximately 1 year for more than 2 decades. Recent advances in the field have identified 
GBM as a sexually dimorphic disease. It is less prevalent in females and they have better survival compared to males. 
The molecular mechanism of this difference has not yet been established. Iron is essential for many biological processes 
supporting tumor growth and its regulation is impacted by sex. Therefore, we interrogated the expression of a key com-
ponent of cellular iron regulation, the HFE (homeostatic iron regulatory) gene, on sexually dimorphic survival in GBM.
Methods. We analyzed TCGA microarray gene expression and clinical data of all primary GBM patients (IDH-wild 
type) to compare tumor mRNA expression of HFE with overall survival, stratified by sex.
Results. In low HFE expressing tumors (below median expression, n = 220), survival is modulated by both sex and MGMT 
status, with the combination of female sex and MGMT methylation resulting in over a 10-month survival advantage (P < 
.0001) over the other groups. Alternatively, expression of HFE above the median (high HFE, n = 240) is associated with sig-
nificantly worse overall survival in GBM, regardless of MGMT methylation status or patient sex. Gene expression analysis 
uncovered a correlation between high HFE expression and expression of genes associated with immune function.
Conclusions. The level of HFE expression in GBM has a sexually dimorphic impact on survival. Whereas HFE ex-
pression below the median imparts a survival benefit to females, high HFE expression is associated with signifi-
cantly worse overall survival regardless of established prognostic factors such as sex or MGMT methylation.

Key Points

 • There is a sex-specific effect of HFE mRNA expression in GBMs on survival.

 • High HFE results in poor survival in GBM regardless of patient sex or MGMT status.

 • Survival differences may be due to HFE related immunosuppression in the tumor 
microenvironment.

Sexually dimorphic impact of the iron-regulating gene, 
HFE, on survival in glioblastoma
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Glioblastoma (GBM) is the most common type of pri-
mary malignant brain tumor in adults. Despite aggressive 
therapy, the median survival for GBM patients has remained 
at about 1 year, necessitating the need for a new paradigm 
to GBM treatment.1,2 Recent evidence suggests that GBM 
is a sexually dimorphic disease.3,4 GBMs are less common 
in females, yet females have better survival.5,6 Prognostic 
indicators like O[6]-methylguanine-DNA methyltransferase 
(MGMT) and Isocitrate Dehydrogenase (IDH) status also 
modify survival based on sex. Females with MGMT methyl-
ated GBMs have better survival rates than males and males 
have improved survival with IDH-mutant GBMs.7,8 The mo-
lecular mechanism that underlies this sex-based difference 
has yet to be established.

Iron homeostasis is essential for cellular energy produc-
tion and DNA synthesis, particularly in rapidly dividing 
cells, and thus plays a critical role in cancer develop-
ment and maintenance.9–11 Elevated expression of iron-
regulating genes is correlated with worse survival in 
multiple cancers including breast, prostate, and colon.10–14 
In breast cancer, a molecular signature representing de-
creased iron acquisition is associated with better outcome 
whereas a signature indicating decreased iron export is as-
sociated with worse outcome.15 In GBMs, both glioma and 
cancer stem cells can upregulate the iron transporter trans-
ferrin, conferring improved iron extraction from the tumor 
microenvironment to promote proliferation.16,17

A key regulator of cellular iron uptake is the homeostatic 
iron-regulator protein (HFE), which binds to transferrin re-
ceptors (TFRs) decreasing TFR affinity to transferrin, conse-
quently reducing iron uptake. Mutations of the HFE gene 
result in cellular iron overload, and one of the mutations 
C282Y was first discovered as the genetic cause of an iron 
overload disorder found predominantly in men; hemo-
chromatosis.18 To date, the role of HFE in tumor biology has 
focused primarily on the impact of HFE mutations.19–23 For 
example, we have previously shown female GBM patients 
who carry C282Y HFE polymorphism have shorter survival 
than both wild-type (WT) patients and male metastatic 
brain tumor patients with C282Y23.23

Despite the interest in the incidence and effect of 
common HFE gene mutations on the disease, including 
cancer, very little data have been published on the impact 
of expression of WT HFE gene levels in cancer. Reuben 
et al.24 previously described higher levels of HFE expres-
sion in tumor cell lines from melanoma, lung, and kidney 
cancers, yet few studies have looked at HFE expression in 
patient tumor samples. We previously identified several 
iron metabolism genes associated with changes in survival 
for patients with low-grade glioma (LGG) and found high 

HFE gene expression resulted in a 5-year decrease in pa-
tient survival compared to low HFE expression.25

Here we present data revealing that there are signifi-
cant sex differences in overall survival associated with HFE 
gene expression and that a synergistic interplay exists be-
tween MGMT methylation status, sex, and HFE expression 
that impact patient survival in GBM.

Methods

HFE mRNA Expression and Survival Data

Gene expression, tumor phenotype, and de-identified pa-
tient data were acquired from The Cancer Genome Atlas 
(TCGA) GBM (n  =  525). This dataset was downloaded 
from a publicly available data visualization software pro-
gram, GlioVis.26 Microarray data were chosen for its large 
sample size (n  =  525) and availability of data including 
sex, survival status, and tumor MGMT methylation 
status. Updated survival data for TCGA GBM were con-
tributed by Dr Joshua B. Rubin’s group. To identify and 
remove outliers, Cook’s distance was calculated based 
on a linear regression of survival times with respect to 
HFE mRNA expression. Any observation with Cook’s dis-
tance greater than 98th percentile was noted as an outlier 
and removed from data analysis (n  =  10). We excluded 
nonprimary tumors (n  =  21) and IDH-mutant samples 
(n  =  34) from the analysis group resulting in 460 total 
samples for analysis.

We first determined the median HFE mRNA expression 
of all GBM samples to establish the high and low HFE 
groups. We then focused our analysis on primary, IDH-WT 
tumors (n = 460, low n = 220, high n = 240). To determine 
whether the impact of HFE on survival may be therapy 
dependent, we compared individuals who had received 
temozolomide (TMZ) (n = 274) versus those who did not 
(n  =  170). Positive TMZ therapy was defined by any pa-
tient who had TMZ therapy, in combination with any other 
therapy, for example, concomitant radiation therapy. See 
Table 1 for demographics summary.

We attempted to replicate our main results in other 
datasets but to appropriately assess our model, we needed 
to identify datasets that contained all of the variables used 
in the original model, which includes survival time, sex, 
MGMT methylation status, and recurrence status, in addi-
tion to the gene expression profiles of the tumors. At least 
one of these main variables was missing from each of the 
available datasets except for the Murat dataset (although 
this did not include IDH status).

Importance of Study

Expression of the homeostatic iron-regulatory 
gene, HFE, is a novel prognostic indicator of 
survival for brain tumors. These data further 
support the sexually dimorphic nature of gli-
oblastoma and, given the importance of HFE 

in regulating cellular iron uptake, may provide 
molecular indicators to focus interrogation of 
the biological basis for the sex-dependent out-
comes. Moreover, the gene expression profiles 
support the role of HFE as both influencing the 
immune system and iron biology of the tumor 
microenvironment.
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Statistical Analysis

Sample test for equality of proportions was used to de-
tect baseline differences for sex, MGMT, resection, and 
TMZ and Welch two-sample t-test was used for compar-
ison of age and Karnofsky Performance Score (KPS). 
Data analysis was performed in R (v 3.5.1). Kaplan–Meier 
survival curves were plotted to characterize survival 
differences and P-values were generated using log-
rank test. From R package “survival,” Cox Proportional 
Hazard (CoxPH) models were used to control for sex, 
age, MGMT methylation status, KPS, and resection. For 
overall model fit, P-values were based on robustified var-
iance estimates (known as Huber sandwich estimator).27 
We further confirmed results using Weibull Accelerated 
Failure Time model, to ensure the results hold true even 
in the absence of non-proportionality of hazards.28 For 
all analyses, two-tailed P-values less than .05 were con-
sidered statistically significant.

Microarray Data Processing by GlioVis

HFE mRNA expression was reported by microarray data 
collected from the Affymetrix expression array HG-U133 
platform. GlioVis downloaded available raw.CEL files from 
TCGA and processed in R using the Bioconductor suite. 
The “affy” package was used for robust multi-array av-
erage normalization followed by quantile normalization. 
The median of all probes was used for genes with several 
probe sets.

GlioVis provided mRNA data on approximately 12 000 
genes analyzed in each GBM tumor sample. These data 
were downloaded and analyzed as described in Gene 
Expression Analysis section. To elucidate the meaning of 
differential gene expression, gene sets were analyzed by 
GO Enrichment Analysis.

Gene Expression Analysis

The aim of our gene expression analysis was to identify 
gene sets which were significantly different between low 
and high HFE groups and subsequently, the expression of 
which also correlated with HFE mRNA expression. Herein, 
we only focused on 2 subsets of gene expressions that 
were shown to have the greatest survival differences be-
tween low and high HFE while also presenting comparative 
information on sex differences: males with MGMT methyl-
ated tumors and females with MGMT methylated tumors. 
Genes found to be most different between the 2 groups 
were then analyzed through PANTHER GO Enrichment 
Analysis of Biological mechanisms.29

We followed a similar strategy described below for each 
of the subsets.

 (1)  First, we conducted nearly 12 700 univariate robust 
linear regressions (R package MASS) where the re-
sponse was high versus low HFE group and the gene 
expression values were the predictors. False dis-
covery rate (FDR) adjusted P-values were calculated 
to correct for multiple testing errors. We chose those 
genes which had FDR adjusted P-values less than 
.05, therefore this set of genes had expressions that 
differ significantly between high versus low HFE.

 (2)  Next, we calculated the simple Pearson correlation 
coefficient between HFE expression and the gene 
expressions obtained from step (1). We choose only 
those genes whose correlations are statistically sig-
nificant after controlling the P-values by FDR adjust-
ment. The level of significance for these adjusted 
P-values is set at .05.

 (3)  In a more realistic scenario, one needs to find the asso-
ciation between HFE expression and all the other sig-
nificant gene expressions from step (1) put together as 
multivariate covariates. This mimics how one gene is 

  
Table 1. Demographics of GBM Patients Included in the Study

Overall (n = 460) High HFE (n = 240) Low HFE (n = 220) P

Sex Female, % (n) 61.52 (283) 58.75 (141) 64.55 (142) .24

Male, % (n) 38.48 (177) 41.25 (99) 35.45 (78)

MGMT (n = 301) Methylated, % (n) 42.52 (128) 41.33 (62) 43.71 (66) .76

Unmethylated, % (n) 57.48 (173) 58.67 (88) 56.29 (85)

Age Median (range) 61 (10–89) 60 (14–86) 61 (10–89) .62

KPS Median (range) 80 (20–100) 80 (20–100) 80 (20–100) .83

Resection (n = 457) Biopsy, % (n) 12.25 (56) 11.76 (28) 12.79 (28) .85

Tumor resection, % (n) 87.75 (401) 88.24 (210) 87.21 (191)

TMZ (n = 444) No, % (n) 38.29 (170) 39.47 (90) 37.04 (80) .67

Yes, % (n) 61.71 (274) 60.53 (138) 62.96 (136)

TMZ, temozolomide; GBM, glioblastoma.
Two-sample test for equality of proportions was used for sex, MGMT, resection, and TMZ and Welch two-sample t-test was used for age and 
KPS. Median HFE mRNA expression was based on all GBM patients provided by TCGA GBM, including IDH-mutant, nonprimary, and outlier sam-
ples (determined by Cook’s distance). Removal of those samples results in an n = 20 difference in HFE groups, as opposed to n = 230 equal split 
as would otherwise be expected. Not all phenotype data are available for each sample, thus the number of available samples are included next to 
category name.

  



 4 Nesterova et al. Sex-specific impact of HFE in glioblastoma

associated with HFE in the presence of several other 
genes. We conducted penalized elastic net regression 
(R package glmnet) with HFE expression as response 
and the gene expressions from step (1) as covariates. 
The elastic net model had a considerable higher weight 
for ridge regression than LASSO so that the number 
of resulting genes were not over-regularized. This re-
gression controls the problem of multicollinearity by 
shrinking the coefficients of highly correlated gene 
expressions. We chose only those genes whose coeffi-
cients are non-zero, implying an association with HFE.

The final set of genes are both common to genes obtained 
from step (2) and step (3). Note that this multilevel strategy 
was stricter and controlled for spuriously correlated gene 
expressions. Please see Figure 3 for schematic and results 
of this analysis strategy.

Results

High HFE Expression Is Associated With 
Significantly Worse Patient Survival in 
Brain Tumors

In the TCGA GBM LGG microarray dataset, tumors 
expressing HFE above the median are associated 

with shortened survival for all brain tumor popula-
tions (114  months vs 21.3  months, log-rank P < .0001, 
Figure  1A). Restricting the analysis to the TCGA GBM 
data also revealed a similar and significant differ-
ence (Figure  1B; P  =  .0088) between the high and low 
HFE GBM expressing groups. HFE expression in-
creases with increasing grade of the tumor (all ad-
justed P < .05, Figure  1C) and is the highest in GBM 
(P < .0001, Figure  1D). Furthermore, within GBM 
subtypes, HFE expression is highest in the mes-
enchymal subtype, associated with worse patient 
prognosis, and lowest in the proneural subtype  
(P < .0001, Figure 1E).

A CoxPH regression model was then run with HFE as 
a continuous variable. After controlling for known prog-
nostic factors (sex, MGMT status, KPS, resection, and 
age), the impact of HFE on survival was not significant, 
yet neither was KPS, resection, sex, nor MGMT meth-
ylation status (Table  2 and Supplementary Table S1). 
Because MGMT and sex have been established as sig-
nificant prognostic indicators, this was an unexpected 
finding. Thus, we considered whether HFE, MGMT 
status, and sex may interact, suggesting that HFE ex-
pression might be negatively influencing survival based 
on the patient’s sex and MGMT methylation status. To 
nullify the possibility of confounding of HFE expression 
by sex and MGMT methylation status, a simple linear re-
gression was performed, verifying HFE expression did 
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not differ significantly based on sex or MGMT status 
(Table 1).

High HFE Expression Abrogates Survival Benefit 
of Both Female Sex and MGMT Methylation

The dataset was then divided into 2 separate groups, low 
HFE and high HFE based on median HFE expression. CoxPH 
analysis of these groups, controlling for the same factors as 
mentioned above, revealed 2 distinct and sexually dimorphic 
survival patterns. A low HFE tumor expression level is associ-
ated with better survival for females (Figure 2A) compared to 
males but there is no sex difference in survival in the high HFE 
tumor expressing group (Figure 2D). The established MGMT 
tumor methylation survival benefit was seen in the low HFE 
group, but not in the high expressing HFE group (Figure 2B 
and E). There was a clear effect of sex and HFE status on the 
MGMT effect; females with low HFE and MGMT methylated 
tumors survive significantly longer than males regardless of 
their MGMT status. High HFE expression negated the MGMT 
and sex benefits to survival (Figure 2C and F).

We determined to use the median HFE expression to 
help maintain equal sample sizes for the analysis groups 
(low HFE vs high HFE) to prevent imbalance in the groups. 
To confirm that impact of HFE on survival does not depend 
on the chosen median cutoff, we reproduced our main re-
sult using 40th and 60th percentile cutoffs (Supplementary 

Table S2). Furthermore, interrogation of the Murat data 
using the median HFE expression generated similar results 
(Supplementary Table 3).

High HFE Negates the Impact of MGMT 
Methylation in TMZ Treatment

We confirmed that irrespective of HFE status, sex, and 
methylation status, receiving TMZ therapy versus treat-
ments without TMZ (but did receive radiation) was ben-
eficial for survival. Supporting our previous results, for 
patients taking TMZ, the survival advantage of being fe-
male is amplified by positive methylation status in the 
low HFE group (25.7 months vs 16.1 months in methylated 
males, Table 2). Regardless of MGMT status or sex, high 
HFE continued to abrogate survival advantages seen at 
low HFE (Table 2).

In patients who did not receive TMZ, we observed the 
same pattern of sex-based survival differences, with fe-
males having a survival advantage over males at low HFE 
and similar survival to males at high HFE (Table 2). At low 
HFE, the median survival of females in the methylated 
group was 15  months versus 2  months for males in the 
same group. Similarly, to the group treated with TMZ, high 
HFE expression negated the survival benefit of the combi-
nation of female sex and methylation status in the group 
that was not treated with TMZ (Table 2).
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B CMGMT Sex and MGMT
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Log Rank p = 0.07
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Log Rank p = 0.4
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Figure 2. (A–F) Impact of HFE expression, sex, and MGMT status on survival in glioblastoma. The top row represents all samples with low HFE 
expression (below median) and is separated into 3 columns based on differences in survival in males versus females (A), MGMT status (B), or 
both sex and MGMT status (C). Similarly, the row below is also separated by the same comparisons as above yet representing individuals with 
high HFE expression (D–F).
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Gene Expression Profiles

To begin to interrogate the relationship between HFE ex-
pression and the tumor microenvironment, over 3000 
genes were found to be significantly different in the low 
and high HFE expressing groups (Figure 3) including sex-
based differences. When comparing upregulated genes, 
males and females shared 884 genes in the low HFE group 
and 694 genes in the high HFE group (data not shown). 
Gene enrichment analysis in low HFE groups shows 
upregulation of genes responsible for DNA topological 
change, synaptic vesicle assembly, and microtubule de-
velopment (Figure  4A and B) in both sexes. A  unique 
pathway upregulated in males with low HFE includes neg-
ative regulation of histone H3-K9 methylation (Figure 4A). 
Females in the low HFE group show unique upregulation 
in nucleosome disassembly and response to hydroxyurea 
(Figure 4B).

High HFE expression, regardless of sex, is associated 
with upregulation of pathways involving T-cell activation, 

chemokine production, and cell apoptosis, among others 
(Figure 4C and D). Specifically, the most highly upregulated 
genes in both males and females with high HFE were those 
associated with the regulation of CD4-positive, T-cell pro-
liferation (Figure 4C and D). Males with high HFE showed 
enrichment for genes associated with positive regulation 
of antigen presentation and processing (Figure  4C), while 
females uniquely showed upregulation of pathways associ-
ated with ganglioside catabolic processes and AMP biosyn-
thesis (Figure 4D).

Discussion

We present data showing that the level of gene expres-
sion of a key iron-regulating protein, HFE, is a prog-
nostic indicator of survival in patients with brain tumors. 
Furthermore, in GBMs, the prognostic value of HFE is im-
pacted by sex and MGMT methylation status. Not only 

  

All Genes
12703

Univariate Robust Linear
Regression
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Net
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gene expression
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Figure 3. Gene expression analysis of low versus high HFE gene expression with the number of genes found at each stage of analysis. The 
number of genes upregulated in low HFE and in high HFE states, separated by sex. The number of genes from the analysis of low versus high HFE 
expression genes in females is depicted in magenta, while those of males are depicted in blue. Gene analysis focused on individuals with positive 
MGMT methylation since the greatest sex-based survival difference was seen between males and females with MGMT positive methylation.
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does HFE expression in tumors impact survival, but high 
expression completely abrogates previously published 
positive prognostic indicators, specifically female sex and 
positive MGMT methylation.

Furthermore, these data support recently published 
studies on the impact of sex differences in GBM, while also 
providing a critical new lens of analysis further informing 
those studies. For example, we show that female sex is an 
advantage only when HFE expression levels are low.6,30 
Moreover, this finding extends to MGMT methylated tu-
mors where only females with low HFE expression and 
methylated tumors experience a significant survival ad-
vantage. When HFE tumor expression is high, methyla-
tion no longer conferred a survival advantage to females. 
In contrast, we did not find significant differences in male 

survival based on HFE expression status. Had we not sep-
arated these HFE analyses by sex, the significant differ-
ences for the expression data would have been washed 
out by the male survival data. There was is no additional 
benefit of HFE expression level to the MGMT methylation 
status and survival for males. These data are consistent 
with reports that females have a more significant survival 
benefit from MGMT methylation.7

Sex may also influence treatment response, with fe-
males responding better to the standard of care therapy, 
including TMZ, and our analysis found similar trends.6 We 
confirmed that in patients treated with TMZ, methylation 
is advantageous to females, yet only when HFE levels are 
low. In the high HFE group, MGMT methylation no longer 
conferred a survival advantage to females who were 
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females. The dot plots show the top 10 biological processes based on fold enrichment value (converted to log 2 scale). The sizes of the dots 
indicate the number of genes upregulated in that group that are also present in that biological process. The colors of the dots represent FDR ad-
justed P-values (converted to negative log 10 scale). The top row represents pathways enriched based on genes which were most significantly 
upregulated at low HFE, while the bottom row represents pathways of genes upregulated in high HFE. The columns represent sex of individuals 
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treated with TMZ. Because HFE status was determined by 
the median mRNA expression of all GBM patient tumor 
samples, our data predict that half of all females with 
GBM would not have the anticipated better survival due to 
MGMT methylation. In the TMZ group, survival differences 
widened slightly. Females at low HFE and MGMT methyl-
ated tumors have a median survival of 25.7 months, which 
is close to twice the median survival of patients with GBM 
overall. These data support results by Yang et  al.,30 yet, 
with the caveat that females had improved response to 
TMZ only if their HFE expression was lower than the me-
dian, otherwise, it was similar to males. From these data, 
it can be postulated that HFE is either actively modu-
lating response to TMZ or is a marker of response to TMZ 
therapy. However, even those females who do not receive 
TMZ therapy still experience the greatest survival advan-
tage when their tumors have the combination of MGMT 
methylation and low HFE expression. The effects of HFE 
in the tumor microenvironment do not simply reflect sex-
based levels of HFE expression in the tumors (Table  2). 
Thus, the HFE survival effect appears to be intrinsic to 
the tumor microenvironment. The underlying mechanism 
is currently being explored but could be related to epige-
netic influences. For example, iron is a required co-factor 
for demethylases,31 thus its availability directly impacts on 
histone and DNA methylation, and consequently on gene 
expression. Iron overload dysregulates global methylation 
and mice with HFE mutations have lower rates of global 
methylation than WT mice.32 Likewise, iron chelation also 
results in epigenetic alterations in breast cancer cells 
making them more susceptible to doxorubicin and cis-
platin.33 These data link HFE expression, which regulates 
cellular iron status, to methylation state. This information 
could have clinical value. For example, the gene expres-
sion data showing the upregulation of topoisomerase 
genes in both male and female low HFE groups suggests 
that these tumors could be more susceptible to topoisom-
erase inhibitors.

HFE and Immunity

Gene expression data acquired from tumor samples pro-
vide information not only on the neoplastic cells but also 
on the infiltrating immune cells which are critical to tumor 
proliferation. Macrophages make up the bulk of infiltrating 
immune cells in GBMs and play a critical role in regulating 
the tumor microenvironment.34–38 HFE is highly expressed 
in macrophages and these cells are key regulators of 
iron.39–41 Thus, HFE mRNA expression may be reflective of 
the volume of these cells in the tumor.

HFE expression may also be directly influencing the 
immune cell function in the tumor microenvironment. 
Expression of HFE interferes with MHC class I antigen pres-
entation and impairs activation and differentiation of CD8+ 
T lymphocytes.24,42–44 HFE’s role as a negative regulator 
of CD8+ T cells may allow for the predominance of other 
lymphocytes consistent with the significant upregulation 
of CD4+ T-cell genes identified in the high HFE groups.

Finally, an obvious goal of identifying the sex-based 
differences in GBMs prevalence and outcomes is to help 

develop models to guide therapeutic strategies. Although 
our studies and others in this field are in their infancy, in-
sights can begin to be discussed. For example, a devel-
oping therapeutic area for GBM has been immunotherapy, 
specifically with regard to the use of PD-L1 inhibitors. 
Binding of PD-1 to PD-L1 delivers a signal to encourage the 
suppression of T-cell proliferation. Upregulation of PD-L1 in 
circulating monocytes and tumor-associated macrophages 
is associated with cytotoxicity to T cells, while also inducing 
and maintaining T regulatory cells (CD4 T cells) in glioma 
with increased expansion, perhaps to maintain immuno-
suppressive environment through T regulatory cells in the 
tumor, which is ultimately associated with worse GBM 
prognosis.45–47 Interestingly, this finding is consistent with 
observations in the high HFE groups, both in males and fe-
males; an upregulation of genes involved in T-cell prolifera-
tion and activation.48 PD-L1 expression is higher in IDH-WT 
glioma and higher in higher grade tumors, which seems 
to follow the same pattern as HFE expression (higher in 
IDH-WT and GBM). Both mechanisms may be related, and 
if so, may help explain the discrepancies seen between 
studies in PD-L1 inhibitor efficacy, as only half of all GBM 
patients would potentially benefit from PD-L1 inhibitors.49 
This is an example of how the use of HFE status of GBMs 
in clinical settings may prove to be useful in identifying pa-
tients who are likely to benefit from PD-L1 inhibitors.

Lastly, in contrast to our findings in GBMs, high HFE 
expression in breast cancer tumors was associated with 
better survival in an all-female study. Despite the differ-
ences in our findings, these studies underscore the key 
role of HFE gene expression in predicting survival but indi-
cate that the results are sex- and cancer specific.

Conclusions

Expression of the iron-regulatory gene, HFE, is associ-
ated with sexually dimorphic survival in GBM patients. 
Furthermore, at low expression, the survival effect is im-
pacted by sex and MGMT methylation status. Conversely, 
high HFE expression completely abrogates previously pub-
lished positive prognostic indicators, specifically female 
sex and positive MGMT methylation. The data support fur-
ther investigation of characterizing the sex-dependent iron 
signature of GBMs and suggest a relationship between 
the immune system (including tumor-associated macro-
phages) and iron biology in the tumor microenvironment.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
online.
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