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Abstract

The growth of administrative data made available publicly, often in near-real time, offers

new opportunities for monitoring conditions that impact community health. Urban blight—

manifestations of adverse social processes in the urban environment, including physical dis-

order, decay, and loss of anchor institutions—comprises many conditions considered to

negatively affect the health of communities. However, measurement strategies for urban

blight have been complicated by lack of uniform data, often requiring expensive street audits

or the use of proxy measures that cannot represent the multifaceted nature of blight. This

paper evaluates how publicly available data from New York City’s 311-call system can be

used in a natural language processing approach to represent urban blight across the city

with greater geographic and temporal precision. We found that our urban blight algorithm,

which includes counts of keywords (‘tokens’), resulted in sensitivity ~90% and specificity

between 55% and 76%, depending on other covariates in the model. The percent of 311

calls that were ‘blight related’ at the census tract level were correlated with the most com-

mon proxy measure for blight: short, medium, and long-term vacancy rates for commercial

and residential buildings. We found the strongest association with long-term (>1 year) com-

mercial vacancies (Pearson’s correlation coefficient = 0.16, p < 0.001). Our findings indicate

the need of further validation, as well as testing algorithms that disambiguate the different

facets of urban blight. These facets include physical disorder (e.g., litter, overgrown lawns,

or graffiti) and decay (e.g., vacant or abandoned lots or sidewalks in disrepair) that are mani-

festations of social processes such as (loss of) neighborhood cohesion, social control, col-

lective efficacy, and anchor institutions. More refined measures of urban blight would allow

for better targeted remediation efforts and improved community health.

Introduction

Public health concerns have contributed to key urban planning strategies since the late 19th

century, where reforms in sanitation, the introduction of zoning, and land use regulation were

a means of acknowledging the health risks of exposure to contaminated air and water [1,2].
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Such planning tools were also intended to address social ills, as residential overcrowding and

limited access to green space were considered to be risks to psychological and ‘moral’ well-

being [2,3,4]. The changes sought were specifically targeted to the built environment, best sum-

marized as ‘. . . all of the physical parts of where we live and work (e.g., homes, buildings,

streets, open spaces, and infrastructure)’ [3].

The prominence of the built environment as a determinant of population health rose again

in the late twentieth and early twenty-first centuries, with significant research outlining its

impacts on chronic disease, mental health, and injuries [4]. Starting in the mid-twentieth cen-

tury, the concept of ‘urban blight’ emerged to reflect physical, economic, and social decline of

neighborhoods [5]. For the purpose of this research, urban blight is considered as physical dis-

order (e.g., litter, overgrown lawns, or graffiti) and decay (e.g., abandoned lots or sidewalks in

disrepair) that are manifestations of social processes such as (loss of) neighborhood cohesion,

social control, collective efficacy, and anchor institutions. Whereas many aspects of urban

planning and the built environment (such as street grids, capital investments in utilities and

other infrastructure), and development of housing stock are either fixed or could only be

changed with long-term interventions, the physical decay and disorder that comprise urban

blight can be addressed over relatively short time periods.

Standard approaches to measuring blight with secondary data sets include measures of

physical decay, such as vacant commercial property, vacant housing units, and vacant lots

within a neighborhood [6,7]. Other researchers have looked at measures of physical disorder,

otherwise considered neighborhood quality measures, such as mown lawns, litter and debris,

delinquent vehicles, and presence/absence of graffiti [6,8]. These quality-related indicators are

more difficult to capture, often requiring street audits in person or virtually, using Google

Street View [9,10]. Finally, given that blight is considered a physical manifestation of poor

social cohesion, a third dimension of blight includes social and economic investment, which

can be evaluated through measures such as perceptions of safety, presence of anchor institu-

tions, and community organizing efforts [11].

The body of literature linking urban blight to community health is constrained due to dif-

fering definitions of blight and the availability of secondary data sources for operationalizing

that definition. As outlined in Maghelal et al., measures such as vacancy rates or tax delin-

quency rates assess only one facet of blight, whereas other measures—including income, sin-

gle-parent households, or racial/ethnic composition—are used to proxy for urban blight

[12,5]. These proxies are problematic because they rely on correlations between social disad-

vantage and physical environment characteristics but overlook the systemic causes of both.

The association between built environment features and health behaviors, biomarkers

indicative of chronic disease, and health outcomes has been well documented [12–16]. In par-

ticular, quality of the built environment—including tree cover and green space, park ameni-

ties, sidewalk coverage and maintenance, and presence/absence of environmental toxins (air

pollution, lead and other heavy metals in the soil)—are associated with community health.

Though the literature specific to urban blight and public health outcomes is less developed,

there is strong evidence that urban blight is specifically associated with higher violent crime

and gun crime [5], poor mental health [17,18], and even adverse pregnancy outcomes [19].

Experimental research on the causal relationships between urban blight/blight remediation

(specifically urban greening efforts) and (1) biomarkers and (2) mental health demonstrates

significant improvements on heart rate and depression measures [18, 20]. These improve-

ments were evident in both high- and low-poverty census tracts.

The municipal 311 data systems that started first in Baltimore, MD (1997) and were intro-

duced to New York City in 2003, could serve as a source of information that addresses the pau-

city of secondary data for a uniform evaluation of urban blight across a municipality [21]. The
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311 data system is designed to log non-urgent calls to municipal agencies regarding anything

from requests for information on municipal services and benefits enrollment, to reporting a

housing violation or making a noise complaint. These data are updated daily, and include geo-

location (latitude and longitude), responsible agency, category of complaint, and free text

description of the call. Given the volume of data (~3 million calls annually in New York City),

and the noise inherent in the data, 311 data analysis requires a ‘big data’ approach. The free

text nature of call descriptions suggests applying natural language processing to identify key

words or strings predictive of urban blight.

Objectives

This research effort aims to evaluate how regularly updated administrative data, namely the

311-call system data, can be used to represent urban blight at fine-grained geographies and, to

a more modest extent, time periods. We apply a natural language processing approach to

develop an algorithm to identify urban blight-related calls in the 311 data system and explore

their distribution across New York City. These results are compared to American Community

Survey residential vacancy data and HUD USPS vacancy rates for commercial and residential

buildings. These indicators are commonly used proxies for assessing urban blight [5, 17]. An

advantage of a 311-based measure of blight is that it provides finer-grained geographic and

temporal data. Although not fully developed in this analysis, the 311 data has the potential to

disambiguate different types of blight (i.e., decay, disorder, and social/economic investment).

Having more refined measures of blight could also allow for better targeted blight remediation

efforts. Future work will explore the relationship between a finalized measure of urban blight

drawn from 311 calls and community health conditions.

Data and methods

Data

New York City 311 Service Requests were the primary data source for algorithm development.

Six months of data (January 1, 2018–June 30, 2018), comprising 1.3 million records, were

pulled from New York City’s Open Data Portal directly into RStudio (v. 3.5.1) using the ‘RSo-

crata’ library [22–24]. Supplemental data on census tract-level population, residential vacan-

cies, and median home value were drawn from the American Community Survey (ACS)

5-Year Estimates, 2013–2017, table DP04 [25]. As with 311 call data, these data were called

into RStudio with the ‘ACS’ library [26]. Data on short- and long-term residential and com-

mercial vacancies originated from the Residential and Commercial Vacancy data set from the

US Postal Service and Department of Housing and Urban Development for the first quarter of

2018 [27].

Methods

Following standard practice for Natural Language Processing (NLP), we followed a four-step

process: (1) data training, (2) cleaning and tokenization, (3) classification, and (4) validation

[28].

Training the data requires the manual designation of a random sample of calls to an urban

blight versus a non-urban blight category. We established seven domains of urban blight based

on extant literature to guide our data training: social conditions, abandoned property, air qual-

ity, street/sidewalk maintenance, noise, sanitary conditions, and building safety. Coding any

call into one of these categories signifies the call is urban blight-related. Domains were

assigned based on complaint types and free-text call descriptions in the 311 data. Complaint
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type is a variable designated by the City of New York and included as part of the 311 system

data, which comprises 236 complaint types. We focused on ‘high frequency’ complaints

(� 1,000 records) to simplify the training process. The high frequency list included 93 com-

plaint types.

We selected half of the call records (~650,000) as the training data set using simple random

sampling. Two raters reviewed a 10% sample of data to assign complaint types (N = 93) to one

of the urban blight domains (N = 7) or to a non-urban blight-related category. Consistency in

coding was evaluated using Cohen’s Kappa statistic, which adjusts for the probability that rat-

ers will agree by chance.

After data training, we cleaned the call description text field to address misspelling and to

standardize text formatting. String variables were then separated into ‘tokens’ or unique words

or strings that comprise text data. Common tokens such as articles or prepositions were omit-

ted from analysis. Of the remaining tokens, we calculated the percent that appeared exclusively

in ‘blight’ calls and those that were unique to ‘non-blight’ calls. Ultimately, only tokens that

appeared in urban blight-related calls were used in the following stage of analysis.

For data classification, we used a logistic regression model on a 50% sample of the trained

data (~325,000 records) to determine how effective the blight-related tokens are at identifying

a blight-related call. A token or series of tokens can be used as predictors in the regression

model. In order to have parsimonious models, we calculated the total of blight-related tokens

that appeared in each record and used this count as the primary predictor of urban blight (0/1)

in our logistic regressions.

Our first model was a basic model predicting urban blight, with the unique blight-related

token count as the only independent variable (Eq 1). In the second model, we included a cate-

gorical variable for borough as an independent variable (Eq 2). Finally, our third model

included the variable for borough as well as a variable for the agency assigned responsibility

for the 311 call. As with borough, agency was coded as a categorical variable with 15 levels (Eq

3). Responsible agencies included departments of sanitation, police, finance, health and mental

hygiene, and consumer affairs, among others (See Table 3 for a full list of agencies).

logitðyiÞ ¼ b0 þ b1ðunique token countiÞ þ εi Eq 1

logitðyiÞ ¼ b0 þ b1ðunique token countiÞ þ b2ðboroughiÞ þ εi Eq 2

logitðyiÞ ¼ b0 þ b1ðunique token countiÞ þ b2ðboroughiÞ þ b3ðagencyiÞ þ εi Eq 3

Urban blight (yi) is a binary variable indicating whether a call is considered blight-related.

“Unique token count” represents the number of unique keywords related to blight that appear

in any text field within the 311 data. These keywords were those identified as urban related

during the data training step. “Borough” is a 5-level factor variable representing Bronx, Brook-

lyn, Manhattan, Queens, and Staten Island. Bronx serves as the reference category. “Agency” is

the agency assigned responsibility for addressing the 311 call. The reference category is

unassigned.

The coefficients from each of these three models were used to predict the probability that a

call was urban blight-related for the balance of the training data (i.e. categorized data not used

in regression models). We used confusion matrices to evaluate how well each model predicted

whether a call represented urban blight, calculating accuracy (ACC), positive predictive values

(PPV), and negative predictive values (NPV) (Table 1).

As a first effort to validate our results, we calculated correlations between census tract-level

measures of housing vacancies from the American Community Survey and blight-related calls,
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both as count variables and expressed as percentages. Similarly, we calculated correlations

between blight-related calls (%) with percent of residential and commercial addresses consid-

ered long (>12 months), medium (6–12 months), and short-term (< 6 months) vacancies

from the USPS/HUD data set.

Results

Of the 1.3 million call records across 236 complaint types, we identified 93 ‘high frequency’

types (� 1,000 records) that comprised 98% of all calls over the 6-month time frame (Table 2).

After parallel coding of a sample of the data, in which raters assigned a call to one of the seven

urban blight domains (social conditions, abandoned property, air quality, street/sidewalk

maintenance, noise, sanitary conditions, building safety) or ‘not urban blight related,’ we cal-

culated Cohen’s Kappa statistic for categorical outcomes [29]. The resulting value, κ = 0.81,

indicated high values of agreement between raters.

The next stage, text cleaning and tokenization, resulted in 1,113 unique words (tokens) that

were represented in the call description field. Of these, 46% (516) appeared exclusively in

‘blight’ calls and 37% (415) appeared only in ‘non-blight’ calls. The remaining 17% (182) were

found in both blight and non-blight records. Of the 182 tokens that appeared in both ‘blight’

and ‘non-blight’ calls, many appeared in roughly the same proportion in both categories, so we

chose to restrict our analysis to the 46% of tokens found exclusively in blight-related calls.

Using this list of 516 tokens, we calculated the count of unique blight-related terms in each

record (mean 7.08, SD 4.4; min/max 0–22) to use as predictor variable for the probability that

a call was related to urban blight. The count of unique tokens was a significant predictor of

blight-related calls when used as a single predictor (~ 0.37 [0.002], p < 0.0001), combined with

borough (~ 0.37 [0.002], p< 0.0001), and when combined with borough and responsible

agency (~ 0.38 [0.002], p< 0.0001) (see Table 3 for all coefficient statistics in each model).

Table 1. Sensitivity, specificity, and accuracy of urban blight algorithm.

Model 1

Urban blight = 1 Urban blight = 0 PPV (Sensitivity) 91%

Pred(Urban blight = 1) 210,413 43,701 NPV (Specificity) 55%

Pred(Urban blight = 0) 20,718 54,211 ACC (Accuracy) 80%

Model 2

Urban blight = 1 Urban blight = 0 PPV (Sensitivity) 90%

Pred(Urban blight = 1) 208,947 42,172 NPV (Specificity) 57%

Pred(Urban blight = 0) 22,184 55,740 ACC (Accuracy) 80%

Model 3

Urban blight = 1 Urban blight = 0 PPV (Sensitivity) 90%

Pred(Urban blight = 1) 208,213 23,884 NPV (Specificity) 76%

Pred(Urban blight = 0) 22,918 74,028 ACC (Accuracy) 86%

https://doi.org/10.1371/journal.pone.0235227.t001

Table 2. Summary of 311 call data.

Total calls, January 1-June 30, 2018 1,344,402

Total complaint types 236

Complaint types with� 1,000 complaints (‘high frequency’) 93

Percent of complaints in ‘high frequency’ category 98.0%

Total complaint types considered ‘urban blight’ 55

https://doi.org/10.1371/journal.pone.0235227.t002
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The coefficients for each of the three models were used to predict the probability that a call

was blight-related in sample of the data not used in modeling. The predicted values from each

model were used to calculate ACC, PPV, and NPV. All models displayed similar PPV levels

(90% - 91%); however, model 3 resulted in the best NPV (76%) and ACC (86%) (Table 1).

Model 3 coefficients were then applied to the full data set to calculate and map the predicted

percentage of calls that were blight-related by census tract (Fig 1). We found that blight-related

calls were concentrated in upper Manhattan, specifically Harlem and the Upper West Side,

and the Bronx, which is just north of Manhattan (Example 1A), with some areas of concentra-

tion in central Brooklyn—Bedford-Stuyvesant, Crown Heights, Flatbush, and Brownsville

(Example 1B). These areas of the city are historically among the most economically distressed,

but also observing rapid gentrification. The lowest proportion of calls were observed in the

Bay Ridge and Bensonhurst neighborhoods in the southwest of Brooklyn (Example 2A), and

in Ridgewood, Middle Village, and Forest Hills in central Queens (Example 2B). These areas

in Brooklyn and Queens are highly residential communities with a more pronounced subur-

ban character.

Although the confusion matrices tested internal validity of our models, we next sought to

evaluate the construct’s external validity by comparing the results to census tract-level housing

vacancies from American Community Survey and more current housing and commercial

Table 3. Logistic regression model results.

Pred(Urban blight = 1) Model 1 Model 2 Model 3

Coefficient (SE) Coefficient (SE) Coefficient (SE)

Intercept -1.27 (0.009)�� -0.74 (0.014)�� -17.75 (86.15)

Unique token count 0.37 (0.002)�� 0.37 (0.002)�� 0.38 (0.002)��

Borough (reference = Bronx)

Brooklyn -0.58 (0.014)�� -0.37 (0.017)��

Manhattan -0.38 (0.016)�� -0.08 (0.020)��

Queens -0.76 (0.014)�� -0.58 (0.018)��

Staten Island -0.21 (0.022)�� 0.13 (0.028)��

Agency (reference = not specified)

Environmental Protection 18.46 (86.15)

Department for the Aging -1.85 (168.36)

Buildings 17.03 (86.15)

Education 32.77 (210.93)

Finance -0.40 (95.46)

Health and Mental Hygiene 17.03 (86.15)

Transportation 21.01 (86.15)

Parks and Recreation 19.45 (86.15)

Sanitation 15.81 (86.15)

Housing Preservation and Development 18.24 (86.15)

Human Resources Administration 4.45 (130.11)

Police 15.53 (86.15)

Taxi and Livery Commission 0.35 (107.37)

� p < 0.05.

�� p <0.001.

Model 1: Intercept and unique token count.

Model 2: Intercept, unique token count, and borough.

Model 3: Intercept, unique token count, borough, and agency.

https://doi.org/10.1371/journal.pone.0235227.t003
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vacancy data from USPS/HUD. The correlations between housing vacancies from the Ameri-

can Community Survey and blight-related calls at the tract-level was 0.32 (p< 0.001) for count

variables. When expressed as percentages, the correlation was -0.1 (p< 0.001). It seems likely

that the positive association between count variables reflects size of the census tracts. When

Fig 1. Map of blight-related 311 calls by census tract.

https://doi.org/10.1371/journal.pone.0235227.g001

Table 4. Correlations between urban blight-related calls and short-, medium-, and long-term vacancies (residen-

tial and commercial).

Vacancy type Vacancy Duration Correlation Coefficient

Residential Short-term—<6 mo (%) 0.026

Medium-term—6–12 mo (%) 0.019

Long-term—>1 yr (%) 0.098��

Commercial Short-term—<6 mo (%) 0.049�

Medium-term—6–12 mo (%) 0.035

Long-term—>1 yr (%) 0.16��

Total Short-term—<6 mo (%) 0.032

Medium-term—6–12 mo (%) -0.03

Long-term—>1 yr (%) -0.006

� p < 0.05.

�� p <0.001.

https://doi.org/10.1371/journal.pone.0235227.t004
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normalized by total calls and total housing units per census tract, there is a slight, negative rela-

tionship between vacancy rates and blight-related calls.

Census tract vacancy data from USPS/HUD presented as percent of residential, commer-

cial, or total vacant addresses showed null or positive associations with percent of blight-

related calls. Long-term commercial vacancies had the strongest association with our blight

metric, with a correlation of 0.16 (p< 0.0001). Long-term residential vacancies were also asso-

ciated with blight-related calls, though the correlation was not as strong (0.10, p< 0.0001).

Short-term commercial vacancies were also mildly correlated with urban blight-related calls

(0.05, p< 0.0001), but none of the remaining short- or medium-term vacancies were statisti-

cally significantly correlated with the blight metric (Table 4).

Discussion

The identified key words were an effective predictor of blight-related calls, but the small,

inverse relationship between percent of blight-related calls and vacancy rates based on Ameri-

can Community Survey data was unexpected. The American Community Survey data is based

on survey responses over a five-year time frame, so even though it was the most current avail-

able, these data preceded the 311 data by 3 years on average. When using HUD/USPS vacancy

data for the same time period as the 311 data, disambiguating between residential and com-

mercial vacancies, and specifying duration of vacancies, we found that commercial vacancies

—at least in the New York City context—were positively associated with the urban blight met-

ric. The strongest correlation was between long-term (> 12 months) commercial vacancies

and percent of calls identified as blight related, which suggests that longer-term vacancies bet-

ter reflect the ‘physical disorder and decay’ that we are considering to be urban blight, whereas

shorter term vacancies may reflect a certain degree of turnover or ‘churning’ in the real estate

market. Even though the correlation between long-term commercial vacancy and percent of

311 calls related to blight is the strongest association we observed, it is still relatively small.

This finding is not necessarily problematic, as we would anticipate each measure to reflect dif-

ferent (unobserved) characteristics of a neighborhood.

Our approach to coding calls as urban blight versus non-urban blight-related relies upon

our identification of seven ‘domains’ of blight which guided our call assignment. The natural

extension of this approach is to further develop our algorithm to identify which tokens are pre-

dictive of each blight domain. Continuing our algorithm development to predict blight

domains will be useful in identifying variations in neighborhoods based on specific compo-

nents of urban blight. Together with qualitative data collection, these steps can help us deter-

mine if areas of blight concentration align with residents’ perception of disinvestment in their

communities.

These findings are subject to a series of limitations. Most notably, our analysis does not con-

trol for a neighborhood’s propensity to call 311. As Weaver and Bagchi-Sen note, urban blight

can be considered to represent a threshold of ‘non-acceptance,’ or the point at which commu-

nity residents find that neighborhood quality has fallen below community-specific norms [8].

These norms are highly variable across neighborhoods, so sidewalk damage on the Upper East

Side of Manhattan, which is one of the more affluent communities in New York City, may

elicit many more 311 calls relative to a similar condition in Brownsville, Brooklyn, which is a

predominantly low-income neighborhood with a high density of public housing. Second, a

recent trend in community activation and engagement has emerged in which residents flood

311 dispatch with complaints to motivate city government to repair long-ignored problems in

their neighborhoods [11]. Such engagement, while laudable, could make 311-based estimates

of urban blight less reliable. If researchers use historical trends to identify propensities for
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calling 311, a sudden spike in 311 engagement may erroneously indicate rapid deterioration of

the neighborhood’s built environment. Finally, a most salient critique of this analysis is how

the results may be misused. The findings are not intended as a referendum on residents’ inter-

est or willingness to invest in their communities. Placing blame or responsibility on residents

without acknowledging that municipal government and the private sector often resist invest-

ing in less-affluent, majority-minority neighborhoods only reinforces a cycle of continued

disinvestment.

Conclusion

There is a strong utility for this research amongst urban planners, public health practitioners,

and government officials. For urban planners, geographic and temporal patterns in urban

blight-related 311 calls (i.e., variation in residents’ acceptance of blighted conditions) will help

prioritize community needs and desires when determining new planning projects. Such infor-

mation is essential to develop neighborhoods and amenities that address the most pressing

issues communities face.

Moreover, given the connection between blight, biomarkers, and mental health measures, a

clearer view of how urban blight is distributed geographically will help public health practi-

tioners identify areas of concentrated poor health, or areas at risk of negative health outcomes

across the city. Data on blight-related 311 calls will help public health officials understand

where best to concentrate health interventions. For government officials more generally,

understanding the key links between urban blight, public health and community investment

will help identify where and how cities can maximize the benefits of neighborhood

interventions.

The utility of the 311 algorithm will be expanded as it is refined for predicting different

domains of urban blight. Although not fully explored here, the category types in the 311 data is

a useful lever for distinguishing domains of urban blight. Positive associations with temporally

aligned HUD/USPS vacancy data—a commonly used proxy for urban blight—represents a

positive step in external validation. As noted, validation will be a continuing process, incorpo-

rating domains of urban blight and insights from focus groups drawn from various neighbor-

hoods across New York City. A second step is to assess how predictive our 311 measure of

urban blight and its domains are of health-related measures, including but not limited to prev-

alence of chronic disease, injuries (accidents, interpersonal violence), and mental health condi-

tions. Such associations would provide policy guidance for focusing public health

interventions.
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15. Prüss-Üstün A, Bonjour S, Corvalán C. The impact of the environment on health by country: A meta-

synthesis. Environmental Health. 2008; 7(1):7

16. Sly PD, Carpenter DO, Van den Berg M, Stein RT, Landrigan PJ, Brune-Drisse MN, et al. Health Conse-

quences of Environmental Exposures: Causal Thinking in Global Environmental Epidemiology. Annals

of Global Health. 2016; 82(1):3–9. https://doi.org/10.1016/j.aogh.2016.01.004 PMID: 27325063

17. de Leon E, Schilling J. Urban blight and public health: addressing the impact of substandard housing,

abandoned buildings, and vacant lots. Washington, DC: Urban Institute; 2017.

18. South EC, Hohl BC, Kondo MC, MacDonald JM, Branas CC. Effect of greening vacant land on mental

health of community-dwelling adults: a cluster randomized trial. JAMA Netw Open. 2018; 1(3):e180298.

https://doi.org/10.1001/jamanetworkopen.2018.0298 PMID: 30646029

PLOS ONE Using 311 data to identify urban blight

PLOS ONE | https://doi.org/10.1371/journal.pone.0235227 July 9, 2020 10 / 11

https://doi.org/10.1111/j.1748-720x.2003.tb00123.x
https://doi.org/10.1111/j.1748-720x.2003.tb00123.x
http://www.ncbi.nlm.nih.gov/pubmed/14968658
https://www.cdc.gov/nceh/publications/factsheets/impactofthebuiltenvironmentonhealth.pdf
https://www.cdc.gov/nceh/publications/factsheets/impactofthebuiltenvironmentonhealth.pdf
https://doi.org/10.1111/j.1749-6632.2009.05333.x
https://doi.org/10.1111/j.1749-6632.2009.05333.x
http://www.ncbi.nlm.nih.gov/pubmed/20201871
https://kab.org/wp-content/uploads/2019/08/ChartingtheMultipleMeaningsofBlight_FinalReport.pdf
https://kab.org/wp-content/uploads/2019/08/ChartingtheMultipleMeaningsofBlight_FinalReport.pdf
https://doi.org/10.1016/j.amepre.2010.09.034
https://doi.org/10.1016/j.amepre.2010.09.034
http://www.ncbi.nlm.nih.gov/pubmed/21146773
https://doi.org/10.1093/aje/kwu180
http://www.ncbi.nlm.nih.gov/pubmed/25122584
https://doi.org/10.1353/cpr.2017.0022
https://doi.org/10.1353/cpr.2017.0022
http://www.ncbi.nlm.nih.gov/pubmed/28736410
https://doi.org/10.1136/jech-2011-200726
http://www.ncbi.nlm.nih.gov/pubmed/22199396
https://doi.org/10.3390/ijerph6082160
https://doi.org/10.3390/ijerph6082160
http://www.ncbi.nlm.nih.gov/pubmed/19742153
https://doi.org/10.1016/j.aogh.2016.01.004
http://www.ncbi.nlm.nih.gov/pubmed/27325063
https://doi.org/10.1001/jamanetworkopen.2018.0298
http://www.ncbi.nlm.nih.gov/pubmed/30646029
https://doi.org/10.1371/journal.pone.0235227


19. Mayne SL, Pellissier BF, Kershaw KN. Neighborhood physical disorder and adverse pregnancy out-

comes among women in Chicago: a cross-sectional analysis of electronic health record data. J Urban

Health. 2019; 96:823–834. https://doi.org/10.1007/s11524-019-00401-0 PMID: 31728900

20. South EC, Kondo MC, Cheney RA, Branas CC. Neighborhood blight, stress, and health: a walking trial

of urban greening and ambulatory heart rate. Am J Pub Health. 2015; 105(5):909–913.

21. Goodyear S. 3-1-1: a city services revolution. [cited 2019 Dec 30]. In: CityLab. City Makers: Connec-

tions [Internet]. Available from: https://www.citylab.com/city-makers-connections/311/

22. 311 Service Requests from 2010 to Present; 2019 [cited 2019 Dec 30]. Database: NYC Open Data

[Internet]. Available from: https://data.cityofnewyork.us/resource/fhrw-4uyv.json?$where=created_date

between ’2018-01-01T12:00:00’ and ’2018-06-30T23:59:59.

23. RStudio Team. RStudio: Integrated Development Environment for R, version 1.1.463 [software]. RStu-

dio, Inc. 2016 [cited 2019 Dec 30]. Available from: http://www.rstudio.com

24. RSocrata [dataset on Internet]. [cited 2019 Dec 30]. Available from: https://CRAN.R-project.org/

package=RSocrata.

25. American Community Survey 5-Year Estimates, 2013–2017, table DP04 [dataset on Internet]. [cited

2019 Dec 30]. Available from: https://factfinder.census.gov/bkmk/table/1.0/en/ACS/17_5YR/DP04.

26. Glenn EH. Download, Manipulate, and Present American Community Survey and Decennial Data from

the US Census. 2019 February 19. [cited 2019 Dec 30]. Available from: https://cran.r-project.org/web/

packages/acs/acs.pdf.

27. HUD Aggregated USPS Administrative Data on Address Vacancies [dataset on Internet]. U.S. Depart-

ment of Housing and Urban Development’s Office of Policy Development and Research. [cited 2019

Aug 1]. Available from: https://www.huduser.gov/portal/datasets/usps.html.

28. Silge J, Robinson D. Text mining with R: a tidy approach. Sebastopol: O’Reilly Media, Inc.; 2017. [cited

2019 Dec 30]. Available from: https://www.tidytextmining.com/.

29. StatsDirect [Internet]. Agreement of categorical measurements. [cited 2019 Dec 17]. Available from:

https://www.statsdirect.com/help/agreement/kappa.htm.

PLOS ONE Using 311 data to identify urban blight

PLOS ONE | https://doi.org/10.1371/journal.pone.0235227 July 9, 2020 11 / 11

https://doi.org/10.1007/s11524-019-00401-0
http://www.ncbi.nlm.nih.gov/pubmed/31728900
https://www.citylab.com/city-makers-connections/311/
https://data.cityofnewyork.us/resource/fhrw-4uyv.json?$where=created_date
http://www.rstudio.com
https://CRAN.R-project.org/package=RSocrata
https://CRAN.R-project.org/package=RSocrata
https://factfinder.census.gov/bkmk/table/1.0/en/ACS/17_5YR/DP04
https://cran.r-project.org/web/packages/acs/acs.pdf
https://cran.r-project.org/web/packages/acs/acs.pdf
https://www.huduser.gov/portal/datasets/usps.html
https://www.tidytextmining.com/
https://www.statsdirect.com/help/agreement/kappa.htm
https://doi.org/10.1371/journal.pone.0235227

