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QC-Automator: Deep
Learning-Based Automated Quality
Control for Diffusion MR Images
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Diffusion and Connectomics in Precision Healthcare Research Lab, Department of Radiology, University of Pennsylvania,
Philadelphia, PA, United States

Quality assessment of diffusion MRI (dMRI) data is essential prior to any analysis,
so that appropriate pre-processing can be used to improve data quality and ensure
that the presence of MRI artifacts do not affect the results of subsequent image
analysis. Manual quality assessment of the data is subjective, possibly error-prone,
and infeasible, especially considering the growing number of consortium-like studies,
underlining the need for automation of the process. In this paper, we have developed a
deep-learning-based automated quality control (QC) tool, QC-Automator, for dMRI data,
that can handle a variety of artifacts such as motion, multiband interleaving, ghosting,
susceptibility, herringbone, and chemical shifts. QC-Automator uses convolutional
neural networks along with transfer learning to train the automated artifact detection
on a labeled dataset of ∼332,000 slices of dMRI data, from 155 unique subjects and
5 scanners with different dMRI acquisitions, achieving a 98% accuracy in detecting
artifacts. The method is fast and paves the way for efficient and effective artifact
detection in large datasets. It is also demonstrated to be replicable on other datasets
with different acquisition parameters.

Keywords: MRI, artifacts, diffusion MRI, quality control, convolutional neural networks

INTRODUCTION

Diffusion MRI (dMRI) (Basser and Jones, 2002; Assaf and Pasternak, 2008) is now widely
used to probe the microstructural properties of biological tissues, as well as the structural
connectivity of the brain. dMRI is prone to different kinds of artifacts including motion,
multiband interleaving, ghosting, susceptibility, herringbone, and chemical shift (Wood and
Henkelman, 1985; Smith et al., 1991; Simmons et al., 1994; Schenck, 1996; Heiland, 2008;
Moratal et al., 2008; Krupa and Bekiesińska-Figatowska, 2015). If these artifacts remain
undetected or insufficiently corrected, it could bias the results of subsequent analyses,
weakening their interpretability (Bammer et al., 2003; Van Dijk et al., 2012; Reuter
et al., 2015). Thus, quality control (QC) is an essential step before dMRI goes into
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further processing like motion correction and tensor estimation
(Bastiani et al., 2019).

Quality control is undertaken mostly by visual inspection
prior to any processing or analysis, in order to assess the quality
of the data. Based on this QC, appropriate corrections can be
applied, or a decision can be made to exclude affected slices
or volumes. This is very time consuming and challenging to
undertake manually, especially in large datasets of dMRI data, a
modality with inherently low signal to noise ratio. Furthermore,
manual visual QC is subjective based on the level of sensitivity,
expertise, or even tolerance to fatigue of the QC expert, leading to
high inter-rater variability (Victoroff et al., 1994). This warrants
the need for automated QC methods, to limit the work of the
QC expert to the inspection of slices that have been flagged by an
automated algorithm. In this paper, we propose to design such an
automated QC method to detect a wide range of artifacts that may
occur individually or in combination, flagging affected slices for
subsequent inspection. This can be applied prior to processing,
as well as at any stage when the results of an analysis step need
to be tested. This will help the user determine the presence of an
artifact, and whether corrective steps need to be employed or the
slices need to be excluded.

Some form of QC is present in the different artifact correction
tools such as FSL EDDY (Andersson et al., 2016; Bastiani et al.,
2019), DTI studio (Jiang et al., 2006), DTIPrep (Oguz et al., 2014),
and TORTOISE (Pierpaoli et al., 2010). Such tools are usually
limited to detecting and correcting the specific artifact that they
have been designed for, mostly motion, and eddy current induced
distortions (Liu et al., 2015; Kelly et al., 2016; Iglesias et al., 2017;
Alfaro-Almagro et al., 2018; Graham et al., 2018). The results
of these correction packages also need subsequent inspection
to detect the presence of any remaining artifacts, making QC
essential before and after these correction methods. However,
these methods do not detect or correct for other prominent
artifacts like ghosting, herringbone, and chemical shifts, further
underlining the need for a comprehensive QC paradigm, outside
of these artifact correction packages.

While traditional feature-based machine learning methods
can be considered as a natural choice for training artifact
detection, these require careful feature selection, which can
present a challenge considering the variety of artifacts, and noise,
in dMRI data. This is further compounded by the fact that
the same artifact may present differently across scanners/sites,
making the feature-based learners’ site and scanner specific.
Human QC experts rely on the brain’s ability to identify
and integrate patterns specific to artifacts in dMRI data to
detect them. Deep learning tools, especially convolutional neural
networks (CNNs), that emulate human visual feature extraction
in an automated manner, can be a very powerful tool for training
an automated QC detector. The superior performance of CNN in
many computer vision tasks, and in medical imaging, motivated
us to use it to train an automated QC method for dMRI data.

In order to train a CNN that emulates human behavior, a
large set of parameters need to be optimized during the training
process, which in turn necessitates a high volume of training
data (slices with artifacts, and slices of good brain tissue), and
increased computational cost. Providing this huge volume of

data is a challenging task, especially in medical imaging. In
order to fulfill the requirement of a large amount of labeled data
for training a deep CNN, transfer learning (Mazurowski et al.,
2018) is used. Transfer learning involves taking a pre-trained
CNN and re-training a subset of its parameters using a smaller
amount of data to perform well on a new task (Mazurowski
et al., 2018). As a result of this vast reduction in the number of
parameters, transfer learning has the advantage of requiring less
training time and computational cost. Pre-trained models have
been applied successfully to various computer vision and medical
imaging tasks, such as breast cancer diagnosis in digital breast
tomosynthesis from mammography data (Samala et al., 2018a,b),
classification of radiographs to identify hip osteoarthritis (Xue
et al., 2017), or diagnosis of retinal diseases in retinal tomography
images (Rampasek and Goldenberg, 2018). As our sample size
was limited due to the difficulty of manual QC labeling of dMRI
data, we adopted a transfer learning approach in this paper.

A significant problem in artifact detection is that the same
artifact may present differently across sites and scanners. In order
to make the CNN insensitive to scanner and site differences, we
use manually labeled datasets from different sites and scanners.
In addition to this, we apply data augmentation techniques that
led to demonstrably improved results of CNN classifiers (Wang
and Perez, 2017). In this manner, classical image transformations,
including rotating, cropping, zooming, and shearing, are applied
on the original images to increase the heterogeneity of the sample,
by providing a simulated variation of the original data. In the
process, both heterogeneity and size of the sample are increased.

In summary, we present a CNN-based automated QC
paradigm, called QC-Automator, to detect various artifacts in
dMRI data, including motion, multiband interleaving, ghosting,
susceptibility, herringbone, and chemical shift. We will use
transfer learning and data augmentation. The method will be
trained and cross-validated on a large sample of expert-labeled
images that combine dMRI data from multiple scanners.

MATERIALS AND METHODS

Proposed method contains two CNN-based classifiers, one for
artifacts that manifest clearly in axial slices (e.g., ghosting), and
one for artifacts that manifest in sagittal slices (e.g., motion). An
input dMRI volume is converted into axial and sagittal slices and
the slices are sent to the axial or sagittal classifier correspondingly.
Finally, the slices in which artifacts are detected, by either of
the two classifiers described above, are flagged and a slice-wise
report is created.

We first describe the datasets that are used for training
and testing, and describe the different artifacts in the
section “Database for Training and Testing QC-Automator.”
QC-Automator is described next. The performance of a
number of different CNN architectures is compared for their
suitability to the problem of artifact detection and compared to
traditional machine learning approaches using texture features.
Additionally, we report the performance of the detectors on
data of different acquisition protocols, that are not a part of
the training set.
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Database for Training and Testing
QC-Automator
Our database for all the following experiments included data
from 155 unique subjects across 5 different scanners and dMRI
acquisition schemes. The details are reported in Table 1. The
ground truth labels in this paper were provided by manual visual
inspection. In order to reduce the manual labeling errors, QC was
done by two experts with 2–8 years of experience. The labels were
binarized, in order to create a classifier which categorizes images
as “artifact free” or “artifactual.”

The artifacts labeled from these datasets were divided
into six categories, motion, multiband interleaving, ghosting,
susceptibility, herringbone, and chemical shifts. These six
categories of artifacts manifested differently in the images; thus,
the QC experts inspected axial slices for herringbone, chemical
shift, susceptibility, and ghosting artifacts, while they inspected
sagittal slices for motion and multiband interleaving artifacts.

To exclude slices that capture the periphery of the brain which
contain mostly background voxels, we excluded sagittal slices
which were entirely outside of the brain and five sagittal slices
starting from the left and right edges of the brain. We excluded
five axial slices inferior to the superior surface of the skull, as
well as slices superior to the skull and inferior to the cerebellum,
as they represent non-brain tissue. Overall, ∼132,000 axial slices
and ∼200,000 sagittal slices were annotated as either artifactual
or artifact-free. Details are reported in Table 2. Figure 1 shows
representative examples of the artifacts that were annotated,
based on the view used.

Convolutional Neural Networks
An Overview
Convolutional neural networks are a special kind of artificial
neural network that are composed of a set of convolutional and
pooling layers in their architectures (Figure 2). Convolutional
layers are designed to detect certain local features throughout
the input image; they perform a convolution operation to the
input image and pass the result to the next layer, a pooling
layer, which reduces the dimensionality of the data by combining
the outputs of a set of neurons into a single one, via a
max or average operation. A sequence of convolutional and
pooling layers is followed by some successive fully connected
layers, in which all the neurons in a prior layer are connected
to all the neurons in the next layer. Finally, a softmax,
or regression layer, tags the data with the desired output
label (Krizhevsky et al., 2012).

Various CNN architectures have been proposed in the
literature. The VGG (Simonyan and Zisserman, 2014) networks,
along with the earlier AlexNet (Krizhevsky et al., 2012), are the
most basic architectures which follow the traditional layout of
CNNs as shown in Figure 2. ResNet (He et al., 2016), Inception
(Szegedy et al., 2015), and Xception (Chollet, 2017) are newer
architectures. While ResNet introduces residual networks that
make some connections between non-consecutive layers in very
deep networks, Inception uses a module that performs different
transformations over the same input in parallel and concatenates
their results. Xception, on the other hand, is based on separating
cross-channel and spatial correlations. Each of these architectures
convey their own unique advantages and pitfalls, warranting a
comparison of the performance of different CNN architectures.

Transfer Learning
To train CNNs, a large number of parameters need to
be optimized, which in turn requires a large amount of
computational power and labeled training data (in our case,
the database of artifactual and artifact-free slices). Manually
labeling data, however, are a time-consuming process, and
with the limited number of datasets in medical imaging,
it may not be possible to create a large and heterogeneous
enough database to train a CNN from scratch for a
given task. To overcome these issues, transfer learning
methods have been proposed in which, an existing CNN
network/architecture, pre-trained on a certain task, is adapted
to a new task and CNN parameters are adjusted for a few
layers of the network.

In general, the early layers of a CNN learn low-level features,
which are applicable to most computer vision tasks, while
the subsequent layers learn high-level features that are mostly
application-specific. Therefore, adjusting the last few layers of
an existing CNN architecture is usually sufficient for transfer
learning (Tajbakhsh et al., 2016).

The efficiency of the transfer learning method depends on the
similarity between the images of the database that the selected
CNN architecture was trained on, and the database that the CNN
is transferred to. Although the heterogeneity between the images
used in the pre-trained CNNs (see the section “An Overview”)
and medical imaging databases is considerable, an extensive
study on medical imaging data has demonstrated that adjusting
the parameters of an existing, pre-trained CNN, is as effective
as training a CNN from scratch while being more robust to
the size of training data (Tajbakhsh et al., 2016) and requiring
significantly less computational power.

TABLE 1 | The acquisition parameters across our datasets.

Datasets Number of
subjects

b-values (s/mm2) Number of repeated
acquisitions

Number of b = 0
images

Number of weighted
gradients

TR (ms) TE (ms)

Dataset-1 30 1000 2 1 32 8000 51

Dataset-2 32 1000 2 7 30 6500 84

Dataset-3 17 300, 800, 2000 1 9 108 4300 75

Dataset-4 31 1000 1 7 64 8100 82

Dataset-5 57 1000 1 1 30 11,000 76.4
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TABLE 2 | Distribution of different types of artifacts in our dataset.

Artifact type Slice view Total samples

Herringbone Axial 120

Chemical shift Axial 1054

Susceptibility Axial 442

Ghosting Axial 11,619

Motion Sagittal 21,436

Multiband interleaving Sagittal 4017

Total-artifact Axial 13,235

Total-artifact Sagittal 25,453

Total-artifact-free Axial 118,641

Total-artifact-free Sagittal 179,911

FIGURE 1 | Representative slices of the different artifacts that the
QC-Automator was trained to detect.

As providing the manual labels for dMRI data is a time
consuming and laborious task, our sample size was limited and
insufficient to train a CNN from scratch. In this paper, we used
transfer learning, to create QC-Automator, described in detail in
the following section.

Creation of QC-Automator
Figure 3 shows the pipeline of the proposed approach. The
artifacts detected by QC-Automator are motion, multiband
interleaving, ghosting, susceptibility, herringbone, and chemical
shifts. As different artifacts manifested more clearly either in the
axial or sagittal view, QC-Automator consisted of two detectors:
the “axial detector” which detected artifacts that presented
better axially (herringbone, chemical shift, susceptibility, and
ghosting) and the “sagittal detector” which detected artifacts
that presented in the sagittal plane (motion and multiband
interleaving artifacts).

For creating training samples, every dMRI volume was
converted to axial and sagittal slices, and was assigned manual
labels (see the section “Database for Training and Testing
QC-Automator” for details). The two detectors were fed a

new dMRI volume, in order to determine the slices that
manifest with artifacts.

Transfer Learning and Data Augmentation for
QC-Automator
In the proposed architecture, the detectors were CNN based and
applied transfer learning to adapt existing knowledge, obtained
from a large database of labeled training samples in other
domains, to our problem of artifact detection (see the section
“Transfer Learning” for details). The transfer learning process
consists of two main steps: selection of the pre-trained model,
and applying the pre-trained model to the new domain. To
select an optimal pre-trained model for our axial and sagittal
detectors, we compared the performance of four different pre-
trained CNN architectures namely, VGGNet, ResNet, Inception,
and Xception. These CNN architectures were pre-trained on
ImageNet (Russakovsky et al., 2015), which is the most popular
public dataset with a very large amount of labeled images across
various number of classes. This makes these architectures capable
of learning generic features from images, making them good
feature extractors for a variety of classification tasks.

To implement transfer learning, we removed the top layer of
a pre-trained CNN and replaced it with a fully connected layer
with 256 neurons, followed by a softmax layer which performs
the classification between two classes (artifact-present vs. artifact-
free). All parameters of CNN architectures were fixed except
those in the newly added layer, which were re-trained with the
augmented manually labeled artifactual and non-artifactual data
described above.

Data augmentation techniques are strategies that enable a
significant increase in the diversity and size of data available for
training, without collecting new data. They perform different
image transformations to provide a simulated variation of
the original data for training. We performed extensive data
augmentation of the manually labeled data by applying horizontal
and vertical translations, rotations, zooming, shearing, and
flipping of the original slices. This was undertaken to increase
the sample size of the labeled dataset, as well as to increase the
heterogeneity of the data.

Training QC-Automator
The two classifiers were trained using the first three datasets, by
passing axial and sagittal slices of the brain along with ground-
truth labels (artifactual, or artifact-free). For both classifiers, the
intensity values for each slice were normalized to have zero
center and unit variance as calculated by the value subtracted
by the mean and divided by the standard deviation. Training
was done for 20 epochs using the RMSprop optimizer with a
learning rate of 2 × 10−4 and a cross entropy loss function.
The network structure was implemented in Python, using Keras
with Tensorflow as the backend (Python 2.7, Keras 2.0.8,
Tensorflow 1.3.0).

Slice-Based and Volume-Based Reports
Quality control Automator was designed to produce a report of
the presence or lack of artifacts in individual slices in a diffusion-
weighted image. However, an alternate way of reporting such
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FIGURE 2 | A typical architecture of a CNN: A set of convolution and pooling layers with successive fully connected and softmax layer.

FIGURE 3 | Pipeline of the proposed approach for the QC-Automator: (Top) CNN pre-trained on ImageNet to obtain parameters used for transfer learning, where
the last layer of the network was re-trained with our dataset of manually labeled artifactual and artifact-free data. The process was replicated to create the axial
(Middle) and the sagittal detector (Bottom). The blue box represents the QC-Automator. Given an input image (Left), both the axial and sagittal detectors are
applied to it and the status of each slice as artifact-free or artifactual is predicted.

information is based on the presence or absence of artifacts in
an entire volume. To this end, we used a slice-count threshold
to label a volume as “artifactual.” If QC-Automator found that
a given volume contained more artifactual slices than the slice-
count threshold, it would flag this volume as artifactual. While
choosing low values of slice-count threshold could lead to over

detection, choosing high values for threshold could lead to higher
chances of missing artifacts by not flagging a volume. We chose
different slice-count values for the threshold from 1 to 10 in order
to find an optimal threshold.

To summarize the pipeline of the QC-Automator, an input
dMRI volume was sliced axially and sagittally, and the respective
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slices were sent to the axial classifier, or the sagittal classifier. The
presence of an artifact was detected by either of the two classifiers,
and the artifactual slices were flagged in a slice-wise report.

Evaluating the Performance of
QC-Automator
The following measures were used to evaluate the performance
of QC-Automator:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

where true positive (TP) represents the number of cases
correctly recognized as artifactual, false positive (FP) represents
the number of cases incorrectly recognized as artifactual,
true negative (TN) represents the number of cases correctly
recognized as artifact-free and false negative (FN) represents the
number of cases incorrectly recognized as artifact-free.

Comparing CNN Architectures to Traditional Methods
The performance of the four different architectures (VGGNet,
ResNet, Inception, and Xception) was evaluated on the first three
datasets in a fivefold cross-validation setting. The slices from the
first three datasets were shuffled and randomly partitioned into
five equally sized subsamples. For each run, a single subsample
was retained as test data, while the remaining four subsamples
were used as training data, and this process was repeated for all
five subsamples. This cross-validation process was run on the
“axial” and “sagittal” detectors separately.

We compared our approach with three traditional feature
extraction and learning methods: Gabor features, Zernike
moments, and local binary patterns. Gabor features are
constructed from the responses of applying Gabor filters made
on several frequencies (scales) and orientations (Manjunath and
Ma, 1996). We applied Gabor filters with four directions and four
scales. Zernike moments are a global image feature constructed
by projecting the image onto Zernike Polynomials, which are
a set of orthogonal basis functions mapped to the unit circle
in different orders and repetitions (Khotanzad and Hong, 1990;
Revaud et al., 2009). We applied Zernike moments with order
4 and repetition 2. Local binary patterns are a non-parametric
method to detect local structures of images by comparing each
pixel with its neighboring pixels (Ojala et al., 2002; Huang et al.,
2011). We applied the aforementioned features in combination
with random forest classifiers using the same cross-validation
scheme described above.

In order to investigate the CNN classifiers and the traditional
filters individually, we designed two more experiments. In the
first experiment, the outputs of Gabor filters on images were
fed into a fully connected layer with 256 neurons followed by
a dropout and a softmax layer. In the second experiment, we
applied principal component analysis (PCA) on the output of
final convolutional layer of the CNN. We kept enough principal

components to cover 98% of the variation in the data, and fed
them into an SVM classifier.

Evaluating Performance on New Datasets
We performed the following experiments to evaluate whether
the artifact detection is replicable to other dMRI datasets with
different acquisition protocols. We tested the applicability of the
QC-Automator on two new datasets, Dataset 4 and Dataset 5
(details are in Table 1). These datasets contained a variety of
artifacts, encompassing all those that the detector was trained
to detect, but were acquired with different scanning parameters.
The training was done using the first three datasets, while
the performance was evaluated using data from the fourth
and fifth datasets.

In addition, we investigated whether generalizability in
performance across datasets was improved by retraining QC-
Automator after adding a small subsample (10%) of the new
datasets to the training set, to see if incorporating samples could
improve the accuracy, precision, and recall of the classifier versus
application to a hitherto unseen dataset. We performed two
different experiments by adding data from Dataset 4 and Dataset
5 to the original training set, separately.

RESULTS

Comparison Across CNN Architectures
and Traditional Methods
Tables 3, 4 show the performance of our artifact detection
method, using different architectures. As VGGNet outperformed
other architectures, it was selected as the architecture of choice for
QC-Automator. Using VGGNet, we obtained 98% accuracy for
all artifacts in both the axial and sagittal detectors. Precision and
recall values are reported accordingly. Representative instances
of the true and false detections for QC-Automator are shown
in Figures 4, 5.

Tables 5, 6 compare our method with traditional pattern
recognition approaches including Gabor filters, Zernike
moments, and local binary patterns in combination with
random forest classifiers. As seen, VGGNet outperformed the
traditional methods. Table 7 shows the result of applying Gabor
filters to a fully connected layer and Table 8 shows the results
of performing SVM on top of VGGNet final convolutional
layer features after PCA. Although Gabor filters and SVM
classifiers could achieve high accuracy (87 and 91% for axial
detector), the value of precision and recall was poor compared
to our method using CNNs, showing that our transfer learning
approach outperformed traditional SVM classifiers and Gabor
filters for this task.

Volume-wise results for VGGNet are reported in Tables 9,
10. As seen, we obtained 96% accuracy for our axial detector
at a slice-count threshold of three slices, and 98% accuracy for
our sagittal detector at a slice-count threshold of seven slices.
Correspondingly, recall values were 98 and 95% for the volume-
wise axial and sagittal detectors. This means we only missed 2%
of volumes that contain artifacts manifesting in axial view and 5%
of sagittal ones.
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TABLE 3 | The result of different CNN architectures in detecting artifact type 1
(Axial Detector).

Accuracy Precision Recall

VGG 16 0.98 0.97 0.91

Resnet 50 0.89 0.82 065

Inception V3 0.96 0.89 0.82

Xception 0.96 0.88 0.82

TABLE 4 | The result of different CNN architectures in detecting artifact type 2
(Sagittal Detector).

Accuracy Precision Recall

VGG 16 0.98 0.92 0.91

Resnet 50 0.98 0.91 0.78

Inception V3 0.98 0.90 0.67

Xception 0.99 0.92 0.82

FIGURE 4 | Results of Axial Detector: Representative slices of correctly and
incorrectly classified slices are presented.

Performance on New Datasets
These experiments were undertaken in order to evaluate whether
the artifact detection is replicable to other datasets acquired
through different imaging protocols. The detectors were trained
on the first three datasets and tested on the fourth and fifth
datasets. Their performance is reported in Tables 11, 12. For
Dataset 4, the accuracy of detecting artifacts through the axial
detector decreased by 7% comparing to the previous results in
Table 3. There was also a 14% decrease in the accuracy of the
sagittal artifact detector, compared to Table 4. For Dataset 5, the
value of accuracy dropped by 7 and 11% for the axial and sagittal
detectors, respectively.

In order to see if these results could be improved, we evaluated
the results of adding a small percentage of the new datasets to
the original training data, to acclimatize the deep learner to new
scanning parameters. We added a small subset (10% of each
whole dataset) from the fourth and fifth datasets to the original
training set, the results of which are displayed in Tables 13, 14.
It can be seen that we attained a higher accuracy, recall, and

FIGURE 5 | Results of Sagittal Detector Representative slices of correctly and
incorrectly classified artifactual slices.

TABLE 5 | Results of different texture features in detecting artifact type 1
(Axial Detector).

Accuracy Precision Recall

Gabor 32 0.91 0.89 0.87

Zernike moments 0.87 0.58 0.19

Local binary patterns 0.83 0.85 0.12

TABLE 6 | Results of different texture features in detecting artifact type 2
(Sagittal Detector).

Accuracy Precision Recall

Gabor 32 0.98 0.96 0.48

Zernike moments 0.97 0.45 0.55

Local binary patterns 0.97 0.40 0.52

TABLE 7 | The result of Gabor filter combined with fully connected layers.

Gabor filters – fully connected Accuracy Precision Recall

Axial detector 0.87 0.37 0.35

Sagittal detector 0.90 0.30 0.46

TABLE 8 | The result of feeding CNN features to support vector machines.

CNN–SVM Accuracy Precision Recall

Axial detector 0.91 0.94 0.85

Sagittal detector 0.87 0.93 086

precision than those of the previous experiment (Tables 11, 12).
Results were in the range of 90% recall for both new datasets,
demonstrating that we missed <10% of artifacts. We provided
an example of a FP case for this experiment in Figure 6.
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TABLE 9 | QC-Automator volume-wise result – Axial Detector.

Threshold Accuracy Precision Recall

Threshold = 1 0.92 0.86 0.99

Threshold = 3 0.96 0.94 0.98

Threshold = 5 0.94 0.97 0.90

Threshold = 7 0.0.87 0.97 0.74

Threshold = 10 0.84 0.69 0.67

TABLE 10 | QC-Automator volume-wise result – Sagittal Detector.

Threshold Accuracy Precision Recall

Threshold = 1 0.74 0.64 0.97

Threshold = 3 0.90 0.79 0.96

Threshold = 5 0.97 0.87 0.95

Threshold = 7 0.98 0.94 0.95

Threshold = 10 0.98 0.97 0.95

TABLE 11 | Results of applying the QC-Automator to the fourth dataset.

Accuracy Precision Recall

Artifact type-1 axial 0.91 0.75 0.81

Artifact type-2 sagittal 0.84 0.70 0.79

TABLE 12 | Results of applying the QC-Automator to the fifth dataset.

Accuracy Precision Recall

Artifact type-1 axial 0.91 0.91 0.71

Artifact type-2 sagittal 0.87 0.75 0.69

TABLE 13 | Results of applying the QC-Automator on the fourth dataset, after
adding small subsample (10%) data from the fourth dataset to the training set.

Accuracy Precision Recall

Artifact type-1 axial 0.94 0.87 0.91

Artifact type-2 sagittal 0.95 0.84 0.90

TABLE 14 | Results of applying the QC-Automator on the fifth dataset, after
adding small subsample (10%) from the fifth dataset to the training set.

Accuracy Precision Recall

Artifact type-1 axial 0.89 0.82 0.91

Artifact type-2 sagittal 0.94 0.84 0.94

DISCUSSION

In this paper, we created an automated QC method, QC-
Automator, using CNN and transfer learning, via data
augmentation on a manually labeled dataset encompassing
several scanners and dMRI acquisition parameters. We
demonstrated the ability of QC-Automator to distinguish
between artifactual slices from artifact-free ones, as well as its
performance across different acquisitions from multiple sites.
Given a diffusion MRI volume, the QC-Automator was able to
flag slices based on the presence of several artifacts, including
motion, multiband interleaving, ghosting, susceptibility,

FIGURE 6 | A sample of false positive slice for Dataset 4: The slice contains
aliasing artifact. Our expert labeled it as artifact-free one. But our
QC-Automator caught it as it contained a similar pattern to ghosting artifact.

herringbone, and chemical shift. The flagged slices can be
manually inspected to determine if the corresponding volume
would be safe to use for further analysis for a given study.

The QC-Automator consisted of two classifiers: one for all
artifacts that manifest in the axial view (namely herringbone,
chemical shift, susceptibility, and ghosting), and one for artifacts
that manifest in the sagittal view (namely motion and multiband
interleaving). For both the classifiers, VGGNet performed better
than Inception, ResNet, and Xception, based on the comparison
of transfer learning results for various architectures (Tables 3,
4). This might be because of the uniform structure of VGGNet,
which uses consecutive layers of 3 × 3 filters and max
pooling, with each successive layer detecting features at a more
abstract, semantic level than the layer before. Residual networks
introduce connections between layers at different resolutions,
which results in a jump in the semantic abstraction. Inception and
Xception networks compute and concatenate multiple different
transformations over the same input. These architectures are
more complex and did not perform as well on our data.

The representative slices in Figures 4, 5 demonstrate that
our method correctly classified artifacts in different slices of
the brain. Despite having correctly classified most artifacts, the
QC-Automator also incorrectly flagged some artifactual slices
as artifact-free, and we inspected some of these examples. We
hypothesize that the FN case for ghosting (Figure 4) happened
because the pattern of ghosting was particularly faint in this
specific slice. For herringbone, chemical shift, and susceptibility
artifacts, our classifier successfully labeled multiple slices of the
given volume as artifactual, but sometimes failed to label slices
where the artifact was less prominent (Figure 4). Thus, although
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our classifier failed to correctly label some artifactual slices,
it was able to capture adjacent slices where the artifact was
more prominent. As the pattern of artifact is more visible in
susceptibility, herringbone, and chemical shift, we believe we can
get better performance by adding more training data for other
artifacts in the future.

The transfer-learning-based approach presented in this paper
performed better than Gabor filters, Zernike moments, and local
binary patterns in combination with random forest classifiers
(Tables 5, 6). Gabor filters performed better than Zernike
moments and local binary patterns. The fact that Gabor filters
analyze the presence of specific frequencies in specific directions
of localized regions in the input image might explain this result.
These specific frequencies can capture the edge patterns in
motion and multi-band interleaving, the checkerboard pattern
in herringbone and chemical shift, and the curves visible in the
background of ghosting artifacts. While Gabor filters had the
best performance of the three, the precision and recall were still
poor compared to VGGNet. Zernike and local binary patterns on
the other hand look for patterns of intensity. This is enough for
detecting high intensities but fail to find patterns of edges and
curves. However, the performance of these methods is bound
to the quality of the features, which need human experts to
hand-craft them manually. The fact that the Gabor features did
well lends support to the notion that most of our features were
discriminated in the early layers of the CNN, and thus the transfer
learning approach, which consists of adjusting only last layer,
performed well. The proposed approach also performed better
than Gabor filters in combination with fully connected layer
neural networks (Table 7) and it performed better than Support
Vector Machine classifiers (Table 8). This indicates that VGGNet
is a good choice both as a feature extractor and as a classifier.

As an alternative to the slice-wise report, we also measured the
performance of QC-Automator when reporting the presence of
artifact in an entire volume (Tables 9, 10). This way of reporting
is easier for the human analyst to interpret, than a flat list of bad
slices. In this manner, a volume was labeled as artifactual if it
has more artifactual slices than a certain threshold. For the axial
detector, we observed 99% recall with a lower threshold, meaning
we detected 99% of volumes containing artifacts. However, the
precision was 86% at this point, implying that we over-detected
in 14% of cases. As we increased the threshold, the precision
improved and the recall decreased as the detector missed some
artifactual volumes. Optimal results appeared at threshold of
three slices, with precision of 95% and recall of 98%. For our
sagittal detector, however, the optimal threshold was higher.
We got 97% recall at slice-count threshold of one slice, while
precision was poor at this point (64%). As we increased the
threshold, precision improved and recall dropped. The optimal
point was at a slice-count threshold of 10 slices, as it had
the highest values of recall and precision. This difference in
the optimal thresholds between the detectors might be because of
the nature of motion artifacts, which are generally visible in more
than one sagittal slices in a volume. Overall, with the thresholds
of 3 and 10 for axial and sagittal detector, respectively, QC-
Automator only missed 2% of artifactual volumes which contain
artifact in axial view and 5% of volumes with artifact present in

sagittal view. However, these thresholds might not be ideal for
all cases. Data analysts are encouraged to use their own slice-
count thresholds for flagging volumes based on the data quality
requirement of their given study.

Furthermore, the framework was tested on how well it
performs on acquisitions from different scanners. Evaluation was
performed by training on three datasets and testing on the two
remaining datasets, which had different acquisition parameters
compared to the three training datasets. The corresponding
results for Datasets 4 and 5 are shown in Tables 11, 12. It
indicates that, we could achieve high accuracy (90% approximate
average), however, the values of precision and recall decreased.
To inspect the decrease in precision and recall, we added small
subsample of the fourth and fifth datasets to the training set
which covers 10% of the dataset (see the section “Performance on
New Datasets”). In this experiment, we achieved higher accuracy,
close to the intra-dataset experiment (Tables 3, 4). The value of
precision and recall also increased substantially for both detectors
in both datasets (∼10% for Dataset 4 and 20% for Dataset 5).
This suggests that adding a small subsample of the new datasets
to the original training set could decrease the false detection. As
seen, in this experiment we achieved a higher value of recall,
around 90% for both datasets, showing that QC-Automator had
low chance of missing an artifact, while staying in the range of
85% for precision. This indicates that there were some artifact-
free slices that are detected as artifactual representing that our
method over-detected in some cases. However, considering the
nature and purpose of QC, a FP is favorable to FN, as we
do not want to miss an artifact. To summarize, by adding a
subsample of the new datasets to the original training set, a drastic
increase in recall was observed, giving us reason to believe that
the classifier could be gradually improved to reach the same level
of precision and recall as that of the intra-dataset experiment.
This means that with a little effort we can apply our classifier
to a new dataset.

Moreover, we inspected the FPs of the cross-dataset
experiment which uncovered another potential cause of FP;
an error in labeling of the data. As it can be seen in Figure 6,
there was an aliasing artifact inside the slice, despite the fact that
our QC expert had labeled that slice as artifact-free. However,
our classifier detected them as artifactual slices possibly due to
the fact that this slice had similar patterns to the ghosting artifact.
The fact that QC-Automator was able to detect such artifacts,
despite potential mislabeling in the training dataset, indicates the
high performance of the detectors.

Comprehensively, QC-Automator is able to detect artifacts
in a fraction of time comparing to manual labeling, which is
more prone to errors introduced by subjectivity and fatigue on
part of the data analyst. Considering the constantly increasing
size of datasets, we believe that this contribution is a valuable
framework, and can save a tremendous amount of time and effort.
QC Automator is the first tool that can detect the wide range of
artifacts presented in this paper.

With respect to the practical usage of QC-Automator, a few
specifics need to be highlighted. QC-Automator is trained to
detect the presence of artifacts, by performing slice-wise detection
in both the axial, and sagittal planes, and does not alter or

Frontiers in Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 1456

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01456 January 16, 2020 Time: 16:5 # 10

Samani et al. QC-Automator: Quality Control for dMRI

correct the data in any way. It creates a report, documenting
the slice-wise presence of artifacts, that an analyst can use to
zone in on scans that need inspection. Alternatively, a user can
set slice-count thresholds, to create a report that flags volumes
instead of individual slices as described in the section “Slice-
Based and Volume-Based Reports.” This reduces the number
of images that an analyst needs to go through, to capture most
of the artifacts present in a dataset. As an example, for manual
QC, our analysts reported spending a total of 69.38 h, to inspect
4163 volumes, finding 557 volumes with axial artifacts and 138
volumes with sagittal artifacts. Comparing manual QC with our
method (Tables 9, 10), at T = 3 axial threshold, we note a FN
rate of 2%. If the data analyst decides to go through the flagged
volumes reported at this threshold, this leads to a reduction of
volumes to be inspected by 86.05%. Similarly, at T = 10 sagittal
threshold, we note a FN rate of 5%, coupled with a 96.75%
decrease in the number of volumes that analyst has to go through.
QC-Automator is meant to be used as a tool for speedy and
reliable detection of artifacts in large datasets where manual QC
is extremely time-consuming.

Despite the impressive results of QC Automator, there is
still room for improvement, such as by adding more training
data. We trained our classifier on three datasets acquired on
different scanners with varying fields of view and gradient
sampling schemes and tested our classifier on two other datasets,
again of different acquisition sequences. We observed a high
accuracy in our cross-dataset experiment; however, there was a
decrease in the precision and recall implying higher rates of false
detection. We believe that this issue can be solved by adding small
subsamples of the target dataset so the training set so classifier can
gradually get improved over-time with seeing more data.

Quality control Automator was trained to detect artifacts
across multiple datasets with varying acquisition parameters and
it was trained and tested on brain images of healthy participants.
Efficacy of QC-Automator was not tested in the presence of signs
of pathology such as brain tumors or micro-bleeds. Additionally,
future automated artifact detection methods would do well to test
the efficacy of their algorithms in detecting artifacts on poorly
acquired scans, such as those with a partial field of view.

The ground truth labels in this paper were provided manually.
Artifacts manifest differently in different slices, from very subtle
to clearly visible patterns. The subjectivity of manual visual
inspection in our case was lowered by labeling using two experts,
with varying degrees of expertise. The labels were binarized into
two classes to create a classifier to categorize images as “artifact-
free” or “artifactual.” If an objective “artifact severity” threshold
can be determined through characterization of artifacts, it might
provide a better alternative to the use of binary labels.

Overall, the QC-Automator can gain from large training
samples, limited by the effort and quality of manually labeling

data on different artifacts. Given the recent progress in deep
networks, and further advances in GPU hardware, the accuracy
of convolutional neural nets is expected to further improve in the
future. That provides the potential for better QC tools.

CONCLUSION

In summary, QC-Automator is a deep learning-based method
for QC of diffusion MRI data that are able to detect a variety
of artifacts. QC is a well-suited task for CNNs. The difficulty
in obtaining huge amounts of expert-labeled dMRI data to
train a CNN is alleviated by using transfer learning, and
data augmentation. The proposed approach achieves superior
performance with respect to pattern recognition methods and
is considerably faster and less computationally expensive in
comparison to purely learning-based approaches with neural
networks. We demonstrated that our method achieves high
accuracy and generalizes well to other datasets, different from
those used for training. This artifact detector enhances analyses of
dMRI data by flagging artifactual slices. This substantially reduces
the effort and time of human experts and allows for an almost
instantaneous access to clean dMRI data.
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