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Abstract: Protein kinases (PKs) are enzymes that catalyze the transfer of the terminal phosphate
group from ATP to a protein acceptor, mainly to serine, threonine, and tyrosine residues. PK catalyzed
phosphorylation is critical to the regulation of cellular signaling pathways that affect crucial cell
processes, such as growth, differentiation, and metabolism. PKs represent attractive targets for drugs
against a wide spectrum of diseases, including viral infections. Two different approaches are being
applied in the search for antivirals: compounds directed against viral targets (direct-acting antivirals,
DAAs), or against cellular components essential for the viral life cycle (host-directed antivirals, HDAs).
One of the main drawbacks of DAAs is the rapid emergence of drug-resistant viruses. In contrast,
HDAs present a higher barrier to resistance development. This work reviews the use of chemicals
that target cellular PKs as HDAs against virus of the Flaviviridae family (Flavivirus and Hepacivirus),
thus being potentially valuable therapeutic targets in the control of these pathogens.

Keywords: protein kinases; phosphorylation; antivirals; flaviviruses; hepatitis C virus

1. Introduction

Kinases are a group of enzymes that catalyze the transfer of the terminal γ-phosphate from ATP to
the hydroxyl group of an acceptor substrate, thus participating in a huge variety of cellular processes,
such as proliferation, apoptosis, metabolism, transcription, or antibiotic resistance, among others.
These phosphorylation reactions can be reversed by the corresponding phosphatases. These important
discoveries concerning reversible protein phosphorylation as a biological regulatory mechanism were
recognized by the award of the Nobel Prize in Physiology or Medicine in 1992 to Edmond H. Fischer
and Edwin G. Krebs [1]. Even though all kinases catalyze the same phosphoryl transfer reaction, there is
a wide diversity in their structures and substrates [2], which include proteins, lipids, carbohydrates,
amino acids, vitamins, and cofactors. According to their structure and sequence, kinases have been
classified into 30 families [3], of which the protein kinase (PK) family is the largest comprising one of
the most abundant protein families in mammalian genomes [4].

PKs catalyze protein phosphorylation, mainly of serine, threonine, and tyrosine residues, and play a
critical role in cellular signaling pathways that affect crucial cell processes, such as growth, differentiation,
and metabolism [5]. Phosphorylated proteins can initiate a downstream cascade of reactions, resulting
in a vast range of responses including activation or inhibition of enzyme activities [6], changes in
biological activity, as well as facilitating or perturbing movement between subcellular compartments,
and initiating or interrupting protein–protein interactions [7].

PK activity was first observed in 1954 in an enzyme that catalyzed casein phosphorylation [8].
The first evidence that one PK can activate another was the observation that cAMP-dependent protein
kinase A (PKA) activates phosphorylase kinase [9]. The same kinase, PKA, was also described as
the first example of enzyme inhibition by phosphorylation, which inhibits glycogen synthase [10].
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Since then, characterization of PKs has been widely addressed. In 2002, Manning et al. [11] published
the PK complement of the human genome, the so-called kinome, classifying it in 518 members,
with most PKs (478) belonging to a single superfamily containing a eukaryotic PK (ePK) catalytic
domain, while the other 40 PK genes were reported to belong to a few atypical families (aPK) with
proteins showing biochemical kinase activity, but with no sequence similarity to the ePK domain.
According to sequence comparison of their catalytic domains, the human kinome was classified into
nine different phylogenetic groups for ePKs (Table 1) and four groups for aPKs (Table 2).

Table 1. Classification of eukaryotic protein kinases (ePKs).

Group Representative Families of the Group

AGC
PKA (cAMP-dependent protein kinase), PKC (protein kinase C), PKG
(cGMP-dependent protein kinase), PKN (protein kinase N), AKT
(protein kinase B)

CAMK (Calcium Calmodulin
dependent kinase)

PhK (phosphorylase kinase), CAMK (Ca2+/calmodulin-dependent
protein kinase), MAPKAPK (mitogen-activated protein kinase-activated
protein kinase), MLCK (myosin light-chain kinase)

CK1 (Casein Kinase 1) TTBK (tau-tubulin kinase), VRK (vaccinia-related kinase)

CMGC
CDK (cyclin-dependent kinase), MAPK (mitogen-activated protein
kinase), GSK (glycogen synthase kinase), CDKL (cyclin Dependent
Kinase Like), JNK (c-Jun N-terminal kinase), p38

STE STE7 (sterile 7), STE11 (sterile 11), STE20 (sterile 20)

TK (Tyrosine kinase)

EGFR (epidermal growth factor receptor), PDGFR (platelet-derived
growth factor receptors), JAK (Janus kinase), Eph
(erythropoietin-producing human hepatocellular receptors), Fyn
(proto-oncogene tyrosine-protein kinase), SFK (Src-family kinase), TRK
(tropomyosin receptor kinase)

TKL (Tyrosine kinase-like)
MLK (mixed lineage kinase), LISK, IRAK (interleukin-1
receptor-associated kinase), RIPK (receptor-interacting
serine/threonine-protein kinase)

RGC (Receptor guanylate cyclase) RGC (receptor guanylate cyclase)

Others

MYT (membrane-associated tyrosine- and threonine-specific
cdc2-inhibitory kinase), ULK (Unc-51 like autophagy activating kinase),
PLK (polo-like kinase), SCY, NKF (new kinase family), NAK
(numb-associated kinase), PEK (pancreatic eukaryotic initiation
factor-2alpha kinase)

Table 2. Classification of atypical protein kinases (aPKs).

Group Representative Families of the Group

alpha ChaK (Channel kinase), eEF2K (Eukaryotic elongation
factor 2 kinase)

PIKK (phosphatidyl inositol 3′ kinase-related kinase)
ATM (Ataxia telangiectasia mutated kinase), ATR (Ataxia
telangiectasia and Rad3 related kinase), FRAP, SMG1
(Nonsense Mediated MRNA Decay Associated PI3K Related Kinase)

PDHK (pyruvate dehydrogenase kinase) PHDK (pyruvate dehydrogenase kinase), BKCDK

RIO (right open reading frame) RIOK (Right open reading frame protein kinase), SUDD (Right open
reading frame protein kinase3)

All PKs contain a conserved catalytic core comprised of two lobes (N and C) located, respectively in
the N- and C-terminal position of this domain. They may also contain additional, family-specific
domains, which can be N- and/or C- terminal to the kinase domain. The N-lobe binds and orientates
ATP, and the α-helical C-lobe is essential for substrate binding and phosphoryl transfer initiation [12].
An active-site cleft containing the ATP-binding site is placed between the two lobes [13]. Although the
catalytic core can vary in terms of length and sequence among the different PKs, the residues involved in
the catalysis are highly conserved [12]. These differences in the catalytic core influence the way in which
substrates interact with kinase, thus determining the specificity of kinase-substrate interactions [14].
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PKs can exist in an active or an inactive state, and, in many cases, phosphorylation is required
for full enzymatic activity. The mechanisms of activation and deactivation are diverse and kinase
specific [15,16]. In the active state, all kinases show a similar conformation, however, several differences
are observed between inactive states. Both states have been targeted to produce potent and selective
chemicals to modulate PKs activity. It has been observed that, overall, compounds directed to the
inactive conformation have high specificity, while those acting on the active conformation are less
specific and generally target several PKs [6].

Due to the fact that PKs are essential components in cellular processes, they are being thoroughly
studied and characterized, since, among other activities, they represent attractive targets for drugs
against a wide spectrum of diseases, ranging from cancer to cardiovascular problems, diabetes,
or immune disorders [5]. Around one-third of current research in drug discovery is directed against
the PK superfamily [17]. Kinases are also a key target for therapies against microbial and viral
diseases [18,19]. In this sense, viral infections rely on virus–host interactions, and it has been described
that host cell kinases play crucial roles in every step of the viral life cycle in a wide range of viral
species, including members of the Flaviviridae family (flaviviruses and hepaciviruses) [19–22]. In fact,
viruses control a vast number of host kinases at different steps along their life cycle [23].

The Flaviviridae is a family of enveloped positive sense single-stranded RNA viruses that comprise
more than 60 species grouped into four genera (Table 3).

Table 3. Members of the Flaviviridae family. The four genera, with representative members and genome
size corresponding to each genus, are displayed.

Genus Representative Members * Genome Size (Kb)

Flavivirus YFV, WNV, DENV, ZIKV, TBEV 9.2–11
Hepacivirus HCV 8.9–10.5
Pestivirus BVDV, CSFV 12.3–13
Pegivirus GBV-A, HPgV 8.9–11.3

* YFV: yellow fever virus; WNV: West Nile virus; DENV: dengue virus; ZIKV: Zika virus; TBEV: tick borne
encephalitis virus; HCV: hepatitis C virus; BVDV: bovine viral diarrhea virus; CSFV: classical swine fever virus;
GBV-A: GB virus A; HPgV: human pegivirus type 2.

The genomes of the members of this family are constituted by a single open reading frame (ORF)
flanked by 5′ and 3′ untranslated regions (UTRs, Figure 1) [24]. The ORF is translated into a single
polyprotein that forms specific secondary structures required for genome translation, virion assembly,
cell receptor binding and entry, polyprotein processing, and viral replication.
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Figure 1. Schematic view of the genomic organization of flaviviruses (A) and hepaciviruses (B). UTR: 
untranslated region; C: capsid or core protein; prM: pre-membrane protein; p7: polypeptide 7; E: 
envelope protein; NS: non-structural proteins. 

The Flavivirus genus comprises more than 50 members [32], some of which are human 
pathogens, causing life-threatening diseases, such as yellow fever, dengue, Japanese encephalitis, 
West Nile encephalitis, and Zika disease [33]. Flaviviruses are arboviruses (arthropod-borne viruses) 
mainly transmitted by mosquitoes, and, not surprisingly, due to global climate warming and 
increasing travelling and trade, their geographic distribution is growing. Many flaviviruses are 
zoonotic, such as West Nile virus (WNV), with birds as the main natural host [34,35] or Japanese 
encephalitis virus (JEV), with a cycle involving aquatic birds and pigs as amplifying hosts [36]. 
Yellow fever virus (YFV) has a sylvatic cycle, which serves to maintain the virus in wild reservoirs 
between outbreaks in humans [37]. Flaviviruses cause globally relevant epidemics in humans, 
infecting up to 400 million people annually [33]. Dengue virus (DENV), classified in four serotypes 
and currently endemic in more than 100 countries [38], can cause a wide spectrum of disease 
manifestations ranging from a subclinical self-limited infection or a mild febrile illness termed 
dengue fever, to a life-threatening dengue hemorrhagic fever and dengue shock syndrome, 
especially after secondary infections with an heterologous serotype [39]. Zika virus (ZIKV) spread 
throughout the American continent in 2015 causing considerable worldwide social and medical 
alarm due to its association with congenital disorders [29], such as microcephaly in newborns, or 
severe neurological manifestations in adults [40]. This led the World Health Organization (WHO) to 
declare a Public Health Emergency of International Concern (PHEIC) in February 2016 [41]. JEV is a 
notable cause of encephalitis in Asia [36]. Although most JEV infected people present only 
subclinical manifestations, a third of symptomatic cases are fatal and almost 50% of survivors 
present long-term neurological sequelae [42]. WNV is the worldwide most distributed 
mosquito-borne flavivirus [27]. Infection is mainly asymptomatic in humans, and when symptoms 
appear, they can range from a mild febrile disease and non-specific flu-like symptoms to a severe 
neuroinvasive disease that can also lead to a fatal outcome [27]. YFV is currently endemic in over 40 
countries in Africa and the Americas. Individuals infected with YFV can present with a wide 

Figure 1. Schematic view of the genomic organization of flaviviruses (A) and hepaciviruses (B).
UTR: untranslated region; C: capsid or core protein; prM: pre-membrane protein; p7: polypeptide 7;
E: envelope protein; NS: non-structural proteins.

The 5′ and 3′ UTRs are implicated in viral replication and pathogenesis [25]. The capsid (C) protein
plays an essential role in viral assembly and replication [26]. The membrane (M) and polypeptide
7 (p7) proteins participate in viral assembly and release of infectious virions [27,28]. The envelope
(E) protein, the most immunogenic of the viral proteome, is involved in receptor binding, viral entry,
and membrane fusion [27,29]. The non-structural (NS) proteins are implicated in viral RNA replication,
virulence, immunomodulation, viral assembly and modulation of cellular processes [27,29–31].

The Flavivirus genus comprises more than 50 members [32], some of which are human pathogens,
causing life-threatening diseases, such as yellow fever, dengue, Japanese encephalitis, West Nile
encephalitis, and Zika disease [33]. Flaviviruses are arboviruses (arthropod-borne viruses) mainly
transmitted by mosquitoes, and, not surprisingly, due to global climate warming and increasing
travelling and trade, their geographic distribution is growing. Many flaviviruses are zoonotic, such as
West Nile virus (WNV), with birds as the main natural host [34,35] or Japanese encephalitis virus
(JEV), with a cycle involving aquatic birds and pigs as amplifying hosts [36]. Yellow fever virus
(YFV) has a sylvatic cycle, which serves to maintain the virus in wild reservoirs between outbreaks in
humans [37]. Flaviviruses cause globally relevant epidemics in humans, infecting up to 400 million
people annually [33]. Dengue virus (DENV), classified in four serotypes and currently endemic in
more than 100 countries [38], can cause a wide spectrum of disease manifestations ranging from a
subclinical self-limited infection or a mild febrile illness termed dengue fever, to a life-threatening
dengue hemorrhagic fever and dengue shock syndrome, especially after secondary infections with
an heterologous serotype [39]. Zika virus (ZIKV) spread throughout the American continent in 2015
causing considerable worldwide social and medical alarm due to its association with congenital
disorders [29], such as microcephaly in newborns, or severe neurological manifestations in adults [40].
This led the World Health Organization (WHO) to declare a Public Health Emergency of International
Concern (PHEIC) in February 2016 [41]. JEV is a notable cause of encephalitis in Asia [36]. Although
most JEV infected people present only subclinical manifestations, a third of symptomatic cases are fatal
and almost 50% of survivors present long-term neurological sequelae [42]. WNV is the worldwide most
distributed mosquito-borne flavivirus [27]. Infection is mainly asymptomatic in humans, and when
symptoms appear, they can range from a mild febrile disease and non-specific flu-like symptoms to
a severe neuroinvasive disease that can also lead to a fatal outcome [27]. YFV is currently endemic
in over 40 countries in Africa and the Americas. Individuals infected with YFV can present with a
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wide spectrum of symptoms, ranging from asymptomatic to severe illness with bleeding, jaundice,
and death, and, despite vaccination campaigns, over 30,000 deaths are reported each year [43].

The Hepacivirus genus main representative is the hepatitis C virus (HCV), a major human pathogen
that causes liver disease with high risk of developing life-threatening complications, such as liver
cirrhosis and hepatocellular carcinoma [44]. Its discoverers, Harvey J. Alter, Charles Rice, and Michael
Houghton, were recognized with the 2020 Nobel Prize in Medicine [45]. HCV is mainly transmitted by
the parenteral route, although sexual transmission has also been reported [46].

The Pestivirus genus includes economically important members such as bovine viral diarrhea
virus (BVDV) and classical swine fever virus (CSFV) [47].

Pegivirus genus shows distant sequence similarity to other members of the family, and infections
have not been clearly associated with disease, except for non-Hodgkin’s lymphoma [48].

Flaviviridae viral replication is initiated by entering in host cells via receptor-mediated endocytosis.
Infection is triggered by binding of virions to their cellular receptor, fusion of the viral envelope
with the endosomal host membrane, and subsequent release of the viral genome into the cytosol,
which is dependent upon the acidic environment within the lysosome [27,49]. A common feature of
Flaviviridae replication is the formation of virus-induced remodeled membrane organelles. They take
advantage of host lipids and proteins to generate these virus-induced membrane compartments to
assist in replication [50]. Finally, the viral genome is translated into a single polyprotein and processed
to produce mature viral proteins, which are transported through the host endoplasmic reticulum
(ER)-Golgi secretory pathway to the cell surface for viral release from infected cells (Figure 2).
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Figure 2. Schematic representation of flaviviral infection. Viral particles enter the cell via
receptor-mediated endocytosis (1). The acid environment of endosomes allows viral and endosomal
membranes fusion (2), and the subsequent release of viral RNA into the cytosol (3), supporting genome
replication and particle biogenesis (4). Viral RNA is translated and processed to produce viral proteins
(5), which travel through the Golgi apparatus (6), allowing particle release (7).

Flaviviruses present a worldwide threat to human and animal health, and have the potential
to emerge and outbreak in non-endemic geographical regions [27,51], as occurred in the recent Zika
virus pandemic [29]. Effective vaccines for humans or animals are only available for a subset of family
members, such as tick-borne encephalitis virus (TBEV) YFV, DENV, JEV and, for equids, WNV.

In the quest for antivirals, two different approaches are being applied: searching for compounds
directed to viral targets (direct-acting antivirals, (DAAs)), or to cellular components necessary for the
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viral life cycle (host-directed antivirals (HDAs)) [52–55]. In the case of the hepacivirus, HCV, the recent
development of highly effective DAAs that cure most infections has represented an outstanding
success [56]; however, no specific therapies are available for pestiviruses, pegiviruses, or flaviviruses.
In the latter case, palliative treatments focused on alleviating patient symptoms rather than combating
the virus are in use [57]. Hence, successful identification of antiviral candidates is considered one of
the milestones in the fight against this group of pathogens.

Treatment with DAAs often fails due to the rapid generation of drug-resistant viruses [58],
as exemplified by resistance-associated substitutions (RASs, amino acid substitutions in the viral
proteins) in the case of HCV infections [59,60], thus emphasizing the clinical challenge these resistance
mutations represent for the management of patients with HCV and other viral infections [61].
Since almost all members of the Flaviviridae family share common host factors, HDA-based therapies
are a feasible solution to overcome these drawbacks [41]. Moreover, targeting host proteins required by
different viral species can provide a broad-spectrum therapy. However, HDAs show higher toxicity [62]
and smaller efficacy window than DAAs [63].

Studies of the flavivirus replication cycle and interaction with the host cell have provided important
understanding of essential aspects of their molecular and cellular biology. The most cost and time
effective strategy for the development of broad-spectrum antivirals is drug repurposing. Consequently,
pharmacological compounds that target host functions key to the viral life cycle are being tested
for activity against multiple viruses [41,64–68]. Chemicals targeting the cellular kinome have been
explored as novel potential targets for antiviral drug development. In vitro inhibition of flavivirus and
hepacivirus infections has been reported upon the administration of different PK-targeting molecules,
both activators and inhibitors, thus indicating their potential therapeutic value in the control of
these pathogens. The mechanisms by which members of the Flaviviridae family interact with PKs are
diverse. Several cellular pathways have been identified as potentially involved in flaviviral infections.
For instance, Src-family kinase (SFK) inhibitors were reported to block DENV infection by altering
virus assembly and secretion [69], and modulation of CAMKII activity impacted attachment of JEV to
the host cell surface and viral entry [70]. PKA activity affected ZIKV replication at the post-entry stage
by affecting negative-sense RNA synthesis, and HCV infection induces PKA activation to enhance
virus entry and infectivity [71].

2. Protein Kinase Targets in the Control of Virus of the Flaviviridae Family

Pharmacological modulation (both inhibition and activation) of multiple host PKs has been shown
to be involved in the regulation of viral infection. Those host PKs most relevant to the control of
infection by viruses of the Flaviviridae family are listed in Table 4.
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Table 4. Members of the Flaviviridae family inhibited by PK regulation.

Virus PK Kinase
Group

Kind of PK
Regulation Inhibitor/Activator Used References

DENV

PKG AGC Inhibition Rp-8-pCPT-cGMPS, TEA [20]

PKC AGC Activation Phorbol 12-myristate 13-acetate
(PMA) [72]

MAPKAPK5 CAMK Inhibition SFV785 [73]
AMPK CAMK Activation PF-06409577 [74]

JNK CMGC Inhibition SP60025 [75]
P38 CMGC Inhibition SB003580 [75–77]

CDK CMGC Inhibition Alsterpaullone 2-cyanoethyl,
Cdk1/2 inh III,Cdk2/9 inh [78]

SFK TK Inhibition AZD0530, Dasatinib, GNF-2 [69,79–81]
JAK TK Inhibition WHI-P131 [82]
BTK TK Inhibition QL-XII-47 [83]

NTRK1 TK Inhibition SFV785 [73]
PKM2 Other Inhibition PKM2 inhibitor [84]
AurKB Other Inhibition ZM 447439 [85]
NAK Other Inhibition Sunitinib, Erlotinib [18]

ZIKV

PKA AGC Inhibition PKI 14-22 [71]

AMPK CAMK Activation PF-06409577 AICAR, Metformin,
GSK621 [74,86]

P38 CMGC Inhibition SB203580, SB202190 [71,87]
AXL TK Inhibition Cabozantinib, R428 [88]
BTK TK Inhibition QL-XII-47 [83]

RIPKs TKL Activation AP1 [89]
IRE1 K Other Inhibition KIRA 6 [90]

PKC AGC Inhibition Calphostin C, Chelerythrine [91,92]
AMPK CAMK Activation PF-06409577 [74]

SFK TK Inhibition PP2 [93]
WNV BTK TK Inhibition QL-XII-47 [83]

EGFR TK Inhibition IFN-α inducible protein 6 [94]
RIPKs TKL Activation AP1 [95]

MAPKAPK5 CAMK Inhibition SFV785 [73]
YFV CK1 CK1 Inhibition D4776 [96]

NTRK1 TK Inhibition SFV785 [73]

JEV
CHK2 CAMK Inhibition CHK2 inhibitor II [97]

CDK CMGC Inhibition Alsterpaullone 2-cyanoethyl,
Cdk1/2 inh III,Cdk2/9 inh [78]

DCLK1 CAMK Inhibition Fluvastatine [98]
AMPK CAMK Activation Liraglutide [99]

CKII CK1 Inhibition 2-dimethylamino-4,5,6,7-tetrabromo-
1H-benzimidazole [100]

MAPK/ERK CMGC Inhibition PD98059, Sorafenib [101]
HCV P38/MAPK CMGC Inhibition BmKDfsin3 [102]

SRPK CMGC Inhibition SRPIN340 [103]
EGFR TK Inhibition Erlotinib, Dasatinib [69,104]
PKR Other Inhibition HA1077 [105]

NAK Other Inhibition Isothiazolo [5,4-b]pyridine,
Sunitinib, PKC-412 [106–108]

TBK1/IKKε Other Inhibition BX795 [109]

Flaviviridae family infections can be enhanced or diminished upon treatment with PK
pharmacological modulators. The effect of drugs regulating PKs, both activators and inhibitors,
in infections by members of this family is further described according to the phylogenetic classification
of Manning et al. [11].
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2.1. The AGC Kinase

AGC kinase group is named for the initials of its members, kinases related to cAMP-dependent
protein kinase 1 (PKA), cGMP-dependent protein kinase (PKG), and protein kinase C (PKC). The group
is formed by serine/threonine protein kinases that share common characteristic structural features,
including the presence of a hydrophobic sequence motif close to the C-terminal lobe of the catalytic
core [110]. The group comprises more than 60 members classified into 14 subfamilies: PDK1, AKT/PKB,
SGK, PKA, PKG, PKC, PKN/PRK, RSK, NDR, MAST, YANK, DMPK, GRK, and SGK494.

Drugs targeting AGC kinases have been shown to be valuable pharmacological candidates for
targeting distinct flaviviruses. The PKA inhibitor PKI significantly reduces ZIKV replication by
inhibiting the synthesis of viral genomes, producing minimal cytotoxicity on human endothelial
cells and astrocytes, highly susceptible to ZIKV infection [71]. The PKG inhibitor Rp-8-pCPT-cGMPS
drastically decreases DENV replication in human HEK293T cell culture, while the PKG activator
8-Br-PET-cGMP produces an increase in DENV yield [20]. Similarly, WNV has been reported to
upregulate PKCs during infection [91], and the PKC inhibitors calphostin C and chelerythrine have
been reported to reduce WNV multiplication [92]. In contrast, in vitro number of DENV viral copies
increased upon treatment with the PKC inhibitor bisindolylmaleimide I, whilst the opposite effect was
observed in baby hamster kidney (BHK-21) cells treated with the PKC activator phorbol 12-myristate
13-acetate, thus indicating that inhibition of PKC activity promotes DENV replication [72].

2.2. Calcium Calmodulin Dependent Kinases (CAMK)

The CAMKs are serine/threonine kinases activated by increases in the concentration of intracellular
calcium ions (Ca2+). The activity of this group is mainly regulated by the Ca2+ receptor protein
calmodulin (CaM). They are classified into two different types: substrate-specific and multi-functional
CAMKs. The former can phosphorylate only a specific substrate, while the latter can phosphorylate
multiple targets.

A broad antiviral activity against members of the Flaviviridae family has been shown by drugs
targeting CAMKs. For instance, SFV785 has selective effects on MAPKAPK5 kinase activity, and has
been reported to inhibit DENV and YFV viral yield by altering the co-localization of the structural
E protein with the DENV replication complexes. This effect on MAPKAPK5 kinase activity did
not inhibit DENV RNA synthesis or translation. [73]. Similarly, inhibition of CHK2 with CHK2
inhibitor II effectively reduced JEV production in a range of human cell lines, such as A549, HEK293T,
U87 and BE(2)C [97]. Fluvastatine, an inhibitor of DCLK1, downregulated HCV replication in GS5
cell culture, derived from human hepatoma Huh 7.5 cell line, without exerting any negative effect on
cell viability [98]. In addition, silencing of Pim Kinase with siRNA, or pharmacological inhibition
with SGI-1776, inhibits HCV at an early entry step when human hepatoma Huh 6 and human primary
hepatocyte cell cultures were infected [111].

On the other hand, activation of proteins belonging to the CAMK group has also been reported
as being effective. Activation of AMPK with PF-06409577 impaired viral replication in WNV, ZIKV,
and DENV infected Vero (monkey) and BHK-21 (hamster) cell lines [74], and other pharmacological
activators of AMPK, such as AICAR, metformin, and GSK621 have been described as attenuating
ZIKV replication in endothelial cell culture [86]. Likewise, liraglutide, which activates AMPK in an
AMPK/TORC2-dependent pathway, inhibits HCV replication in the human hepatoma Huh 7 cell
line [99].

2.3. Casein Kinase 1 (CK1)

CK1 is a monomeric serine-threonine protein kinase with seven isoforms. Pharmacologic inhibition
with d4776 was reported to decrease YFV yield in infected human HEK293 cells [96]; however,
inhibition of the CK1ε isoform with IC261 promotes WNV infection by suppressing the production
of type I interferon, either in vitro, after infection in human HEK293 cells, or using an in vivo model,
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since CK1ε-deficient mice produced less IFN-β and were more susceptible to WNV infection [112].
On the other hand, the specific CKII inhibitor, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole
(DMAT), was shown to disrupt virion biogenesis in human hepatoma Huh 7.5 cell infected with
HCV [100]. This inhibitor was described as enhancing HCV genotype 1a production in the same cell
line [113], thus revealing that genotype-specific differences should be taken into account for potential
future pharmacological use of this compound.

2.4. CMGC Kinases

CMGC kinases, such as the AGC group, are named with the initials of family members;
cyclin-dependent kinase (CDK), mitogen-activated protein kinase (MAPK), glycogen synthase kinase
(GSK), and CDC-like kinase (CLK). This group consists of 63 family members highly conserved in
eukaryotic organisms.

Drugs targeting CMGC kinases have been described as antiviral candidates against several
flaviviruses, as well as against HCV. In the case of DENV, different studies have highlighted the
MAPK/ERK pathway as essential for replication, since DENV infection can directly activate proteins
in this pathway, including JNK, p38, NTRK1, MAPKAPK5, and c-src/FYN kinases [84]. JNK and
p38 kinase inhibitors were reported to significantly reduce DENV protein synthesis and viral yield
in infected monocyte-derived macrophages obtained from human peripheral blood [75]. The p38
inhibitor SB203580 prevented lymphopenia, hematocrit increase, and inflammation in human PBMCs,
THP-1, and KU812 cell lines infected with DENV [76], and improved the survival rate in DENV-infected
AG129 mice [77]. In vitro inhibition of ZIKV virion production was also observed with this agent in
infected human endothelial cells and astrocytes [71] and with the related SB202190 [87]. Furthermore,
ZIKV production in human neural cell lines was hindered upon treatment with structurally unrelated
CDK inhibitors, such as seliciclib, PHA-690509 [114], and Cdk1/2 inhibitor III [78], which also suppressed
DENV and JEV viral propagation in the human hepatoma Huh 7 cell line. Selective inhibition of the
MAPK/ERK pathway has also been described to block infectious HCV production in infected human
Huh 7.5 cells [101], and the inhibitor BmKDfsin3, obtained from scorpion (Mesobuthus martensii) venom,
also decreases HCV replication by downregulation of the p38 MAPK signal pathway in Huh7.5.1 and
HEK293T infected cell lines [102]. Finally, an SRPK inhibitor (SRPIN340) suppressed the expression
of an HCV subgenomic replicon and the in vitro replication in Huh7 and Huh7.5.1 cell lines of the
HCV-JFH1 clone in a dose-dependent manner [103].

2.5. Tyrosine Kinases (TKs)

TK phosphorylates almost exclusively on tyrosine residues, whilst most other kinases are selective
for serine or threonine. This group is classified into two subtypes, receptor (RTKs) and non-receptor,
or cytoplasmic TKs (CTKs), depending on their function in transmembrane signaling, or within the cell
mediating signal transduction to the nucleus, respectively. RTKs have transmembrane and extracellular
domains, whilst CTKs do not. RTKs primarily transmit extracellular signals into the cell. CTKs are,
generally located within the cytoplasm, although often membrane-associated.

TKs have been deeply studied and their involvement in flavivirus replication has been widely
reported [73,83,88,93,104]. The c-Src/Fyn kinase has been identified as a cellular target in DENV RNA
replication. The pharmacological inhibitor saracatinib (AZD0530) inhibits virion assembly of DENV in
human Huh7 and HEK293T infected cell lines [69,79]. Likewise, compound 16i, another Src inhibitor,
was reported to suppress DENV replication at low micromolar concentrations with no significant
toxicity to the host cell [81], thus validating the Src family of TKs as potential drug targets for the
development of treatments against DENV infection. Other SFKs are also implicated in DENV infection;
Abl inhibitor GNF-2 interferes with DENV replication in human hepatoma Huh-7 and Vero African
green monkey kidney infected cells [80]. The involvement of other TKs, such as those acting on the
JAK/STAT3 pathway, has been described. JAK2 and JAK3 inhibitors have been reported to reduce
DENV-induced phosphorylation of STAT3 and cell migration, as well as production of the chemokines
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IL-8 and RANTES in infected hepatocytes [82]. Likewise, WNV-infected human SK-N-MC and HEK
293 cells treated with the SFK inhibitor PP2 show a decrease in viral titers, whilst there was no effect
on intracellular levels of either viral RNA or protein, thus suggesting that the drug has no effect on
the early stages of replication [93]. Two inhibitors of AXL phosphorylation, cabozantinib, and R428,
significantly impair ZIKV infection of human endothelial cells [88]. TKs have also been related to
hepacivirus replication, and the EGFR inhibitor erlotinib inhibited HCV infection in a dose-dependent
manner in different cell lines, such as Huh7, Huh7.5.1 cells and primary human hepatocytes [104].

Additionally, diverse TKs have been described as broad-spectrum anti-viral agents.
A covalent host BTK inhibitor, QL-XII-47, was reported to inhibit DENV, WNV, and ZIKV in the
human Huh 7 cell line [83]. Furthermore, the kinase inhibitor SFV785 was shown to reduce secretion
of infectious DENV and YFV virions in Vero and BHK-21 infected cells [73]. Likewise, inhibition
of EGFR kinase activity via induction of IFN-α inducible protein 6 (IFI6), an IFN-stimulated gene
(ISG), strongly inhibited DENV either in vitro or in vivo in AG129 mice [115], WNV [94], and HCV
infection [116], either in vitro or in vivo, in AG129 mice. The wide spectrum TK inhibitor dasatinib was
reported to reduce virion assembly in DENV via Fyn kinase in human Huh7 and HEK293T infected
cell lines, and to inhibit HCV infection via EphA2 TK in different cell lines, such as Huh7, Huh7.5.1
cells, and primary human hepatocytes [69,104].

2.6. Tyrosine Kinase-Like (TKL)

TKL kinases are serine-threonine protein kinases with sequence similarity to TKs, but lacking
TK-specific motifs. This is the most recently defined PK group, and families within it are little related
to each other. As with TKs, TKL kinases are classified into receptor and non-receptor kinases, and are
distributed in eight major families.

The main target among TKL kinases reported as antiviral candidates against flaviviruses are
Receptor Interacting Protein Kinases (RIPKs), key mediators of cellular signaling that are essential for
the early control of diverse pathogens [117]. Among them, RIPK3 has been described as involved in
neuroinflammation and neuronal death during JEV infection, tested either in vitro using neuro2a cells
or in vivo, in wild type and RIPK3–/– mice [118]. RIPK3 signaling also restricted viral replication in
ZIKV [89] and WNV [95] infections in mice.

2.7. Other PKs

There are several families included in the ePKs identified by Manning [11] that lack sequence
similarity with the previously described ePK groups, and, thus, they are catalogued in a separate group.

Numerous drugs targeting this heterogeneous group have shown antiviral activity against
flaviviruses and HCV infections. For instance, the IRE1 kinase inhibitor KIRA6 reduces viral RNA
levels in ZIKV infected the human HeLa cell line [90]. DENV infection has been widely reported
to be inhibited by inhibitors of different members of the group, as exemplified by treatment with
pyruvate kinase PKM2 inhibitor in DENV-infected U937 cells [84], the AurKB inhibitor ZM 447439 in
DENV-infected Huh-7 cells [85], and the NAK family inhibitors, sunitinib and erlotinib (AAK1 and
GAK subfamilies inhibitors respectively) in DENV-infected Huh-7 cells [18]. PKR is modulated
by cyclophilin A, triggering antiviral responses to inhibit HCV infection in Huh 7 cell line [119],
and the PKR2 inhibitor HA1077, also known as fasudil restricted HCV replication in mice [105].
NAK inhibitors also affect HCV assembly, which was disrupted by treatments with erlotinib, dasatinib,
or isothiazolo[5,4-b]pyridine (GAK subfamily inhibitors) in Huh 7.5 cells [106], and sunitinib or
PKC-412 (AAK1 subfamily inhibitors) tested in Huh7.5 and 293T cell lines [107,108]. Erlotinib and
dasatinib are not NAK specific, and inhibit TKs, as mentioned above, although the authors of these
studies pointed to GAK inhibition as the cause of HCV inhibition [106]. BX795, a TBK1/IKKε inhibitor,
showed effects against HCV infection in the Huh 7 cells [109]. As a consequence of its involvement in
autophagy, endoplasmic reticulum (ER) stress, and unfolded protein response (UPR), PERK has been
associated with apoptosis in JEV infection either in vitro in neuro2a and BHK-21 cells or in vivo in
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BALB/c mice [120], DENV infected canine MDCK cells [121,122], and WNV infected SK-N-MC human
neuroblastoma cells [123].

Pharmacological modulation of the STE, RGC, and atypical kinases has yet to be linked to
flaviviral infection.

3. Conclusions

PKs play central roles in cellular signaling pathways through modulating protein phosphorylation
in processes such as cell growth, differentiation, and metabolism. PKs have been deeply studied and
characterized and represent attractive targets for drug design against a wide spectrum of disorders,
including viral diseases, where, to date, they are the major host target for antiviral pharmacological
development. Host cell kinases are involved in every step of the viral life cycle in a wide range of viral
species, including those of the Flaviviridae family. The identification of antiviral candidates for flaviviral
epidemics is considered one of the milestones in the fight against these health-threatening pathogens.
Two different approaches are being applied in the quest for antivirals: DAAs, directly aimed to viral
targets, or HDAs that target cellular components essential for the viral life cycle. DAAs often fail due
to the rapid emergence of drug-resistant viruses, making HDA-based antivirals a reasonable solution
to overcome these drawbacks. Moreover, targeting host proteins required by different viral species
may provide a broad-spectrum therapy and, thus, the use of chemicals targeting the cellular kinome
has been explored in the search for new antivirals. Nevertheless, and even though there is a plethora
of promising studies concerning the inhibition of flavivirus and HCV infection through the use of
different PKs-targeting cellular molecules, which could lead to broad-spectrum repurposed or new
antivirals, none has yet been approved. Therefore, there is still a long way to go in the study of PK
modulators as therapeutic measures to combat these animal and human pathogens.
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