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Abstract: Nucleus segmentation of fluorescence microscopy is a critical step in quantifying mea-
surements in cell biology. Automatic and accurate nucleus segmentation has powerful applications
in analyzing intrinsic characterization in nucleus morphology. However, existing methods have
limited capacity to perform accurate segmentation in challenging samples, such as noisy images and
clumped nuclei. In this paper, inspired by the idea of cascaded U-Net (or W-Net) and its remarkable
performance improvement in medical image segmentation, we proposed a novel framework called
Attention-enhanced Simplified W-Net (ASW-Net), in which a cascade-like structure with between-net
connections was used. Results showed that this lightweight model could reach remarkable segmen-
tation performance in the BBBC039 testing set (aggregated Jaccard index, 0.90). In addition, our
proposed framework performed better than the state-of-the-art methods in terms of segmentation
performance. Moreover, we further explored the effectiveness of our designed network by visualizing
the deep features from the network. Notably, our proposed framework is open source.

Keywords: nucleus segmentation; deep learning; attention mechanism; fluorescence microscopy

1. Introduction

Image segmentation plays a vital role in cell biology in acquiring quantitative mea-
surements [1]. From microscopy-based measurement [2], multiplex imaging analysis [3,4],
to high-content screening [5,6], image segmentation is crucial to the characterization of cell
signaling and morphology, such as the size and shape.

One of the critical steps for quantifying measurements in fluorescence microscopy is
accurate nucleus segmentation. It is the first step for identifying cell borders [7], enabling
each cell to characterize. Automatic nucleus segmentation alleviates the problems of
assessing subtle visual features by manually inefficiently drawing the nuclear contours [8].
Over the past decades, some significant research efforts have been made to improve the
performance of nucleus segmentation [9]. For instance, thresholding [10], watershed
algorithm [11,12], and active contour [13,14] are some of the dominant approaches to
this segmentation task. However, these methods highly rely on expert knowledge to set
parameters, and adjustment parameters are required in different experimental conditions.
Moreover, these classical algorithms do not work effectively in some challenging cases,
such as noisy images and crowded nuclei [1,7,15].

Deep learning has recently succeeded in image segmentation tasks and often achieves
a much higher performance on popular benchmarks than traditional methods [16]. From
multi-organ segmentation on CT images [17,18] to tumor-tissue segmentation on histopatho-
logical images [19,20], deep learning has achieved outstanding performance improvement.
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These segmentation tasks can be formulated as a classification problem of each pixel with
a semantic label [16]. Hence, nucleus segmentation can be considered as a problem of
classifying each pixel into a semantic category. Some previous works illustrate that deep
learning is effective in nucleus segmentation [1,21,22], such as U-Net [23] and W-Net [24].
The architecture of U-Net has been broadly thought of as an encoder convolutional neural
network followed by a decoder network. The encoder extracts feature related to the seg-
mentation task, and then the decoder constructs the mask given only such features. The
traditional architecture of U-Net consists of basic convolution operation, pooling operation,
and deconvolution operation. In contrast, W-Net is a network with cascaded U-shape
architecture [24]. In W-Net, the between-net connections are designed to preserve features
from shallow layers to deep layers by concatenation operations [24]. This cascade struc-
ture indicates a noticeable accuracy improvement. However, W-Net is a computationally
heavy network due to its cascade architecture. Thus, a large amount of data would be
required to train W-Net. Meanwhile, a longer time is required than U-Net for training a
well-fitting model.

Given the importance of nucleus segmentation and only limited data for nucleus
segmentation currently, in this study, we revisited the challenge of nucleus segmentation
by incorporating the ideas from W-Net. In particular, inspired by U-Net and W-Net, we
proposed a novel method for nucleus segmentation, named attention-enhanced simplified
W-Net (ASW-Net). Our proposed model is a lightweight network utilizing a cascade-like
structure with between-net connections. An attention gate is connected to the convolution
block before each up-sampling process to extract representative features effectively. In this
framework, we utilize the interior expansion, a post-processing method, to improve the
nuclei segmentation accuracy.

In this study, we propose a novel framework with ASW-Net for the nucleus segmenta-
tion of fluorescence microscopy. Attention gates are applied to ASW-Net for better learning
ability. Moreover, we visualize the deep features extracted from ASW-Net to interpret how
this model effectively improves segmentation performance.

We have released ASW-Net as a publicly available segmentation tool for the commu-
nity. The pre-trained model and all support materials are available at https://github.com/
Liuzhe30/ASW-Net.

2. Materials and Methods
2.1. Benchmark Dataset

In total, we employed two image datasets in our experiment: the BBBC039 dataset [5]
and a ganglioneuroblastoma image set [25].

BBBC039 is a high-throughput chemical screen on human osteosarcoma U2OS cell line,
available from the Broad Bioimage Benchmark Collection (http://www.broad.mit.edu/
bbbc) (accessed date: 22 May 2021). This image set only includes a channel of DNA of a
single field of view. This collection has around 23,165 nuclei annotated by expert biologists,
including variant perturbations from one experiment. The dataset consists of 200 images,
each 520 × 696 pixels in size. We used the same data partitions as Broad Institute suggests
comparing results with previous work. Hence, the collection is split into 100 training,
50 validation, and 50 testing images. Hence, more than 72 million pixels were used in our
pixel classification task for nucleus segmentation.

The ganglioneuroblastoma dataset includes ten images/2773 nuclei. This image set is
of broad heterogeneity regarding magnification (20×, 40×, or 63×). Moreover, this image
set has a different signal-to-noise ratio (SNR). Overall, 70% of the dataset is normal SNR and
30% SNR data. We used this collection as external validation to check the generalization
capability of ASW-Net in different magnification, different cell types, and different SNR.

2.2. Algorithm Framework

Our overall framework for nuclear instance segmentation contains three parts: image
pre-processing, network architecture, and image post-processing (see Figure 1). As for the
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pre-processing method, we first applied gray-scale normalization to make contours and
instances clearer in the source image. To avoid as much over-fitting as possible, we also
utilized some data augmentation operations for the training set (rotation and flip). Then, the
processed images were fed into our proposed deep-learning network ASW-Net for training
or testing to predict whether a given pixel is on the edge of the nucleus, inside the nucleus,
or in the background. The detailed structure of ASW-Net is demonstrated in the next
section. Considering the thick boundary in the original predicted results, we implemented
the interior expansion algorithm to thin the boundary of nuclei and improve prediction
accuracy. After the procedures described above, we obtained the final segmentation results.
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Figure 1. Overview of the proposed framework for nuclear instance segmentation. This pipeline
contains image pre-processing, network architecture, and image post-processing. ASW-NET is trained
based on the training images, and appropriate weights are found in the training process. In the testing
process, the ASW-NET predicts the probability of each pixel’s background, interior, and boundary.
Then an interior expansion algorithm is adopted to obtain the final instance segmentation results.
The details of ASW-Net are explained in Figure 2.

2.3. Model Design
2.3.1. Network Architecture

Inspired by the classical structures of U-Net [23], W-Net [24], and some pioneered
research works, we proposed ASW-Net, a deep learning-based tool for cell nucleus seg-
mentation of fluorescence microscopy. As a simplified W-net, ASW-Net can extract more
features from raw images than U-net, and it is lighter than W-net at the same time. The
attention mechanism also endows the model with better learning ability and interpretability.

Figure 2 shows the detailed structure of ASW-Net, which contains three down-
sampling processes (encoding phase), three up-sampling processes (decoding phase), and
three attention gates. First, the input images are fed into two successive down-sampling
processes, followed by an up-sampling process. Since the original input consists of fea-
tures from a shallow level and carries unusable noise with a high probability, the first
up-sampling process does not feed it back into the model. To learn the deeper features
more purely, we only decode and re-enter the information generated before the second
down-sampling.
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Figure 2. The structure of ASW-Net. There are three down-sampling processes (encoding phase),
three up-sampling processes (decoding phase), and three attention gates, which form the shape of a
‘W’. The green and blue dots represent the convolutional blocks, while the white transparent boxes
represent the batch normalization layers and the red dots represent the attention gates. The gray,
green, blue, and red arrows represent the data flow.

After this, we continued to conduct a down-sampling process followed by two up-
sampling processes and combined the original input into the output information to merge
the deep and shallow features. Besides, batch normalization layers were implemented to
reduce saturation [26], and attention gates were attached to all the upper sampling blocks
to increase the accuracy of predicting the boundary of objects. We then finally obtained
the classification output by combining the original input with the up-sampled result and
convolving them.

2.3.2. Implementation Details

Our model was implemented, trained, and tested using the open-source software
library Keras [27] and Tensorflow [28] on Nvidia Tesla v100 GPUs. The main hyperparame-
ters, such as the kernel size of convolutional blocks and the learning rate, were explored.
Besides, we also adopted an early stopping strategy and a save-best strategy. When the
validation loss did not reduce in 10 epochs during training time, the training process would
be stopped, and the best model parameters would be saved. In all cases, the weights were
initialized by default setting in Keras; the parameters were trained using an RMSProp
optimizer [29] to dynamically change the learning rate during model training. Our pro-
posed network was trained by minimizing the weighted cross-entropy loss function [30]
for semantic segmentation.

2.4. Post-Processing: Interior Expansion Algorithm to Convert a 3-Class Label to an Instance Label

We chose pixels with a probability of interior greater than 0.5 as seeds. For each seeded
nucleus, it would expand its territory by one pixel at each iteration. During the iteration,
the probability of the nucleus gradually declined, and the probability of the boundary
increased. At last, the seeded nucleus stopped its expansion when the probability of the
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boundary reached the local maximum on its expansion direction. To avoid the seeded
nucleus expanding to other nucleus regions in clumped objects, we discarded the boundary
pixel in the last iteration. The union of these pixels and the pixels of the original interior
seed were the ultimate output of this algorithm.

2.5. Performance Evaluation Metrics

A commonly used evaluation metric for nucleus segmentation is the Aggregated
Jaccard Index (AJI). To quantitatively evaluate the performance of ASW-Net and other
nucleus segmentation methods, we adopted four measures, including AJI [8], Dice co-
efficient (DICE1) [31], ensemble Dice (DICE2) [19], and panoptic quality (PQ) [21]. PQ
is the product of Detection Quality (DQ) and Segmentation Quality (SQ). These metrics
are used to compare the area of overlap between the predicted area of a nucleus and the
ground-truth area of the nuclei. If we obtain a higher metric value, we will get more
accurate downstream extracted metrics, such as area and perimeter.

3. Results
3.1. Performance of Proposed Framework and Other Existing Nucleus Segmentation Methods

To evaluate the prediction performance of our proposed method, we tested ASW-Net
against CellProfiler (see Supplementary Note for parameter settings) [32], U-Net [23], and
SW-Net (ASW-Net without attention gates) with ground truth as a baseline. Experimental
results show that ASW-Net achieved satisfactory accuracy in classification even with
insufficient labeled training samples (Figure S1). It can be seen in Table 1 that among all
of the tested methods, our proposed framework has the highest score for all indicators
except DICE2.

Table 1. The performance comparison between ASW-Net and other existing methods on BBBC039
nuclei set.

Method DICE1 DICE2 AJI DQ SQ PQ

CellProfiler [32] 87.884 73.491 67.740 81.165 79.319 64.506
U-Net [1] 89.094 86.916 78.717 92.395 79.562 73.646
SW-Net 89.282 87.466 79.219 91.666 80.043 73.505

ASW-Net 89.642 87.518 79.806 91.666 80.627 74.058
ASW-Net + Interior

expansion 96.452 84.798 90.200 94.431 91.670 86.645

3.1.1. ASW-Net Performs Better in Different Nuclear Density

When it comes to the classification stability of ASW-Net, three images with differ-
ent nuclear distribution densities were randomly selected for a case study. As shown in
Figure 3A, CellProfiler performs poorly in the case of high nuclear density (see
Figure 3A(b)(1)), while ASW-Net generates reliable masks no matter in the case of low,
medium, or high nuclear density. Furthermore, SW-Net with the attention gates per-
forms better than the network without the attention mechanism, proving the necessity of
embedding the attention mechanism in our method.
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Figure 3. Visualized comparison between ASW-Net and other existing methods against the ground
truth. (A) Three images with different nuclear distribution densities were randomly selected for
this study. From top to bottom are high density, medium density, low density of nuclear images,
respectively. From left to right are the masks of ground truth, the prediction of Cellprofiler, U-Net,
SW-Net, ASW-Net, ASW-Net plus interior expansion, respectively. The nuclear masks are colored
randomly. (B) Magnified segmentation result and the ground truth. From left to right are the mask
outlines of ground truth, the prediction of Cellprofiler, U-Net, SW-Net, ASW-Net, ASW-Net plus
interior expansion, respectively.

3.1.2. ASW-Net Excels at Segmentation in Low SNR Dataset

We tested our proposed framework on the ganglioneuroblastoma dataset, with a low
signal-to-noise ratio and different cell types from the BBBC039 image set. We evaluated the
performance of the framework on the high SNR and the low SNR ganglioneuroblastoma
dataset, respectively. As shown in Tables 2 and 3, none of the five methods performed as
well as the previous dataset. The results confirm the difficulty in accurate nuclei segmenta-
tion. However, our proposed framework still achieved satisfactory segmentation results
and outperformed other methods, especially in a low SNR ganglioneuroblastoma image
set. It is worth mentioning that ASW-Net performs better than U-Net and SW-Net, the two
deep learning networks without attention gates. It indicates that the attention mechanism
used in ASW-Net probably helps the model transfer to this noisy dataset.

Table 2. The performance comparison on high SNR ganglioneuroblastoma dataset.

Method DICE1 DICE2 AJI DQ SQ PQ

CellProfiler [32] 0.64476 0.46786 0.29697 0.31771 0.64703 0.20601
U-Net [1] 0.78672 0.74143 0.57064 0.71474 0.69285 0.49442
SW-Net 0.78661 0.74262 0.56630 0.70997 0.69462 0.49268

ASW-Net 0.78957 0.74885 0.56910 0.73218 0.70059 0.51276
ASW-Net + Interior

expansion 0.84228 0.72494 0.61944 0.76275 0.79579 0.60729
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Table 3. The performance comparison on low SNR ganglioneuroblastoma dataset.

Method DICE1 DICE2 AJI DQ SQ PQ

CellProfiler [32] 0.59226 0.61923 0.35380 0.44781 0.69943 0.31294
U-Net [1] 0.49404 0.52160 0.30319 0.35329 0.61444 0.21976
SW-Net 0.48451 0.53914 0.30149 0.32245 0.61859 0.20240

ASW-Net 0.61887 0.60938 0.39892 0.50748 0.66386 0.33850
ASW-Net + Interior

expansion 0.65787 0.60340 0.42803 0.54613 0.71036 0.38913

3.2. Ablation Study

To examine whether a particular component of ASW-Net was vital or necessary, we
carried out an ablation study by removing some network elements. The experiments
performed in this section shared the same features and hyper-parameters. As is shown
in Table 4, the implementation of attention mechanisms, data augmentation (rotation and
flip), and post-processing (watershed) all contribute to the proposed method. Specifically,
the addition of image rotation and flip significantly improved the prediction performance
(∆AJI = −1.451 for no rotation, ∆AJI = −1.214 for no flip), which may be due to the
undiversified training dataset. Moreover, the data augmentation also helped improve the
generalization capability of the model.

Table 4. Ablation study of ASW-Net.

Aspect System Variant AJI ∆AJI

ASW-Net 79.806 -
Attention No Attention 79.219 −0.587
Augmentation No rotation 78.355 −1.451

No flip 78.592 −1.214
Post-processing Watershed 79.811 +0.005

Interior expansion 90.200 +10.394

Attention gates were beneficial for achieving better prediction accuracy (∆AJI = −0.587
for no attention) at the same time. On the one hand, the introduction of attention gates
made the number of parameters increase, thus enhancing the learning ability of the model.
On the other hand, the attention gates attached in the up-sampling process were conducive
to more efficient feature extraction.

We also tested whether two post-processing methods helped improve segmentation
accuracy, including watershed and interior expansion algorithms. Both of these two meth-
ods have a positive effect on prediction performance. The introduction of the watershed
improves the performance a little (∆AJI = +0.005), possibly because the watershed algo-
rithm is helpful to separate the connected cell nucleus [33]. However, we do not observe
a significant improvement in the segmentation performance by the watershed algorithm
because ASW-Net could already predict boundary class effectively. Hence, the clumped
nuclei would be separated well after thresholding on the probabilistic map of ASW-Net.
Another post-processing method, interior expansion, was also proven effective by an abla-
tion study. Compared with the thresholding method on a probabilistic map, the interior
expansion algorithm automatically expanded its boundary to the most likely place and
kept the final boundary only one pixel wide and continuous. Although our ASW-Net could
predict the pixels into the background class, interior class, and boundary class with high
accuracy, the performance could be further improved through post-processing methods.

3.3. Visualization of Deep Features Extracted from Images

As an automatic feature extraction process, deep learning would learn high-level
abstract features from original inputs [34]. Thus, to further explore the effectiveness of
convolution blocks at different depths of ASW-Net, we visualized the feature map of
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each convolutional layer, and the results are shown in Figure 4A. As described earlier,
the convolution block before the first up-sampling (Figure 4A(b)) and before the second
up-sampling (Figure 4A(d)) incorporated the deepest abstract features, which means these
two layers were able to capture more effective information for prediction. Specifically, the
convolutional kernels presented by Figure 4A(b)(1), Figure 4A(d)(2), and Figure 4A(d)(3)
all captured the edge of the cell nucleus and its adjacent pixels, which made the nuclear
edge appear blurred and bolded in the corresponding feature maps. Figure 4A(b)(2),
Figure 4A(b)(3), and Figure 4A(d)(1) show that these kernels played important roles in
sharpening and positioning one side of the nucleus. Besides, it is evident that the feature
map generated from the shallow convolution layer was much closer to the actual images
through Figure 4A(a): the weight distribution of all feature maps looks very similar to
the input images. Moreover, abstract features and raw information similar to input can
both be seen in Figure 4A(c), since this layer combined the output of layers presented
by Figure 4A(a) and Figure 4A(b). Finally, comparing the visualization results of the
first convolution block (Figure 4A(a) with the last convolution block (Figure 4A(e), we
observed that the final convolutional layer reflected the most favorable information for
segmentation. The center of the nucleus and the edge of the nucleus are separated at the
last layer (see Figure 4A(e)(2)), which proves the effectiveness and interpretability of the
deep neural network.
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As for attention gates (see Figure 4B), with the deepening of the network, the distri-
bution of weight gradually changes from distraction to focus on edge information. This
indicates that attention gates had learned which parts were worthy of attention, which is
undoubtedly helpful for the improvement of model prediction ability.

3.4. Strong Correlation of Downstream Metric Derived from Experts and Proposed Framework

We verified the correlation of downstream metrics derived from the ground truth
annotation by experts and our proposed framework. We then calculated the area of each
nucleus derived from expert annotation and automatic segmentation by the proposed
framework. Figure 5 shows a strong correlation of the nucleus area between the ground
truth and the prediction, with a correlation coefficient of 0.9253 (Pearson p-value < 0.05).
The correlation result verifies the accuracy of automatic segmentation at the cellular level.
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4. Discussion

Nucleus segmentation is a prerequisite for automated downstream analysis, including
characterization of nucleus morphology, identification and detection of cells, and quantita-
tive measurement of protein expression. However, manually drawing the nuclear contours
is time-consuming and laborious. Automatic and accurate nucleus segmentation would
alleviate this difficulty and enable biologists to yield insights into intrinsic features of
nucleus morphology.

In this study, we proposed a deep learning-based framework, which is based on
ASW-Net, to automatically segment the nucleus of fluorescent microscopy by integrating
advantages of attention mechanism, W-Net, and adopting a cascade-like structure with
between-net connections. We have shown that our lightweight model outperforms the-
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state-of-art methods in segmentation performance. We also showed that utilizing the
attention mechanism would provide information about nucleus segmentation, leading
to a much-improved performance. The attention mechanism endows our proposed tool
with better learning ability and interpretability, making our tool likely to translate well
to practical usage. The automatic segmentation results by our proposed framework are
consistent with the ground truth, which is verified by the downstream metric, such as
the area of each nucleus. We believe that the automatic segmentation framework can
mitigate the difficulty of drawing nucleus contours manually and provide more accurate
segmentation than other tools.

While our proposed tool achieves a promising performance in nucleus segmentation
of fluorescent microscopy, there are a couple of technical limitations from the aspect of
deep learning techniques, such as a theoretical explanation of our architecture effectiveness
and tuning hyper-parameters for an optimal model. We also compared our proposed
framework with the Cellpose architecture [35]. Our proposed framework outperformed
the Cellpose architecture on the BBBC039 dataset and performed about 3% worse than the
Cellpose architecture on the ganglioneuroblastoma dataset, which is expected since the
number of parameters used for training by Cellpose is much greater than our ASW-Net. At
the same time, our lightweight ASW-Net could produce the result faster. In summation,
the introduction of attention mechanism and the resolution fusion module in ASW-Net can
also be applied in other backbones of neural networks and help improve performance.

5. Conclusions

We implemented ASW-Net as a publicly available segmentation tool for the research
community. The model achieves remarkable performance in nucleus segmentation. In
the future, our model can be retrained on other types of nucleus images, such as highly
multiplexed imaging data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes13030431/s1, Figure S1: Receiver operating characteristic of pixel classification of
ASW-Net. Blue, orange, green, and red curves are average background, interior, and boundary ROC
curves, respectively. Supplementary Note: Cellprofiler pipeline parameter settings.
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