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CRISPR-Cas immune systems are present in around half of bacterial

genomes. Given the specificity and adaptability of this immune mechanism,

it is perhaps surprising that they are not more widespread. Recent insights

into the requirement for specific host factors for the function of some

CRISPR-Cas subtypes, as well as the negative epistasis between CRISPR-

Cas and other host genes, have shed light on potential reasons for the partial

distribution of this immune strategy in bacteria. In this study, we examined

how mutations in the bacterial mismatch repair system, which are frequently

observed in natural and clinical isolates and cause elevated host mutation

rates, influence the evolution of CRISPR-Cas–mediated immunity. We

found that hosts with a high mutation rate very rarely evolved CRISPR-

based immunity to phage compared to wild-type hosts. We explored the

reason for this effect and found that the higher frequency at which surface

mutants pre-exist in the mutator host background causes them to rapidly

become the dominant phenotype under phage infection. These findings

suggest that natural variation in bacterial mutation rates may, therefore,

influence the distribution of CRISPR-Cas adaptive immune systems.

This article is part of a discussion meeting issue ‘The ecology and

evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
1. Introduction
In the face of infection by bacteriophages (phage), bacteria have evolved a

range of molecular mechanisms that provide immunity [1–4]. Arguably, one

of their most sophisticated defences is CRISPR-Cas (Clustered Regularly Inter-

spaced Short Palindromic Repeats; CRISPR-associated), an adaptive immune

system. These immune systems are highly diverse and based on their cas
gene synteny and CRISPR repeat sequences; they are currently classified into

two classes, six types and 33 subtypes [5] that display clear differences in

their molecular mechanisms of action. Nonetheless, all variants confer the abil-

ity to acquire sequence-specific phage resistance through the insertion of short

pieces of phage-derived DNA (spacers) into CRISPR loci in the host genome

(reviewed in [6]). Upon re-infection, processed transcripts of CRISPR loci

(crRNA) guide CRISPR-associated (Cas) proteins to bind complementary

sequences in the phage genome, followed by endonucleolytic cleavage of the

phage DNA and/or RNA (depending on the CRISPR-Cas subtype) to clear

the infection (reviewed in [7]).

Despite the obvious benefits of CRISPR-mediated phage resistance when

phages are present in the environment [8], the majority of bacterial genomes

lack a CRISPR-Cas adaptive immune system [9–13], an estimate that undoubt-

edly is subject to sampling biases, as some clades of unculturable bacteria

appear to be essentially devoid of CRISPR systems [14]. This is in stark contrast
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with restriction-modification defence systems, which are pre-

sent on average at two copies per cell [15] and raises the

question why the fraction of bacterial genomes that encode

CRISPR systems is so low. The common observation that

CRISPR-Cas systems frequently move between species by

horizontal gene transfer (HGT) suggests that the opportunity

to acquire these systems is at least not a limiting factor, and

instead suggests that these systems are frequently gained

and subsequently lost again [12,16–24]. Several mutually

non-exclusive explanations for this have been proposed.

First, it appears to be the case that CRISPR-Cas systems are

associated with autoimmunity issues due to self-targeting

that could drive the loss of these systems from bacterial gen-

omes [25–27]—a principle that is taken advantage of when

applying CRISPR-Cas systems as antimicrobials [28–32]. In

the context of lysogenization (i.e. when temperate phages

integrate into the host genome), similar effects may occur,

although at least some CRISPR-Cas variants appear to have

mechanisms to provide some protection against self-cleavage

in these instances [33,34]. An alternative explanation for the

absence of CRISPR-Cas systems from many genomes is that

they form a barrier for HGT. While this may in some cases

be protective, it can also prevent the acquisition of potentially

beneficial genetic information, and can, therefore, cause selec-

tion for bacteria with inactivated CRISPR-Cas systems when

HGT is an important fitness determinant [27,35–37]. Yet,

another explanation is that bacteria with CRISPR-Cas adaptive

immunity can be outcompeted by bacteria with alternative

defences under some ecological conditions [8,38–40]. Assum-

ing there is a fitness trade-off associated with encoding

CRISPR-Cas adaptive immune systems [41], then natural selec-

tion could favour loss of CRISPR-Cas systems in these

environments (reviewed in [37,42]).

While each of these factors is likely to contribute to the

overall phylogenetic distribution of CRISPR-Cas immune sys-

tems in bacteria, it is becoming increasingly clear that there are

additional constraints that arise from the host genetic context.

This is because the co-occurrence of certain non-cas genes is, in

some cases, a prerequisite for encoding a fully functional

CRISPR-Cas system, or because of epistatic interactions

between non-cas genes and CRISPR-Cas systems. For example,

during the first stage of the CRISPR-Cas immune response

when new spacers are captured and integrated into the

CRISPR array, the non-Cas protein, integration host factor

(IHF), has been shown to be crucial in type I–E and I–F sys-

tems [43,44]. IHF guides spacer integration to the correct

promoter-proximal end of the CRISPR array, where spacers

provide the highest levels of resistance to re-infection

[43–46]. Another example where an accessory host factor is

essential for CRISPR functioning is in type II systems, which

generally require RNase III for processing of the pre-CRISPR

RNA transcript into short CRISPR RNA molecules (crRNA)

that guide Cas complexes to target and destroy foreign

elements [47–49].

Apart from these examples where host factors are essen-

tial, there are also instances of both positive and negative

epistasis between CRISPR systems and other genes encoded

by the same host. For example, type II-A CRISPR-Cas systems

(specifically the Csn2 protein) inhibit the non-homologous

end joining (NHEJ) DNA repair pathway, and as a conse-

quence, these two systems almost never co-occur in the

same genome [50]. The opposite can also happen, where sys-

tems act synergistically. For example, interference levels of
Escherichia coli type I CRISPR-Cas systems depend on the

presence of a homologue of heat shock protein 90 (HtpG)

[51], the presence of a restriction-modification system has

been shown to enhance the performance of a type II

CRISPR-Cas immune system encoded by the same host

[52], and it was reported that RecBCD-mediated DNA degra-

dation products could feed into the spacer acquisition

machinery of a type I CRISPR-Cas system [53].

While these examples illustrate how the host genetic

context can determine whether or not acquisition of a

CRISPR-Cas immune system would likely provide a fitness

advantage, this list of examples is far from complete and our

understanding of the way host genetic context and CRISPR-

Cas interact is still rudimentary. Such knowledge is important

for understanding the observed distribution of these systems,

but also in an applied context, if we are to equip bacteria with

CRISPR-Cas immunity to protect them against phage preda-

tion, for example, to protect fermentation in industrial settings.

Here, we examine whether bacterial mutation rates may

form a barrier for the expression of the benefits associated

with CRISPR-Cas adaptive immune systems. Bacterial

mutation rates typically range from 1 in 10 million to 1 in a

billion base substitutions per nucleotide per generation

(reviewed in [54]), but bacteria with approximately 100-fold

higher mutation frequencies are frequently found in both

natural and clinical environments [55–57]. These high

mutation rates are often due to inactivated mismatch repair

systems and can either reduce or enhance bacterial fitness

depending on the environment [58–61]. It is tempting to

speculate that, in the context of phage predation, the benefits

of CRISPR-Cas may be reduced in a host genetic background

that has high mutation rates, because (i) these populations

generate beneficial surface resistance mutations at a much

higher frequency and (ii) high mutation rates may increase

the rate at which CRISPR immunity is lost through mutation

of cas genes or spacers in the CRISPR array [62].

To test these ideas, we performed experimental evolution

with Pseudomonas aeruginosa strain UCBPP-PA14, a clinical

isolate and model system for studying the evolution of

CRISPR resistance in response to its phage DMS3vir [8,63].

Pseudomonas aeruginosa is an opportunistic pathogen that

causes both acute and chronic infections in the lungs of

cystic fibrosis (CF) patients, and its presence and the exacer-

bations it causes in CF lungs are generally considered to be

one of the highest mortality risk factors for patients [64]

(but also see [65] for a critical reflection on this dogma).

Between one-third and one-half of CF patients with chronic

P. aeruginosa infections harbour isolates with hypermutator

phenotypes, typically due to mutations that inactivate the

mismatch repair system, most commonly through mutation

of the mutS gene [57,66,67]. By comparing the evolution of

phage resistance in WT PA14 and isogenic DmutS strains,

we find that high mutation rates have a dramatic impact on

the evolution of phage resistance, which changes from

being almost exclusively CRISPR-based in the WT back-

ground to being almost exclusively surface-based in the

DmutS background. These data help us to understand how

natural variation in mutation rates may impact the phylo-

genetic distribution of CRISPR-Cas systems, and have

implications for phage therapy applications, where they

may help to predict the relative importance of CRISPR- and

surface-based resistances on the basis of the bacterial

mutation rate.
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2. Methods
(a) Bacterial and virus strains
Pseudomonas aeruginosa UCBPP-PA14 (referred to as WT, carry-

ing no spacers targeting DMS3vir), P. aeruginosa UCBPP-PA14

csy3::LacZ [63] (also referred to as CRISPR-KO, because it carries

a disruption of an essential cas gene that causes the CRISPR-Cas

system to be non-functional) and P. aeruginosa UCBPP-PA14

mutS::MAR2xT7 [68], which was kindly provided by Alexandro

Rodriguez Rojas (below this strain is also referred to as DmutS or

PA14 mutator strain), and the CRISPR-KO-derived surface mutant

(sm) (described previously here [8]), were used in all experiments.

WT or DmutS bacteriophage-insensitive mutants (BIM) (N ¼ 6)

isolated during the evolution experiment (figure 1), that had

acquired two spacers against phage DMS3vir, were used in the

competition experiment. Cells were grown overnight at 378C in

LB or M9 medium (22 mM Na2HPO4; 22 mM KH2PO4; 8.6 mM

NaCl; 20 mM NH4Cl; 1 mM MgSO4; 0.1 mM CaCl2) supplemented

with 0.2% glucose. The obligately lytic phage DMS3vir was used in

all experiments, and has previously been described in [63].

DMS3vir-acrIF1 was used in downstream analyses and has been

described elsewhere [69]. Phage amplification and titrations were

carried out on P. aeruginosa UCBPP-PA14 csy3::LacZ.

(b) Evolution experiments
To monitor the evolution of bacterial resistance in response to

phage infection and the associated bacterial and phage popu-

lation dynamics, glass vials with 3 ml of LB medium or M9

medium supplemented with 0.2% glucose were inoculated

with approximately 106 bacteria from fresh overnight cultures

of the corresponding bacterial strains. These cultures were

infected with 104 plaque forming units (pfu) of DMS3vir, fol-

lowed by incubation at 378C and shaking at 180 rpm. Cultures

were transferred 1 : 100 into fresh medium every 24 h for 11

days (3 days only for LB). Experiments in M9 were performed

in six independent replicates and those in LB in three independent

replicates.

(c) Measuring bacterial and phage population dynamics
Bacterial densities were determined by plating on LB agar serial

dilutions of samples taken at each transfer in M9 salts (22 mM

Na2HPO4; 22 mM KH2PO4; 8.6 mM NaCl; 20 mM NH4Cl;

1 mM MgSO4; 0.1 mM CaCl2). Phages were extracted at each

transfer by chloroform extraction (sample : chloroform 10 : 1 v/v),

and phage titres were determined by spotting serial dilutions

of isolated phage samples in M9 salts on a lawn of CRISPR-KO

bacteria.

(d) Survival analyses
Phage survival analyses were carried out using GraphPad soft-

ware by plotting the per cent survival phages at each time

(Kaplan–Meier curve). Paired-comparisons of survival curves

were made by applying the Mantel–Cox tests and were con-

sidered statistically significant when p-values were less than a

Bonferroni-corrected threshold of 0.017.

(e) Evolution of resistance
For consistency with previous studies [8,40,69,70], the evolution

of resistance was determined at 3 days post-infection (dpi) by

streaking individual colonies (always 16 randomly picked colo-

nies per replicate) through DMS3vir and DMS3vir-acrIF1.

Surface modification was confirmed by colony morphology,

broad-range resistance to DMS3vir phages carrying

acr genes, and lack of newly acquired spacers. CRISPR-

Cas–mediated immunity was confirmed by PCR using primers
50-CTAAGCCTTGTACGAAGTCTC-30 and 50-CGCCGAAGGC-

CAGCGCGCCGGTG-30 for CRISPR array 1, and primers

50-GCCGTCCAGAAGTCACCACCCG-30 and 50-TCAGCAAGT-

TACGAGACCTCG-30 for CRISPR array 2.

( f ) Estimating frequency and rate of surface mutations
in bacterial populations

Six colonies of WT, CRISPR-KO and DmutS strains were picked

and cultured in 6 ml M9 medium overnight. These cultures

were standardized to 0.1 OD600 and diluted 1000-fold. Fifty

microlitres of each culture were used to seed 15 replicate popu-

lations per strain. After 24 h incubation (378C, 180 RPM

shaking), a 200 ml dilution series of each culture was exposed

to 50 ml of either DMS3vir (approx. 1010 PFU ml21, MOI

approx. 500) or buffer and 5 ml immediately spotted on LB

agar plates. The resulting drop plates were counted after 24 h

incubation. The resistance phenotype of surviving colonies was

confirmed by streaking colonies through DMS3vir and

DMS3vir-acrIF1. Mutation rates were estimated from a Luria–

Delbrück model using a maximum-likelihood method

implemented by the FLAN package [71] in R (v. 3.5.1). Signifi-

cance was determined using two-sample fluctuation analysis

tests on mutant counts implemented using the flan.test function

(FLAN [71]).

(g) Competition assays to measure fitness
Competition experiments were performed in glass vials in 6 ml

M9 medium supplemented with 0.2% glucose. Competition

experiments were initiated by inoculating 1 : 100 from a 1 : 1

mixture of overnight cultures (grown in M9 medium þ 0.2%

glucose) of the CRISPR-KO-derived sm strain and either BIM of

the WT or the DmutS strain with two spacers against DMS3vir,

that had been isolated during the evolution experiment. Phage

DMS3vir was added at the start of the experiment at 0, 104, 107

or 109 pfu. Cells were transferred 1 : 100 daily into fresh broth.

At 0, 1, 2 and 3 days, post-infection samples were taken and

cells were serially diluted in M9 salts and plated on LB agar sup-

plemented with 50 mg ml21 X-gal (to allow discrimination

between WT BIM or DmutS BIM bacteria (white) and sm (blue)

bacteria). All experiments were performed in six replicates. Rela-

tive fitness was calculated from changes in the relative

frequencies of blue and white colonies (rel. fitness ¼ [(fraction

strain A at t ¼ x) * (1 2 (fraction stain A at t ¼ 0))]/[(fraction

strain A at t ¼ 0) * (1 2 (fraction strain A at t ¼ x)]).
3. Results
Clinical isolates of P. aeruginosa commonly have a hypermu-

tator phenotype [57]. To understand if and how this impacts

the benefits of a CRISPR-Cas adaptive immune system, we

performed an evolution experiment and monitored the

bacterial and phage population dynamics as well as the

levels of CRISPR-mediated resistance that evolved following

exposure of either WT PA14, a PA14 CRISPR-KO strain or a

mutator (PA14 DmutS) strain to 104 pfu of phage DMS3vir
[63], a Mu-like phage [72] (figure 1a–j). Pseudomonas
aeruginosa PA14 has a type I–F CRISPR-Cas system [11],

which does not a priori target phage DMS3vir [63]. Consistent

with previous studies [69], we found that following infection

of the WT strain, phage titres rapidly increased, which is

simply because bacteria are initially sensitive to phages and

therefore allow rapid phage amplification. However, from

1 dpi onwards, phage titres started to decline rapidly until

complete extinction at 6 dpi (figure 1a). As expected, bacterial
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densities remained low during the early stages of the exper-

iment, but recovered from 2 dpi onwards, which coincided

with the rapid decline in phage titres, and presumably

reflects the evolution of phage resistance by the bacteria

(figure 1b). In response to phage infection, P. aeruginosa
strain UCBPP-PA14 can evolve either surface modification

(sm) or CRISPR-Cas–mediated defence [8]. Analysis of indi-

vidual bacterial clones that were isolated at 3 dpi revealed

high levels of phage resistance evolution, and this was

mainly due to CRISPR-mediated immunity of the bacteria

(figure 1j ).
Despite the previously reported benefit of high mutation

rates to the bacteria when exposed to phage infection [60],

when the same experiment was carried out using the PA14

DmutS strain, phage extinction risk was reduced compared

to that observed for the WT strain (figure 1c,g,i, p ¼ 0.005,

Mantel–Cox test), and was similar to that observed following

infection of the CRISPR-KO strain (figure 1e,g,i). Similar to

what was observed for the WT strain, bacterial densities of

the mutator and CRISPR-KO strains were initially low, but

recovered from 2 dpi onwards, despite phage still being pre-

sent (figure 1d ). Interestingly, analysis of individual clones

isolated at 3 dpi revealed that almost all PA14 DmutS bacteria

had evolved surface-based resistance rather than CRISPR-

based immunity (figure 1j ). These findings help to explain

why phage was able to persist for a longer period in the

mutator background, because phages attempting to infect

CRISPR-immune cells are destroyed, leading to a rapid

reduction in their numbers. By contrast, phages cannot

absorb to fully resistant surface-modified hosts and hence

their numbers decrease more gradually through dilution by

serial transfer. Additionally, a lack of phage extinction is

commonly observed following evolution of surface-based

resistance, probably because some surface modification

mutants remain partially sensitive to phage infection [69].

To extend the generality of these findings, we also carried

out this experiment in high nutrient LB media, which favours

the evolution of surface-mediated resistance [8]. As expected,

in these conditions, we found that WT bacteria evolved

low levels of CRISPR-based resistance to DMS3vir, and

mostly evolved resistance by surface modification. The

CRISPR-KO and DmutS populations evolved resistance

exclusively by surface modification in these conditions

(electronic supplementary material, figure S1).

While these data show that high bacterial mutation rates

cause a strong reduction in the evolution of CRISPR resist-

ance, it is unclear why this is the case. We envisaged two

possible explanations (i) the frequency at which surface

mutants are produced is higher in a mutator background

and (ii) CRISPR-resistant clones in a mutator background

are less fit than surface mutants, for example, because

CRISPR immunity is rapidly lost as a consequence of

mutations in the cas genes or CRISPR arrays. The first expla-

nation is intuitively contributing to the observed effects,

because bacterial clones evolve resistance in this system by

random mutation of surface genes, particularly those that

encode the pilus, which acts as the receptor for phage

DMS3vir [8,63]. To formally test this hypothesis, we carried

out a fluctuation test in which replicate populations of WT,

DmutS and the CRISPR-KO were exposed to high phage

titres before plating serial dilutions of the mixtures. By

measuring the plated population size in the absence of

phage and the number of survivors after phage exposure,
we were able to calculate the frequency and rate of spon-

taneous surface mutation generation in each host

background (figure 2a,b). The frequency of surface mutants

was higher in the DmutS condition (mean of 7.34 � 10203

per cell, 95% CI (4.89 � 10203, 9.80 � 10203)) compared to

the CRISPR-KO (4.20 � 10205, 95% CI (1.58 � 10205, 6.82 �
10205)) or WT background (2.37 � 10204, 95% CI (1.45 �
10204, 3.30 � 10204)) (figure 2a). As the pilus locus is very

large, comprising over 20 genes, the likelihood that it will

acquire mutations is high and many of these will lead to a

‘surface mutant’ phenotype ([73]), which may explain the

relatively high frequencies of phage-resistant surface mutants

we see even in the WT and CRISPR-KO backgrounds.

These data were entered into a modified form of the

Luria–Delbrück mutation rate estimator that implements a

maximum-likelihood method as described by Ycart & Veziris

[74]. The calculated mutation rate of the DmutS strain to a sur-

face mutant phenotype was significantly higher (mean ¼

5.53 � 10204, s.d. ¼ 1.62 � 10204) than that of both the WT

(6.71 � 10205, s.d. ¼ 1.09 � 10205) and CRISPR-KO (1.17 �
10205, s.d. ¼ 2.74 � 10206) hosts (two-sample ML test t ¼
4.69, p , 0.001, and t ¼ 4.69, p , 0.001, respectively)

(figure 2b). Surprisingly, we also found a small, but signifi-

cant difference in the WT and CRISPR-KO mutation rates

generated by this method (t ¼ 3.9, p , 0.0001). Nonetheless,

this analysis confirmed the prediction that the rate at which

surface mutants are generated is higher (by approx. 10–50

fold) for the mutator background (figure 2b). To test the

second explanation, we competed six independent CRISPR-

resistant clones derived from the WT background or from

the DmutS background against a previously described sur-

face mutant (sm) that carries a lacZ marker gene [8], and

which serves as a reference strain. The evolution of sm
through loss of the phage receptor is frequently reported

to be associated with a fixed fitness cost [8,75,76], whereas

CRISPR-Cas–mediated defence is associated with an induced

fitness cost [8]. Consistent with these previous observations,

these competition experiments demonstrated that the relative

fitness of CRISPR-resistant bacteria depends on the amount

of phage ( p � 0.0001, F3,40¼ 16.07, by two-way ANOVA), per-

haps due to higher phage numbers leading to CRISPR-Cas

being elicited more frequently and therefore to a higher indu-

cible cost [8], but crucially, it is independent of the mutation

rate of the host ( p ¼ 0.51, F1,40¼ 0.44) (figure 2c). Collectively,

these data therefore demonstrate that mutator strains evolve

greater levels of surface resistance because these mutants

pre-exist at higher frequencies in the population, and not

because of a reduced selective advantage of CRISPR-resistant

clones over surface mutants when the host has a higher

mutation rate.
4. Discussion
It is commonly acknowledged that CRISPR-Cas adaptive

immune systems frequently move by HGT and provide a

benefit in the face of phage infection, yet they are found in

less than half of the sequenced bacterial genomes. This

apparent paradox may be partly explained by the loss of

CRISPR-Cas systems due to immunopathological effects, i.e.

the cytotoxic effects of self-targeting [25–27]. In addition, the

system may form a barrier for HGT, driving its loss when

HGT is an important fitness determinant [27,35]. Thirdly,
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other defences may be selected over CRISPR-Cas in some

environments [8,38–40]. Finally, CRISPR-Cas systems may

show negative epistasis with host genes, as was recently

shown to be the case for the NHEJ DNA repair pathway

and type II-A CRISPR-Cas systems [50]. Here, we show that

mutation of the mismatch repair system, which results in a

mutator phenotype, is associated with the virtually undetect-

able evolution of CRISPR-based resistance. We propose that

the benefits of a CRISPR-Cas immune system are reduced in

this genetic background, but this will need to be formally con-

firmed by performing competition experiments between

DmutS strains with and without CRISPR-Cas in the pres-

ence/absence of phages. However, currently, we speculate

that the natural variation in bacterial mutation rates may,

therefore, influence the distribution of these adaptive

immune systems.

Mutator phenotypes frequently arise both in the labora-

tory and in nature, most commonly due to frameshifts,

insertions, premature stop codons or deletions of mutS or

mutL genes [77,78]. These mutators have approximately a

100-fold increased rate of transition from G : C to A : T and

vice versa, a 1000-fold increased rate of frameshift mutations,

as well as a 10- to 1000-fold increase in the rate of chromoso-

mal rearrangements [79]. Despite the increased rate at which

these mutators accumulate deleterious mutations [58,80],
they can sometimes outcompete non-mutators, particularly

in fluctuating environments [58,81–86], such as those experi-

enced during the antagonistic coevolution with phages [60].

The selective advantages of mutator phenotypes in fluctuat-

ing stressful environments also help to explain why

mutators are relatively common in nature (sometimes with

frequencies above 60%), and particularly so in pathogens

(including, for example, E. coli, Salmonella enterica, Neisseria
meningitides, Haemophilus influenza, Staphylococcus aureus,

Helicobacter pylori, Streptococcus pneumoniae and P. aeruginosa
(see [79] and references therein). Given that pathogens

occupy niches where they are frequently exposed to various

stressors, mutator phenotypes can provide a selective advan-

tage by accelerating adaptive evolution [55,56,79]. For

example, during colonization of the lungs of CF patients,

P. aeruginosa strains are continuously exposed to osmotic

and oxidative stress, the host immune system and antibiotics

[64], and the observed appearance of mutator phenotypes

during chronic infection may be important in driving rapid

evolution of resistance to these factors [87,88]. This idea is

further supported by the high frequency of mutator strains

in chronically infected CF lungs (20% of isolates and 37%

of patients carrying a mutator in one study [57]) and the posi-

tive relationship between mutator phenotypes and antibiotic

resistance in pathogenic isolates of P. aeruginosa [57].
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The relevance of mutator strains in clinical contexts, and

the impact these phenotypes have on the evolution of

phage resistance could be an important consideration in the

context of phage therapy, which is currently undergoing a

revival [89]. Our data show that—at least in an in vitro labora-

tory environment—mutator strains are much less likely to

evolve CRISPR-based resistance and more likely to evolve

surface resistance. Therefore, if the prevalence of mutator

strains in an infection is known, it could be used to predict

the relative importance of different resistance strategies

likely to evolve during treatment. Furthermore, when CF

patients carry mutator strains in their lungs, therapeutic use

of phages may cause rapid emergence of surface mutants

likely to outcompete other resistance strategies in the short

term and become the dominant strain, which could have

knock-on effects for the evolution of virulence and disease

progression. We appreciate that the DmutS mutator strain

chosen for these experiments is likely an extreme example,

with a very high rate of mutations, and that a range of

rates will exist in nature, with some mismatch repair mutants

only having a slightly increased mutation supply rate compared

to WT. This, in turn, may lead to variation in the importance of

CRISPR-Cas in these hosts and further experiments will be

needed to investigate this.

Apart from the biomedical implications, the results pre-

sented here help to shed further light on the factors that

determine whether bacteria evolve surface resistance or

CRISPR-based adaptive immunity against phages. Previous

work with this same model system has shown that natural

selection favours CRISPR-based defences if phage titres are
low, because surface resistance is associated with a fixed

cost of resistance, whereas CRISPR-based immunity is associ-

ated with a cost that is elicited only during phage infections

[8]. Our data show that in addition to selection, the mutation

supply rate also influences the type of phage resistance that

evolves in this system. While we only tested the importance

of mutation rates on the evolution of CRISPR-based versus sur-

face-based resistance under laboratory conditions, if the same

effects to apply in nature, it may, therefore, influence the

benefits and hence the distribution of CRISPR-Cas systems.

Future studies are needed to examine whether such correlations

exist between CRISPR activity and host mutation rates.
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B. flan: an R package for inference on mutation
models. The R Journal. R Foundation for Statistical
Computing 9, 334 – 351.

72. Budzik JM, Rosche WA, Rietsch A, O’Toole GA. 2004
Isolation and characterization of a generalized
transducing phage for Pseudomonas aeruginosa
strains PAO1 and PA14. J. Bacteriol. 186, 3270 – 3273.
(doi:10.1128/JB.186.10.3270-3273.2004)

73. Hmelo LR, Borlee BR, Almblad H, et al. 2015
Precision-engineering the Pseudomonas aeruginosa
genome with two-step allelic exchange. Nat Protoc.
10, 1820-41. (doi:10.1038/nprot.2015.115)

74. Ycart B, Veziris N. 2014 Unbiased estimation of
mutation rates under fluctuating final counts. PLoS
One 9, e101434. (doi:10.1371/journal.pone.0101434)

75. Lenski RE. 1988 Experimental studies of pleiotropy
and epistasis in Escherichia coli .1. Variation in
competitive fitness among mutants resistant to
virus-T4. Evolution 42, 425 – 432.

76. Brockhurst MA, Buckling A, Rainey PB. 2005 The
effect of a bacteriophage on diversification of the
opportunistic bacterial pathogen, Pseudomonas
aeruginosa. Proc. R. Soc. B 272, 1385 – 1391.
(doi:10.1098/rspb.2005.3086)

77. Oliver A, Baquero F, Blazquez J. 2002 The mismatch
repair system (mutS, mutL and uvrD genes) in
Pseudomonas aeruginosa: molecular characterization
of naturally occurring mutants. Mol. Microbiol. 43,
1641 – 1650. (doi:10.1046/j.1365-2958.2002.02855.x)

78. Li B, Tsui HC, LeClerc JE, Dey M, Winkler ME, Cebula
TA. 2003 Molecular analysis of mutS expression and
mutation in natural isolates of pathogenic
Escherichia coli. Microbiology 149(Pt 5),
1323 – 1331. (doi:10.1099/mic.0.26213-0)

79. Denamur E, Matic I. 2006 Evolution of mutation
rates in bacteria. Mol. Microbiol. 60, 820 – 827.
(doi:10.1111/j.1365-2958.2006.05150.x)

80. Funchain P, Yeung A, Stewart JL, Lin R, Slupska
MM, Miller JH. 2000 The consequences of growth of
a mutator strain of Escherichia coli as measured by
loss of function among multiple gene targets and
loss of fitness. Genetics 154, 959 – 970.

81. Leigh EG. 1970 Natural selection and mutability.
Am. Nat. 104, 301. (doi:10.1086/282663)

82. Ishii K, Matsuda H, Iwasa Y, Sasaki A. 1989
Evolutionarily stable mutation-rate in a periodically
changing environment. Genetics 121, 163 – 174.

83. Tenaillon O, Toupance B, Le Nagard H, Taddei F, Godelle
B. 1999 Mutators, population size, adaptive landscape
and the adaptation of asexual populations of bacteria.
Genetics 152, 485 – 493.

84. Tanaka MM, Bergstrom CT, Levin BR. 2003 The
evolution of mutator genes in bacterial populations:
the roles of environmental change and timing.
Genetics 164, 843 – 854.

85. Palmer ME, Lipsitch M. 2006 The influence of
hitchhiking and deleterious mutation upon asexual
mutation rates. Genetics 173, 461 – 472. (doi:10.
1534/genetics.105.049445)

86. Andre JB, Godelle B. 2006 The evolution of
mutation rate in finite asexual populations.
Genetics 172, 611 – 626. (doi:10.1534/genetics.
105.046680)

87. Smith EE et al. 2006 Genetic adaptation by
Pseudomonas aeruginosa to the airways of cystic
fibrosis patients. Proc. Natl Acad. Sci. USA 103,
8487 – 8492. (doi:10.1073/pnas.0602138103)

88. Cramer N, Klockgether J, Wrasman K, Schmidt M,
Davenport CF, Tummler B. 2011 Microevolution of
the major common Pseudomonas aeruginosa clones
C and PA14 in cystic fibrosis lungs. Environ.
Microbiol. 13, 1690 – 1704. (doi:10.1111/j.1462-
2920.2011.02483.x)

89. De Smet J, Hendrix H, Blasdel BG, Danis-Wlodarczyk
K, Lavigne R. 2017 Pseudomonas predators:
understanding and exploiting phage-host
interactions. Nat. Rev. Microbiol. 15, 517 – 530.
(doi:10.1038/nrmicro.2017.61)

90. Chevallereau A, Meaden S, van Houte S, Westra ER,
Rollie C. 2019 Data from: The effect of bacterial
mutation rate on the evolution of CRISPR-Cas
adaptive immunity. Dryad Digital Repository.
(http://dx.doi.org/10.5061/dryad.937s037)

http://dx.doi.org/10.1038/ismej.2017.194
http://dx.doi.org/10.1128/JB.01184-12
http://dx.doi.org/10.1038/nrmicro2907
http://dx.doi.org/10.1128/JB.00271-18
http://dx.doi.org/10.1128/JB.00271-18
http://dx.doi.org/10.1128/AAC.48.7.2665-2672.2004
http://dx.doi.org/10.1128/AAC.49.6.2276-2282.2005
http://dx.doi.org/10.1128/AAC.49.6.2276-2282.2005
http://dx.doi.org/10.1073/pnas.0511100103
http://dx.doi.org/10.1038/nature17436
http://dx.doi.org/10.1016/j.cell.2018.05.058
http://dx.doi.org/10.1128/JB.186.10.3270-3273.2004
http://dx.doi.org/10.1038/nprot.2015.115
http://dx.doi.org/10.1371/journal.pone.0101434
http://dx.doi.org/10.1098/rspb.2005.3086
http://dx.doi.org/10.1046/j.1365-2958.2002.02855.x
http://dx.doi.org/10.1099/mic.0.26213-0
http://dx.doi.org/10.1111/j.1365-2958.2006.05150.x
http://dx.doi.org/10.1086/282663
http://dx.doi.org/10.1534/genetics.105.049445
http://dx.doi.org/10.1534/genetics.105.049445
http://dx.doi.org/10.1534/genetics.105.046680
http://dx.doi.org/10.1534/genetics.105.046680
http://dx.doi.org/10.1073/pnas.0602138103
http://dx.doi.org/10.1111/j.1462-2920.2011.02483.x
http://dx.doi.org/10.1111/j.1462-2920.2011.02483.x
http://dx.doi.org/10.1038/nrmicro.2017.61
http://dx.doi.org/10.5061/dryad.937s037

	The effect of bacterial mutation rate on the evolution of CRISPR-Cas adaptive immunity
	Introduction
	Methods
	Bacterial and virus strains
	Evolution experiments
	Measuring bacterial and phage population dynamics
	Survival analyses
	Evolution of resistance
	Estimating frequency and rate of surface mutations in bacterial populations
	Competition assays to measure fitness

	Results
	Discussion
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


