
sensors

Article

An Adaptive Routing Algorithm Based on Relation Tree in DTN

Diyue Chen 1,2, Hongyan Cui 1,2,* and Roy E. Welsch 3

����������
�������

Citation: Chen, D.; Cui, H.; Welsch,

R.E. An Adaptive Routing Algorithm

Based on Relation Tree in DTN.

Sensors 2021, 21, 7847. https://

doi.org/10.3390/s21237847

Academic Editors:

Subhas Mukhopadhyay,

Yoshiyasu Takefuji and

Enrico Vezzetti

Received: 26 October 2021

Accepted: 23 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; chendiyue@bupt.edu.cn

2 Beijing Laboratory of Advanced Information Networks, Beijing University of Posts and Telecommunications,
Beijing 100876, China

3 Sloan School of Management and Center for Statistics and Data Science, Massachusetts Institute of
Technology, Cambridge, MA 02139, USA; rwelsch@mit.edu

* Correspondence: cuihy@bupt.edu.cn

Abstract: It is found that nodes in Delay Tolerant Networks (DTN) exhibit stable social attributes
similar to those of people. In this paper, an adaptive routing algorithm based on Relation Tree
(AR-RT) for DTN is proposed. Each node constructs its own Relation Tree based on the historical
encounter frequency, and will adopt different forwarding strategies based on the Relation Tree in the
forwarding phase, so as to achieve more targeted forwarding. To further improve the scalability of
the algorithm, the source node dynamically controls the initial maximum number of message copies
according to its own cache occupancy, which enables the node to make negative feedback to network
environment changes. Simulation results show that the AR-RT algorithm proposed in this paper has
significant advantages over existing routing algorithms in terms of average delay, average hop count,
and message delivery rate.

Keywords: DTN; routing algorithm; relation tree; adaptive

1. Introduction

Traditional Internet networks are based on the TCP/IP protocol and rely on physical
links that need to meet the characteristics of bidirectional, end-to-end continuous stability.
However, as the research field continues to expand, more diverse and complex network
environments have emerged, such as the interstellar Internet [1], social networks [2],
vehicle-mounted networks [3,4], wireless sensor networks [5], and so on. In these networks,
even if end-to-end transmission paths exist, they are relatively susceptible to interruptions,
small data transfer rates, and long transmission delays. In these application scenarios,
many serious challenges are encountered when using the traditional TCP/IP protocol for
network communication.

To solve the data transmission problem in these networks, Kevin Fall first proposed
the Delay Tolerant Network (DTN) model in 2003 [6]. When a message arrives at a node,
that node will first store the message and carry it through the network. When the node
carrying the message needs to pass the message to other nodes, the message will be
moved from a storage location on that node to a storage location on another node. In
this way, the message is transmitted until the delivery of the message is completed or the
message lifecycle is exhausted and discarded. The “carry-store-forward” model overcomes
the problems associated with intermittent connections, long delays, variable network
topologies, and high bit error rates, improving the quality of network communications [7].
The research of DTN provides strong scientific theory and technical support for message
interaction in military warfare, aerospace communication, disaster recovery, emergency
rescue, and other fields.

In DTN, nodes may be in constant motion, the network does not have a fixed topology,
and there is usually no end-to-end network connection between nodes, so a series of routing
algorithms based on stable topology in traditional Internet are not applicable to DTN, which

Sensors 2021, 21, 7847. https://doi.org/10.3390/s21237847 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21237847
https://doi.org/10.3390/s21237847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237847
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237847?type=check_update&version=1

Sensors 2021, 21, 7847 2 of 14

makes routing algorithms one of the most important research areas in DTN [8,9]. Nodes
in opportunistic networks often refer to vehicles or users carrying wireless short-range
communication devices, and these nodes participating in social scenarios also have unique
social attributes [10], so applying social attributes in DTN routing algorithms has attracted
a great deal of attention from researchers in recent years.

In this paper, we propose an adaptive routing algorithm based on Relation Tree (AR-
RT) to address the above issues, and the main contributions are summarized as follows:

• We propose a new method for constructing the Relation Trees, which is based on the
fact that in most application scenarios of DTN, nodes exhibit social attributes.

• We propose a sub-policy forwarding method based on the Relation Tree, which is
capable of more targeted forwarding based on the social attributes of each node.

• We propose an adaptive replication method based on node cache occupancy that can
adapt to the dynamically changing network environment.

The rest of the paper is organized as follows. We discuss related work in Section 2,
Section 3 provides a brief overview of the AR-RT algorithm, Section 4 describes how
to construct the Relation Tree, Section 5 describes the adaptive sub-policy replication
forwarding approach of the AR-RT algorithm, and in Section 6, we demonstrate the
performance of the AR-RT algorithm based on four key parameters by comparing it with
existing algorithms. In Section 7, we conclude the whole paper.

2. Related Work

The routing problem is one of the hot issues in DTN research. DTN routing algorithms
can be divided into two types, zero-information type and auxiliary information type,
depending on whether external auxiliary information is required [11]. Direct delivery [12]
is the simplest zero-information routing algorithm, where the source node generates a
message and will always carry it in the network and will not forward it additionally.
This algorithm has the lowest network overhead due to the absence of redundant relay
operations, but its performance in terms of transmission efficiency and the average delay
is poor. The Epidemic routing algorithm [13] simulates the propagation of an infectious
virus in a biological environment by forwarding the message to each node it encounters.
However, with limited resources, the nature of blind message propagation will lead to a
buffer overflow, and as the number of copies in the network increases, a large number of
copies take up network resources and can easily cause network congestion. To overcome
the problems caused by the Epidemic routing algorithm, the Spray-and-Wait routing
algorithm [14] was proposed, which is divided into two main phases: spray and wait. In
the spray phase, the source node copies the maximum number of message copies, which
is fixed, and forwards a copy of the message every time it encounters an intermediate
node until only one copy of the message remains. If the node carries only a copy of the
message, it will enter the waiting phase, in which the message is forwarded only when the
target node is encountered. The Binary Spray-and-Wait algorithm [15] is an improvement
of the original Spray-and-Wait algorithm. In the spray phase, half forwarding is used to
effectively improve the message delivery rate. The maximum message copy number, L,
is the key parameter that determines the performance of the Spray-and-Wait algorithm.
The paper [16] controls L by controlling message regeneration and deletion. This method
extends the application of the algorithm by changing the value of the maximum message
copy number, L, from a fixed value to a variable value that can be adapted to the application
environment. However, the above zero-information routing algorithms do not consider the
differences between nodes [17]. They cannot develop a reasonable routing strategy based
on the differences, resulting in inefficient transmission.

The external auxiliary information includes historical encounter probability, geo-
graphic location, etc. This external auxiliary information plays a huge role in improving
forwarding efficiency. Prophet [18] is a probability-based routing algorithm that uses histor-
ical transmission probabilities to calculate the current transmission probability. The node
carrying the message will decide whether it should forward by comparing the expected

Sensors 2021, 21, 7847 3 of 14

probability of encountering the destination node. In order to improve the delivery rate
of IoT applications in DTN, the authors of [19] propose a scheduling-probability rout-
ing algorithm based on node encounter history and convertibility, using two scheduling
mechanisms to extend the traditional Prophet algorithm. The authors of [20] proposed the
Sharing Spray-and-Wait algorithm. This algorithm uses the Markov chain network model
to analyze the message carrying time and delivery predictability, and then uses the results
to select the next node and the number of message copies to be delivered in the next hop.
The authors of [21] enhanced the Spray-and-Wait algorithm by changing the number of
copies sent from the sender to the receiver. The authors of [22] proposed the Geography-
Based Adaptive Spray (GBAS) routing algorithm to improve the Spray-and-Wait routing
algorithm in many aspects, mainly by calculating the activity range of the destination node
in the spray phase to select the appropriate next-hop node.

Considering that the social attributes of nodes are stable over time, researchers have
proposed many social-based routing algorithms. The Bubble Rap algorithm [23] is a repre-
sentative community-division-based routing algorithm. The algorithm uses the encounter
law between nodes to divide the communities, and designs two different mechanisms for
forwarding messages within and between communities. The authors of [24] proposed a
technique to detect the selfishness of nodes based on their historical message forwarding
and discarding behaviors, and a novel credit-based scheme to motivate nodes to cooperate
in forwarding messages. The authors of [25] extracted the key factors affecting friendships,
including contact frequency, contact time, and regularity of contact through the analysis of
social networks, and friendships in turn include direct friendships and indirect friendships,
thus constructing an analytical model to evaluate the closeness of friendships. The authors
of [26] predicted the mobile probability based on the social relationships and forwarding
partnerships among mobile users, using a hybrid relationship matrix decomposition to pre-
dict the mobile encounter probability of users. The authors of [27] introduced a new metric,
social energy, to quantify the ability of a node to forward packets to others. Social energy
is generated through the encounter of nodes, shared by the community of encountering
nodes, and decays over time. The authors of [28] designed a novel opportunity network
mobility model for node community hierarchy to deeply evaluate the similarity and differ-
ence of nodes at different levels in the community and to implement relay node selection
and destination node difference analysis in different community hierarchies. The authors
of [29] combined location-based forwarding with contact-based forwarding, relying on
packets based on predictable location and contact patterns.

The various auxiliary information types of algorithms described above require each
node to maintain real-time information from other nodes, so when the network size
increases, the nodes lack the adaptive adjustment capability to reduce this part of the
overhead.

3. Overview

In this section, we propose an adaptive routing algorithm based on the Relation Tree
(AR-RT) in DTN. Besides, the summary of important used variables in the paper is listed
in Table 1.

All nodes in the network topology maintain a Relation Tree with themselves as the
root node and update the Relation Tree in real time. The AR-RT algorithm is divided
into two phases: the adaptive replication phase, and the sub-policy forwarding phase.
Whenever a source node initiates a forwarding task, it first enters the adaptive replication
phase, in which it replicates the most appropriate number of message copies based on
its own cache occupancy. From the time the source node encounters the first relay node
that is not the destination node, it randomly enters the sub-policy forwarding phase, in
which the node carrying the message adopts a different forwarding strategy depending on
whether the Relation Tree of the encountered relay node contains the destination node of
the message, and all subsequent relay nodes adopt the same forwarding strategy until they

Sensors 2021, 21, 7847 4 of 14

encounter the destination node to complete the final forwarding of the message. The entire
flowchart is shown in Figure 1.

Table 1. List of notations.

Notation Explanation

T Memory cycle
M Relationship threshold
V Set of nodes in the network

N
(

vi, vj

) Number of times vi and vj meet in a memory
cycle T

RTi Relation Tree of node vi
Li(ma) Number of copies of ma carried by node vi
βnow Current cache occupancy of node
βbest Optimal cache occupancy of node

L The actual number of copies
Linit The initial number of copies

TTLnew
The lifetime of the newly generated message

copy
TTLold The original lifetime of the message copy

Sensors 2021, 21, x FOR PEER REVIEW 4 of 15

Table 1. List of notations.

Notation Explanation 𝑇 Memory cycle 𝑀 Relationship threshold 𝑉 Set of nodes in the network 𝑁(𝑣 , 𝑣) Number of times 𝑣 and 𝑣 meet in a memory cycle 𝑇 𝑅𝑇 Relation Tree of node 𝑣 𝐿 (𝑚) Number of copies of 𝑚 carried by node 𝑣 𝛽 Current cache occupancy of node 𝛽 Optimal cache occupancy of node 𝐿 The actual number of copies 𝐿 The initial number of copies 𝑇𝑇𝐿 The lifetime of the newly generated message copy 𝑇𝑇𝐿 The original lifetime of the message copy

All nodes in the network topology maintain a Relation Tree with themselves as the
root node and update the Relation Tree in real time. The AR-RT algorithm is divided into
two phases: the adaptive replication phase, and the sub-policy forwarding phase. When-
ever a source node initiates a forwarding task, it first enters the adaptive replication phase,
in which it replicates the most appropriate number of message copies based on its own
cache occupancy. From the time the source node encounters the first relay node that is not
the destination node, it randomly enters the sub-policy forwarding phase, in which the
node carrying the message adopts a different forwarding strategy depending on whether
the Relation Tree of the encountered relay node contains the destination node of the mes-
sage, and all subsequent relay nodes adopt the same forwarding strategy until they en-
counter the destination node to complete the final forwarding of the message. The entire
flowchart is shown in Figure 1.

Figure 1. The flowchart of the AR-RT algorithm.

4. Relation Tree
Introducing the concept of social networks into routing algorithms is the latest trend

in the field of DTN research. In many application scenarios of DTNs, the nodes are mostly
mobile devices with communication functions used by people, and thus the nodes in
DTNs also exhibit social characteristics similar to those of humans. Despite the relatively
unpredictable network topology, human movement patterns are not completely random;
for example, closely related nodes have a higher probability of meeting, and these nodes
that meet frequently form a social circle. Compared with nodes outside the social circle,

Figure 1. The flowchart of the AR-RT algorithm.

4. Relation Tree

Introducing the concept of social networks into routing algorithms is the latest trend
in the field of DTN research. In many application scenarios of DTNs, the nodes are mostly
mobile devices with communication functions used by people, and thus the nodes in
DTNs also exhibit social characteristics similar to those of humans. Despite the relatively
unpredictable network topology, human movement patterns are not completely random;
for example, closely related nodes have a higher probability of meeting, and these nodes
that meet frequently form a social circle. Compared with nodes outside the social circle,
nodes within the same social circle are more closely connected, meet more frequently, and
have a higher probability of successfully delivering messages to each other. If we can
accurately construct the social circles of every node, we can forward messages in a more
targeted manner and improve the forwarding efficiency. Based on the above analysis, we
propose a method for constructing social circles, which is called a Relation Tree because it
is reflected in the storage structure as a tree storage structure.

Definition (Relation Tree (RT)). Each node in the network maintains a Relation Tree
with itself as the root node. the maximum depth of the Relation Tree is 3, the memory cycle
of each node is T, and the judgment threshold of the number of encounters is M. A node
with depth 2 in the Relation Tree satisfies the condition that the number of encounters with
the root node exceeds M in a memory cycle, and a node with depth 3 in the Relation Tree

Sensors 2021, 21, 7847 5 of 14

satisfies the condition that the number of encounters with its parent node exceeds M in a
memory cycle.

4.1. Maintenance of the Relation Tree

At the end of each cycle, the Relation Tree is updated in real-time, and the main
operations are insertion and deletion. The process of updating the Relation Tree is shown
in Algorithm 1.

Algorithm 1. Updating Relation Tree

Input:
V = {vi|1 < i < n}, set of nodes in the network
N(vi, vj

∣∣∣vi ∈ V, vj ∈ V) , the number of times vi and vj meet in a memory cycle T
RTi, the relation tree of node vi
RTj, the relation tree of node vj
M, relationship threshold

1: if vi encounters vj and N
(

vi, vj

)
= M− 1 then

2: add vj as a child node of vi in RTi
3: for each child node cj of vj in RTj do
4: if cj /∈ RTi then
5: add cj as a child node of vj in RTi
6: end if
7: end for
8: end if
9: for each child node ci of vi in RTi do
10: if N(ci, vi) < M then
11: remove ci from RTi
12: end if
13: end for

4.1.1. Tree Insertion

Whenever the root node A encounters a new node B so that the number of encounters
between them in a memory cycle reaches M, an insertion operation is performed on the
Relation Tree of A. The insertion operation includes:

1. Add the new node B to become a child of the root node A.
2. Add all nodes in the original Relation Tree of B that are not nodes in the Relation Tree

of A and whose encounter times with B exceeds M (nodes in the Relation Tree of B
with depth 2 and not in the Relation Tree of A) to become children node of B in the
Relation Tree of A.

If M = 2, when node A and node B meet again in the same memory cycle, the number
of times they meet reaches the judgment threshold, as shown in Figure 2. Since nodes C
and E with depth 2 in the Relation Tree of B are already in the Relation Tree of A, only node
G is added to become a child node of B in the Relation Tree of A.

Sensors 2021, 21, 7847 6 of 14

Sensors 2021, 21, x FOR PEER REVIEW 6 of 15

If M = 2, when node A and node B meet again in the same memory cycle, the number
of times they meet reaches the judgment threshold, as shown in Figure 2. Since nodes C
and E with depth 2 in the Relation Tree of B are already in the Relation Tree of A, only
node G is added to become a child node of B in the Relation Tree of A.

Figure 2. Maintenance of the Relation Tree.

4.1.2. Tree Deletion
At the end of each cycle, all nodes of the Relation Tree whose number of encounters

is below M with depth 2 and their children are deleted. If M = 2, node D and all its child
nodes that are less than 2 are deleted at the end of the cycle, as shown in Figure 2.

4.2. Important Parameters Related to the Relation Tree
In our algorithm, the nodes with depth 2 represent the “friends” of the root node,

and the nodes with depth 3 represent the “friends of friends” of the root node. The Rela-
tion Tree is updated in real-time. The size of the Relation Tree depends on the memory
cycle T and the judgment threshold M. The optimal value of these two depends on the
number of nodes, the movement speed of nodes, the storage space of nodes, etc. The user
can adjust the size of the Relation Tree according to the actual parameters of the network.

5. Algorithm Design
The AR-RT algorithm is divided into two phases: adaptive replication phase and sub-

policy forwarding phase.

5.1. Adaptive Replication Phase
Whenever a source node initiates a forwarding task, it enters that phase first. In this

phase, the most appropriate number of message copies is copied based on its own cache
occupancy. The messages that occupy the node cache are mainly divided into two catego-
ries: one is the newly generated messages by the node and the other is the messages re-
ceived by the node as a relay node. When a message expires, the node automatically dis-
cards the message, so expired messages are not included in the above two categories. The
cache of each node in the network has an initial size: buffer size. The calculation formula
of node cache occupancy rate, 𝛽 , is as in (1): 𝛽 = ∑ 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑{𝑚 } ∑ 𝐶𝑟𝑒𝑎𝑡𝑒𝑑{𝑚 }𝐵𝑢𝑓𝑓𝑒𝑟𝑠𝑖𝑧𝑒 (1)

where X represents the total number of messages successfully received by this node before
the current time, and Y represents the total number of messages successfully created by
this node before the current time.

Figure 2. Maintenance of the Relation Tree.

4.1.2. Tree Deletion

At the end of each cycle, all nodes of the Relation Tree whose number of encounters
is below M with depth 2 and their children are deleted. If M = 2, node D and all its child
nodes that are less than 2 are deleted at the end of the cycle, as shown in Figure 2.

4.2. Important Parameters Related to the Relation Tree

In our algorithm, the nodes with depth 2 represent the “friends” of the root node, and
the nodes with depth 3 represent the “friends of friends” of the root node. The Relation
Tree is updated in real-time. The size of the Relation Tree depends on the memory cycle T
and the judgment threshold M. The optimal value of these two depends on the number of
nodes, the movement speed of nodes, the storage space of nodes, etc. The user can adjust
the size of the Relation Tree according to the actual parameters of the network.

5. Algorithm Design

The AR-RT algorithm is divided into two phases: adaptive replication phase and
sub-policy forwarding phase.

5.1. Adaptive Replication Phase

Whenever a source node initiates a forwarding task, it enters that phase first. In
this phase, the most appropriate number of message copies is copied based on its own
cache occupancy. The messages that occupy the node cache are mainly divided into two
categories: one is the newly generated messages by the node and the other is the messages
received by the node as a relay node. When a message expires, the node automatically
discards the message, so expired messages are not included in the above two categories.
The cache of each node in the network has an initial size: buffer size. The calculation
formula of node cache occupancy rate, βnow, is as in Equation (1):

βnow =
∑X

i=1 Received{mi}+ ∑Y
i=1 Created{mi}

Bu f f ersize
(1)

where X represents the total number of messages successfully received by this node before
the current time, and Y represents the total number of messages successfully created by
this node before the current time.

When the source node starts to send data to other nodes, it will copy L copies of the
message. In the AR-RT algorithm, the source node can dynamically adjust L according to
its own buffer occupancy. The calculation formula of L is as in Equation (2):

L = Linit − ∂ ∗ (βnow − βbest) (2)

Sensors 2021, 21, 7847 7 of 14

where Linit is an initial set value, βbest is the optimal buffer occupancy rate of all nodes that
are initially set, and ∂ is an adjustment factor. This phase provides negative feedback that
helps maintain the overall network load level at an appropriate level.

5.2. Sub-Policy Forwarding Phase

As shown in Algorithm 2, when a node carrying copies of a message encounters a
new node, it adopts a different forwarding strategy until it reaches the destination node,
depending on whether the new node contains the destination node in its Relation Tree:

1. If the Relation Tree of the new node does not contain the destination node, half of
the message copies carried by themselves (rounded down) are forwarded to the new
node. This forwarding strategy uses halving propagation to improve the efficiency of
breadth-first forwarding among unfamiliar nodes.

2. If the Relation Tree of the new node contains the destination node, all the message
copies carried are copied and forwarded to the new node, and the survival time
(TTLnew) of these newly copied generated message copies is shown in Equation (3).
Where M < T, ensuring TTLnew < TTLold, because the destination node is in the
Relation Tree of the new node, the encounter expectation is higher, and the message
copies generated by the new replication only need a smaller survival time to avoid
wasting network resources. This forwarding strategy can effectively accelerate the
forwarding efficiency in the final stage of messages by exploiting the flooding effect
while keeping the negative impact of the flooding effect in a localized range within a
short period of time.

TTLnew = TTLold∗
M
T

(3)

The purpose of using different forwarding policies is to perform more targeted for-
warding based on the social attributes of each node to reduce the impact of flooding and
reduce network overhead while improving forwarding efficiency and reducing delay.

Algorithm 2. Forwarding Phase

Input:
V = {vi|1 < i < n}, set of nodes in the network
N(vi, vj

∣∣∣vi ∈ V, vj ∈ V) , the number of times vi and vj meet in a memory cycle T
RTi, the relation tree of node vi
RTj, the relation tree of node vj
M, relationship threshold
T, memory cycle
Li(ma), the number of copies of ma carried by node vi

1: if vi encounters vj then
2: for each message ma in vi do
3: if ma.TTL > 0 then
4: vd = m′a destination
5: if vj == vd then
6: vi directly forwards ma to vj
7: else if vd ∈ RTj then
8: Lj(ma) = Li(ma)
9: vj.ma.TTL = vj.ma.TTL ∗M/T
10: else then
11: Lj(ma) = bLi(ma)/2c
12: Li(ma) = dLi(ma)/2e
13: end if
14: end if
15: end for
16: end if

Sensors 2021, 21, 7847 8 of 14

6. Simulation

In this section, we use ONE simulation software [30] to test the performance of each
algorithm. The algorithms we selected for comparison are Epidemic, Spray-and-Wait
(L = 8), Prophet (Pinit = 0.75, β = 0.25, and γ = 0.98), and Bubble Rap. In order to better
evaluate the performance of routing algorithms, this paper mainly uses four indicators:
delivery rate, average delay, overhead, and average hop count.

6.1. Simulation Scenarios and Parameters

For a more objective comparison with Spray-and-Wait, we also set the initial number
of message copies, Linit, to 8. Based on Linit = 8, we found suitable values for the other
parameters through several tests. All specific parameters are shown in Table 2. In this sec-
tion, the simulation is performed for Vehicle Ad Hoc Network (VANET), a self-organizing
network, and the map used is the city map of Helsinki, with a total of four groups of nodes
with different attributes, and the attributes of each group of nodes are shown in Table 3.
The nodes in group 1 and group 3 will be randomly assigned their points of interest on
the map. The probability of nodes selecting their corresponding points of interest as new
destination locations is higher than that of other locations on the map. After determining
the destination location, the node will first calculate the shortest path based on the road
and then follow the road to the destination. The probability of selecting different points of
interest as the new destination location is also random and different. The nodes in group
2 and group 4 follow their respective fixed lines of movement. This is to simulate the
different working attributes of different network nodes in the real DTN scene.

Table 2. Scenario parameters.

Parameter Default Value Variation Range

Scenario Size (m2) 4500 × 3400 -
Simulation Time (h) 10 -

Message Generation Interval (s) 30 10–50
Message Size (KB) 1250 1000–1500
Buffer Size (MB) 15 5–25

TTL (min) 60 20–100
Number of Nodes 300 100–500

Linit 8 -
βbest 0.6 -

∂ 2 -
M 3 -

T (min) 30 -

Table 3. Node attributes.

Group Number Parameter Value

Group 1
(Pedestrians)

movement speed (m/s) 0.5–1.5
communication rate (Kbps) 250
communication range (m) 30

Group 2
(Bus)

movement speed (m/s) 2.7–13.9
communication rate (Kbps) 250
communication range (m) 30

Group 3
(Taxi)

movement speed (m/s) 3–12
communication rate (Kbps) 250
communication range (m) 30

Group 4
(Tram)

movement speed (m/s) 7–10
communication rate (Mbps) 10
communication range (m) 150

Sensors 2021, 21, 7847 9 of 14

6.2. Simulation Results

By varying the number of nodes, message TTL value, message generation interval,
and node cache size, we can analyze the performance of the five algorithms in different
scenarios. In order to make the simulation results more accurate, each simulation scenario
was repeated several times with different random seeds.

6.2.1. Impact of The Number of Nodes

The results for different numbers of nodes are shown in Figure 3. Figure 3a shows that
when increasing the number of nodes, the delivery rate of AR-RT increases significantly,
while that of the other algorithms does not fluctuate much, which is because the higher the
number of nodes, the more accurate AR-RT is in determining the social attributes among
the nodes. It is worth noting that after the number of nodes exceeds 300, the delivery rate
of Bubble Rap starts to decrease due to the increase in complexity of calculating the node
centrality with the number of nodes, resulting in inaccurate results. Figure 3b shows that
as the number of nodes increases, the average delay of all four algorithms decreases, with
AR-RT having the smallest average delay, which is due to the fact that AR-RT is more
efficient in forwarding the propagation phase in the final Relation Tree, reducing the overall
delay. Figure 3c shows that the network overhead of Epidemic and Prophet is increasing
significantly as the number of nodes increases, due to the uncapped replication of these
two algorithms, and the network overhead of these two algorithms in a high node density
scenario can have a serious impact on the network. The network overhead of AR-RT
increases slightly but is within an acceptable range, and the network overhead of Bubble
Rap remains stable and is always at the lowest. Figure 3d shows that the average hop
count of Epidemic and Prophet increases significantly as the number of nodes increases,
reflecting the inefficient forwarding of these two algorithms. The average hop counts of the
remaining three algorithms remain basically stable, among which AR-RT performs better
due to the high forwarding efficiency caused by using different forwarding methods based
on the Relation Tree.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 15

a high node density scenario can have a serious impact on the network. The network over-
head of AR-RT increases slightly but is within an acceptable range, and the network over-
head of Bubble Rap remains stable and is always at the lowest. Figure 3d shows that the
average hop count of Epidemic and Prophet increases significantly as the number of nodes
increases, reflecting the inefficient forwarding of these two algorithms. The average hop
counts of the remaining three algorithms remain basically stable, among which AR-RT
performs better due to the high forwarding efficiency caused by using different forward-
ing methods based on the Relation Tree.

Figure 3. Comparison of the results (95% CI) of various algorithms under different numbers of
nodes. Subfigures (a–d) compare the performance of the five algorithms with the variation of the
four parameters, delivery rate (a), average delay (b), overhead (c) and average hop count (d), with
the number of nodes, respectively.

6.2.2. Impact of TTL
Figure 4 shows the impact of TTL. Figure 4a shows that the delivery rate of Spray-

and-Wait and Bubble Rap is low in the scenario of low TTL, and with the increase TTL,
the delivery rate increases rapidly and eventually tends to be high, which reflects the poor
adaptability of these two algorithms to different attributes of the service. The delivery rate
of the AR-RT algorithm remains stable and always at a high level, and Epidemic and
Prophet both increase and then decrease, and the overall delivery rate is low. Figure 4b
shows that the average delay of AR-RT increases slightly with the increase of TTL, and
the advantage is obvious in the high TTL scenario. The increasing trend of the remaining
four algorithms is obvious. Figure 4c shows that the network overhead of Epidemic and
Prophet is increasing significantly as TTL increases, the network overhead of AR-RT in-
creases slightly but is within an acceptable range, and the network overhead of Bubble
Rap remains basically stable and is always in the lowest state. Figure 4d shows that with
the increase of TTL, the average hop count of Epidemic and Prophet increases significantly
and is at a higher level, reflecting the inefficiency of forwarding of these two algorithms.
The average hop count of the remaining three algorithms remains basically stable, with
AR-RT performing better.

Figure 3. Comparison of the results (95% CI) of various algorithms under different numbers of
nodes. Subfigures (a–d) compare the performance of the five algorithms with the variation of the
four parameters, delivery rate (a), average delay (b), overhead (c) and average hop count (d), with
the number of nodes, respectively.

Sensors 2021, 21, 7847 10 of 14

6.2.2. Impact of TTL

Figure 4 shows the impact of TTL. Figure 4a shows that the delivery rate of Spray-
and-Wait and Bubble Rap is low in the scenario of low TTL, and with the increase TTL,
the delivery rate increases rapidly and eventually tends to be high, which reflects the poor
adaptability of these two algorithms to different attributes of the service. The delivery
rate of the AR-RT algorithm remains stable and always at a high level, and Epidemic and
Prophet both increase and then decrease, and the overall delivery rate is low. Figure 4b
shows that the average delay of AR-RT increases slightly with the increase of TTL, and
the advantage is obvious in the high TTL scenario. The increasing trend of the remaining
four algorithms is obvious. Figure 4c shows that the network overhead of Epidemic
and Prophet is increasing significantly as TTL increases, the network overhead of AR-RT
increases slightly but is within an acceptable range, and the network overhead of Bubble
Rap remains basically stable and is always in the lowest state. Figure 4d shows that with
the increase of TTL, the average hop count of Epidemic and Prophet increases significantly
and is at a higher level, reflecting the inefficiency of forwarding of these two algorithms.
The average hop count of the remaining three algorithms remains basically stable, with
AR-RT performing better.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 15

Figure 4. Comparison of the results (95% CI) of various algorithms under different TTL. Subfig-
ures (a–d) compare the performance of the five algorithms with the variation of the four parame-
ters, delivery rate (a), average delay (b), overhead (c) and average hop count (d), with TTL, respec-
tively.

6.2.3. Impact of Message Generation Interval
Figure 5 shows the impact of the message generation interval. From Figure 5a, we

can see that the delivery rates of Epidemic and Prophet are very low when the increase of
the message generation interval is small, which indicates that in the high-intensity trans-
mission scenario, the high message discard rate caused by the uncapped replication
method will seriously reduce the final delivery rate of messages. In the low-intensity
transmission scenario, the delivery rate of AR-RT has an advantage due to its ability to
dynamically adjust the number of copies of the initial message. From Figure 5b, it can be
seen that the average delay of Epidemic and Prophet gradually decreases as the message
generation interval increases, but always remains at a high level. The average delay of
Bubble Rap remains stable and at a high level, and the average delay of the remaining two
algorithms remains stable and at a low level, with the average delay of AR-RT being
smaller. Figure 5c shows that the network overhead of Epidemic increases significantly as
the message generation interval increases, the network overhead of Prophet increases and
then stabilizes, the network overhead of AR-RT increases slightly but is within an accepta-
ble range, and the network overhead of Bubble Rap remains stable and is always at the
lowest level. Figure 5d shows that as the message generation interval increases, the aver-
age hop count of Epidemic and Prophet increases and then decreases, but always remains
at a high level, and the average hop count of the remaining three algorithms remains sta-
ble, with AR-RT performing better.

Figure 4. Comparison of the results (95% CI) of various algorithms under different TTL. Subfigures
(a–d) compare the performance of the five algorithms with the variation of the four parameters,
delivery rate (a), average delay (b), overhead (c) and average hop count (d), with TTL, respectively.

6.2.3. Impact of Message Generation Interval

Figure 5 shows the impact of the message generation interval. From Figure 5a, we
can see that the delivery rates of Epidemic and Prophet are very low when the increase
of the message generation interval is small, which indicates that in the high-intensity
transmission scenario, the high message discard rate caused by the uncapped replication
method will seriously reduce the final delivery rate of messages. In the low-intensity
transmission scenario, the delivery rate of AR-RT has an advantage due to its ability to
dynamically adjust the number of copies of the initial message. From Figure 5b, it can be
seen that the average delay of Epidemic and Prophet gradually decreases as the message
generation interval increases, but always remains at a high level. The average delay of
Bubble Rap remains stable and at a high level, and the average delay of the remaining

Sensors 2021, 21, 7847 11 of 14

two algorithms remains stable and at a low level, with the average delay of AR-RT being
smaller. Figure 5c shows that the network overhead of Epidemic increases significantly
as the message generation interval increases, the network overhead of Prophet increases
and then stabilizes, the network overhead of AR-RT increases slightly but is within an
acceptable range, and the network overhead of Bubble Rap remains stable and is always
at the lowest level. Figure 5d shows that as the message generation interval increases,
the average hop count of Epidemic and Prophet increases and then decreases, but always
remains at a high level, and the average hop count of the remaining three algorithms
remains stable, with AR-RT performing better.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 15

Figure 5. Comparison of the results (95% CI) of various algorithms under different message gener-
ation intervals. Subfigures (a–d) compare the performance of the five algorithms with the variation
of the four parameters, delivery rate (a), average delay (b), overhead (c) and average hop count (d),
with the message generation interval, respectively.

6.2.4. Impact of Buffer Size
The results for different buffer sizes are shown in Figure 6. From Figure 6a, we can

see that the delivery rate of Epidemic and Prophet is low when the buffer size is small,
because the high message discard rate brought by the uncapped replication method will
seriously reduce the final delivery rate of messages. The delivery rate of the remaining
three algorithms remains stable and at a high level, and when the buffer size exceeds 15M,
AR-RT has an advantage due to its ability to dynamically adjust the number of copies of
the initial message. Figure 6b shows that as the buffer size increases, the average delay of
Epidemic increases slightly, while the average delay of the remaining four algorithms re-
mains stable, with AR-RT performing the best and having a clear advantage. Figure 6c
shows that the network overhead of Epidemic tends to decrease as the buffer size in-
creases. The network overhead of the remaining four algorithms remains basically stable,
with the network overhead of Bubble Rap being in the lowest state. Figure 6d shows that
as the buffer size increases, the average hop count of Epidemic and Prophet shows a sig-
nificant decreasing trend, but always at a high level, and the average hop count of the
remaining three algorithms remains stable, among which AR-RT performs better.

Figure 5. Comparison of the results (95% CI) of various algorithms under different message genera-
tion intervals. Subfigures (a–d) compare the performance of the five algorithms with the variation
of the four parameters, delivery rate (a), average delay (b), overhead (c) and average hop count (d),
with the message generation interval, respectively.

6.2.4. Impact of Buffer Size

The results for different buffer sizes are shown in Figure 6. From Figure 6a, we can
see that the delivery rate of Epidemic and Prophet is low when the buffer size is small,
because the high message discard rate brought by the uncapped replication method will
seriously reduce the final delivery rate of messages. The delivery rate of the remaining
three algorithms remains stable and at a high level, and when the buffer size exceeds 15M,
AR-RT has an advantage due to its ability to dynamically adjust the number of copies of
the initial message. Figure 6b shows that as the buffer size increases, the average delay
of Epidemic increases slightly, while the average delay of the remaining four algorithms
remains stable, with AR-RT performing the best and having a clear advantage. Figure 6c
shows that the network overhead of Epidemic tends to decrease as the buffer size increases.
The network overhead of the remaining four algorithms remains basically stable, with the
network overhead of Bubble Rap being in the lowest state. Figure 6d shows that as the
buffer size increases, the average hop count of Epidemic and Prophet shows a significant
decreasing trend, but always at a high level, and the average hop count of the remaining
three algorithms remains stable, among which AR-RT performs better.

Sensors 2021, 21, 7847 12 of 14Sensors 2021, 21, x FOR PEER REVIEW 13 of 15

Figure 6. Comparison of the results (95% CI) of various algorithms under different node caches.
Subfigures (a–d) compare the performance of the five algorithms with the variation of the four
parameters, delivery rate (a), average delay (b), overhead (c) and average hop count (d), with the
node cache, respectively.

7. Summary
In this paper, we proposed an adaptive routing algorithm based on the Relation Tree

in DTN. We exploited the feature that nodes in DTN have stable social attributes similar
to people and introduced the concept of the Relation Tree. Each node constructs its own
Relation Tree based on its historical encounter frequency, and will adopt different for-
warding policies based on the Relation Tree in the forwarding phase. In addition, the
source node adaptively adjusts the initial maximum number of message copies according
to its own cache occupancy, which enables the node to make negative feedback to the
network environment changes. Simulation results show that the proposed AR-RT algo-
rithm had the best overall performance in terms of average delay, average hop count, and
delivery rate compared with existing routing algorithms, while the network overhead rate
was kept at a stable low level.

Author Contributions: Conceptualization, D.C.; methodology, D.C.; software, D.C.; resources, H.C.
and R.E.W.; data curation, D.C.; writing—original draft preparation, D.C.; writing—review and ed-
iting, H.C. and R.E.W.; supervision, H.C. and R.E.W.; project administration, H.C. and R.E.W.; fund-
ing acquisition, H.C. All authors have read and agreed to the published version of the manuscript.

Funding: The paper was funded by the National Key Research and Development Program of China
(2020YFB1807805), National Natural Science Foundation of China (62171049)

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express gratitude to the State Key Laboratory of Network-
ing and Switching Technology, Beijing University of Posts and Telecommunications, for the admin-
istrative and the technical support.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 6. Comparison of the results (95% CI) of various algorithms under different node caches.
Subfigures (a–d) compare the performance of the five algorithms with the variation of the four
parameters, delivery rate (a), average delay (b), overhead (c) and average hop count (d), with the
node cache, respectively.

7. Summary

In this paper, we proposed an adaptive routing algorithm based on the Relation
Tree in DTN. We exploited the feature that nodes in DTN have stable social attributes
similar to people and introduced the concept of the Relation Tree. Each node constructs
its own Relation Tree based on its historical encounter frequency, and will adopt different
forwarding policies based on the Relation Tree in the forwarding phase. In addition, the
source node adaptively adjusts the initial maximum number of message copies according to
its own cache occupancy, which enables the node to make negative feedback to the network
environment changes. Simulation results show that the proposed AR-RT algorithm had
the best overall performance in terms of average delay, average hop count, and delivery
rate compared with existing routing algorithms, while the network overhead rate was kept
at a stable low level.

Author Contributions: Conceptualization, D.C.; methodology, D.C.; software, D.C.; resources,
H.C. and R.E.W.; data curation, D.C.; writing—original draft preparation, D.C.; writing—review
and editing, H.C. and R.E.W.; supervision, H.C. and R.E.W.; project administration, H.C. and
R.E.W.; funding acquisition, H.C. All authors have read and agreed to the published version of the
manuscript.

Funding: The paper was funded by the National Key Research and Development Program of China
(2020YFB1807805), National Natural Science Foundation of China (62171049).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express gratitude to the State Key Laboratory of Net-
working and Switching Technology, Beijing University of Posts and Telecommunications, for the
administrative and the technical support.

Sensors 2021, 21, 7847 13 of 14

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Caini, C.; Cruickshank, H.; Farrell, S.; Marchese, M. Delay- and Disruption-Tolerant Networking (DTN): An alternative solution

for future satellite networking applications. Proc. IEEE 2011, 99, 1980–1997. [CrossRef]
2. Baek, E.C.; Porter, M.A.; Parkinson, C. Social Network analysis for social neuroscientists. Soc. Cogn. Affect. Neurosci. 2021, 16,

883–901. [CrossRef] [PubMed]
3. Rehman, G.U.; Ghani, A.; Muhammad, S.; Singh, M.; Singh, D. Selfishness in vehicular delay-tolerant networks: A review. Sensors

2020, 20, 3000. [CrossRef] [PubMed]
4. Ye, S.; Xu, L.; Li, X. Vehicle-mounted self-organizing network routing algorithm based on deep reinforcement learning. Wirel.

Commun. Mob. Comput. 2021, 9, 1–9. [CrossRef]
5. Wang, H.; Wang, S.; Bu, R.; Zhang, E. A novel cross-layer routing protocol based on network coding for underwater sensor

networks. Sensors 2017, 17, 1821. [CrossRef]
6. Fall, K. A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany, 25–29 August 2003; pp. 27–34.
7. Tuan, L. Multi-hop routing under short contact in delay tolerant networks. Comput. Commun. 2021, 165, 1–8.
8. Qi, Y.W.; Yang, L.; Pan, C.S.; Li, H.R. CGR-QV: A virtual topology DTN routing algorithm based on queue scheduling. China

Commun. 2020, 17, 113–123. [CrossRef]
9. Sakai, K.; Sun, M.T.; Ku, W.S.; Wu, J.; Alanazi, F.S. Performance and security analyses of onion-based anonymous routing for

delay tolerant networks. IEEE Trans. Mob. Comput. 2017, 16, 3473–3487. [CrossRef]
10. Roy, S.; Bose, T.; Acharya, S. DasBit, social-based energy-aware multicasting in delay tolerant networks. J. Netw. Comput. Appl.

2017, 87, 169–184. [CrossRef]
11. Yuan, P.; Song, M. MONICA: One simulator for mobile opportunistic networks. In Proceedings of the International Conference

on Mobile Multimedia Communications, Qingdao, China, 21–22 June 2018.
12. Shah, R.C.; Roy, S.; Jain, S.; Brunette, W. Data MULEs: Modeling and analysis of a three-tier architecture for sparse sensor

networks. Ad Hoc Netw. 2003, 1, 215–233. [CrossRef]
13. Vahdat, A.; Becker, D. Epidemic Routing for Partially Connected Ad Hoc Networks; Technical Report CS-200006; Duke University:

Durham, NC, USA, 2000.
14. Spyropoulos, T.; Psounis, K.; Raghavendra, C.S. Spray and wait: An efficient routing scheme for intermittently connected mobile

networks. In Proceedings of the 2005 ACM SIGCOMM Workshop on Delay-Tolerant Networking, Philadelphia, PA, USA, 26
August 2005; pp. 252–259.

15. Zhang, S.; Xue, J.; Hu, C.; Wang, Y. Binary spray and wait routing based on the remaining life time of message in wireless sensor
networks. Sens. Lett. 2013, 11, 1586–1590.

16. Kuronuma, Y.; Suzuki, H.; Koyama, A. An adaptive DTN routing protocol considering replication state. In Proceedings of the
International Conference on Advanced Information Networking and Applications Workshops, Taipei, Taiwan, 27–29 March 2017;
pp. 421–426.

17. Raverta, F.D.; Fraire, J.A.; Madoery, P.G.; Demasi, R.A.; Finochietto, J.M.; D’Argenio, P.R. Routing in delay-tolerant networks
under uncertain contact plans. Ad Hoc Netw. 2021, 123, 102663. [CrossRef]

18. Lindgren, A.; Doria, A.; Schelén, O. Probabilistic routing in intermittently connected networks. Acm Sigmobile Mob. Comput.
Commun. Rev. 2004, 7, 19–20. [CrossRef]

19. Mao, Y.; Zhou, C.; Ling, Y.; Lloret, J. An optimized probabilistic Delay Tolerant Network (DTN) routing protocol based on
scheduling mechanism for Internet of Things (IoT). Sensors 2019, 19, 243. [CrossRef] [PubMed]

20. Derakhshanfard, N.; Sabaei, M.; Rahmani, A.M. Sharing spray and wait routing algorithm in opportunistic networks. Wirel. Netw.
2016, 22, 2403–2414. [CrossRef]

21. Spaho, E.; Dhoska, K.; Barolli, L.; Kolici, V.; Takizawa, M. Enhancement of binary spray and wait routing protocol for improving
delivery probability and latency in a delay tolerant network. In International Conference on Broadband and Wireless Computing,
Communication and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 105–113.

22. Yang, H. Geography-Based Adaptive Spray Routing Algorithm in Delay Tolerant Network. Master’s Thesis, Central China
Normal University, Wuhan, China, 2018.

23. Hui, P.; Crowcroft, J.; Yoneki, E. Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Trans. Mob. Comput. 2010,
10, 1576–1589. [CrossRef]

24. Jain, S.; Verma, A. Bubble rap incentive scheme for prevention of node selfish- ness in delay-tolerant networks. In Smart
Innovations in Communication and Computational Sciences; Springer: Berlin/Heidelberg, Germany, 2019; pp. 289–303.

25. Bulut, E.; Szymanski, B. Exploiting friendship relations for efficient routing in mobile social networks. IEEE Trans. Parallel Distrib.
Syst. 2012, 23, 2254–2265. [CrossRef]

26. Yu, G.; Chen, Z.; Wu, J.; Wu, J. Predicted encounter probability based on dynamic programming proposed probability algorithm
in opportunistic social network. Comput. Netw. 2020, 181, 107456. [CrossRef]

27. Li, F.; Jiang, H.; Li, H.; Cheng, Y.; Wang, Y. SEBAR: Social-energy-based routing for mobile social delay-tolerant networks. IEEE
Trans. Veh. Technol. 2017, 66, 7195–7206. [CrossRef]

http://doi.org/10.1109/JPROC.2011.2158378
http://doi.org/10.1093/scan/nsaa069
http://www.ncbi.nlm.nih.gov/pubmed/32415969
http://doi.org/10.3390/s20103000
http://www.ncbi.nlm.nih.gov/pubmed/32466315
http://doi.org/10.1155/2021/9934585
http://doi.org/10.3390/s17081821
http://doi.org/10.23919/J.CC.2020.07.010
http://doi.org/10.1109/TMC.2017.2690634
http://doi.org/10.1016/j.jnca.2017.03.020
http://doi.org/10.1016/S1570-8705(03)00003-9
http://doi.org/10.1016/j.adhoc.2021.102663
http://doi.org/10.1145/961268.961272
http://doi.org/10.3390/s19020243
http://www.ncbi.nlm.nih.gov/pubmed/30634604
http://doi.org/10.1007/s11276-015-1105-y
http://doi.org/10.1109/TMC.2010.246
http://doi.org/10.1109/TPDS.2012.83
http://doi.org/10.1016/j.comnet.2020.107465
http://doi.org/10.1109/TVT.2017.2653843

Sensors 2021, 21, 7847 14 of 14

28. Zhou, Y.J.; Ma, C.G.; Miao, J.F.; Qi, F. Community level based opportunity network mobility model. Inf. Netw. Secur. 2014, 8,
45–49.

29. Boc, M.; Fladenmuller, A.; de Amorim, M.D.; Galluccio, L.; Palazzo, S. Price: Hybrid geographic and co-based forwarding in
delay-tolerant networks. Comput. Netw. 2011, 55, 2352–2360. [CrossRef]

30. Keranen, A.; Karkkainen, T.; Ott, J. Simulating mobility and DTN with the ONE. J. Comput. Appl. 2010, 5, 92–105.

http://doi.org/10.1016/j.comnet.2011.03.014

	Introduction
	Related Work
	Overview
	Relation Tree
	Maintenance of the Relation Tree
	Tree Insertion
	Tree Deletion

	Important Parameters Related to the Relation Tree

	Algorithm Design
	Adaptive Replication Phase
	Sub-Policy Forwarding Phase

	Simulation
	Simulation Scenarios and Parameters
	Simulation Results
	Impact of The Number of Nodes
	Impact of TTL
	Impact of Message Generation Interval
	Impact of Buffer Size

	Summary
	References

