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ABSTRACT

N6-methyladenosine (m6A) is a reversible and dy-
namic RNA modification in eukaryotes. However,
how cells establish cell-specific m6A methylomes
is still poorly understood. Here, we developed a
computational framework to systematically identify
cell-specific trans regulators of m6A through inte-
grating gene expressions, binding targets and bind-
ing motifs of large number of RNA binding proteins
(RBPs) with a co-methylation network constructed
using large-scale m6A methylomes across diverse
cell states. We applied the framework and success-
fully identified 32 high-confidence m6A regulators
that modulated the variable m6A sites away from
stop codons in a cell-specific manner. To validate
them, we knocked down three regulators respec-
tively and found two of them (TRA2A and CAPRIN1)
selectively promoted the methylations of the m6A
sites co-localized with their binding targets on RNAs
through physical interactions with the m6A writers.
Knockdown of TRA2A increased the stabilities of the
RNAs with TRA2A bound near the m6A sites and de-
creased the viability of cells. The successful identi-
fication of m6A regulators demonstrates a powerful
and widely applicable strategy to elucidate the cell-
specific m6A regulators. Additionally, our discovery
of pervasive trans-acting regulating of m6A provides
novel insights into the mechanisms by which spa-
tial and temporal dynamics of m6A methylomes are
established.

INTRODUCTION

N6-methyladenosine (m6A) is the most prevalent internal
RNA modification in mRNA and long non-coding RNAs
of eukaryotes. It is a reversible RNA modification prefers
to occur on DRACH motif near stop codon and in long
internal exon of mRNA (1,2). A nuclear methyltransferase
complex consisting of METTL3, which is the catalytic sub-
unit, METTL14, WTAP, VIRMA, ZC3H13, RBM15 (or
RBM15B) and CBLL1/HAKAI catalyzes the m6A modi-
fications co-transcriptionally, acting as m6A ‘writers’ (3–5).
A specific m6A demethylase ALKBH5 as well as a less spe-
cific m6A demethylase FTO mediate the demethylation of
m6As, acting as the m6A ‘erasers’ (6). A variety of proteins
including YTH domain-containing proteins can specifically
bind m6A marks as the m6A ‘readers’ and regulate a variety
of post-transcriptional processes, such as RNA decay, alter-
native splicing, translation, alternative polyadenylation and
nuclear export (7–9).

It is widely accepted that m6A RNA methylation is dy-
namically regulated (10). More and more studies reported
the alterations of functionally important m6A sites caused
by expression change of m6A writers and erasers played
important roles in a variety of physiological and patho-
logical processes (11–15). A recent study reported that
33–46% of the variability of m6A levels were due to cis-
regulation, suggesting that the dynamics of m6A are likely
through global regulation by modulating the abundances
of methyltransferase components (16). However, it is still
unclear whether trans-regulation plays important roles in
site-specific dynamics of m6A levels. Besides global regula-
tion, site-specific m6A dynamics can possibly be precisely
established through the interplays of a variety of trans-
acting m6A regulators with m6A writers and erasers at
specific sites bound by the regulators. Indeed, m6A is de-
posited on nascent RNAs (17) and can be regulated co-
transcriptionally through H3K36me3 histone modification
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(18) as well as transcription factors (19,20). Transcription
factor CEBPZ recruits METTL3 to the promoter of a spe-
cific set of active genes to regulate the m6A of the associated
mRNAs involved in acute myeloid leukemia (19). Similarly,
transcription factors SMAD2/3 can selectively promote the
m6A modifications of the genes involved in early cell fate
decision through co-transcriptional recruitment of the m6A
methyltransferase complex onto the nascent RNAs (20). On
the other hand, Cao et al. reported two RNA binding pro-
teins (RBPs) DDX46 and HNRNPA2B1 dynamically inter-
acted with m6A erasers to regulate the m6A of genes critical
for innate immunity in response to viral infection (21,22).
Nevertheless, whether specific regulation of m6A is preva-
lent remains a mystery.

Systematical analyses of large-scale m6A methylomes are
promising to elucidate the trans-acting m6A regulators.
Theoretically, there should be a correlation between the
gene expression of a trans-acting m6A regulator and the
m6A levels of the m6A sites regulated by the regulator. How-
ever, in practice, it is very challenging due to various tech-
nical difficulties: (i) proper quantification of m6A is diffi-
cult due to various technical biases of m6A-seq data; (ii) it
is almost impossible to afford serious multiple testing cor-
rection for massive correlation tests between genes and m6A
sites; (iii) Pearson correlation of m6A levels quantified using
m6A-seq suffers seriously by the outlier issue; (iv) correla-
tions may not reflect direct effects of regulation.

In this study, we developed a computational framework
to systematically identify cell-specific trans regulators of
m6A through integrating gene expressions, binding targets
and binding motifs of a large number of RBPs with a
co-methylation network constructed using large-scale m6A
methylomes across diverse cell states. We applied the frame-
work to the public available m6A-seq data of 25 unique
cell lines and successfully identified 32 high-confidence m6A
regulators with reasonable experimental validation rate,
demonstrating a powerful and widely applicable strategy to
elucidate cell-specific the m6A regulators. Our discovery of
pervasive trans-acting regulating of m6A provided novel in-
sights into the mechanisms by which spatial and temporal
dynamics of m6A methylomes were established.

MATERIALS AND METHODS

Processing of the m6A-seq data in multiple cell lines

Raw sequence data of 104 m6A-seq libraries (IP and input)
from 25 unique cell lines were downloaded from Sequence
Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra) (1–
2,19,23–37). The accession numbers of these data can be
found in Supplementary Table S1. The reads were mapped
to hg19 human genome using HISTA2 (v2.1.0) (38). We
used StringTie (v1.3.4d) (39) to calculate the TPMs (Tran-
scripts Per Million) of Ensembl annotated genes using the
input libraries, followed by quantile normalization of the
TPMs across all samples. m6A peaks were identified accord-
ing to the methods as described in our previous paper (23),
which was modified from the method published earlier by
Dominissini et al. (2). Briefly, we made sliding windows of
100 bp with 50 bp overlap on the exon regions and cal-
culated the RPKM of each window. The sliding windows
with winscore (enrichment score) >2 were identified as m6A

peaks in each sample (2,23). To deal with the technical issue
that lowly expressed windows might have unreliable win-
scores, we added 1 to the RPKM of each window in both IP
and input before winscore calculation in order to penalize
the windows with low RPKMs. We took the union of m6A
peaks identified in these samples for further analyses. The
m6A ratio of each peak was calculated as the RPKM (with-
out adding 1) of IP library divided by the RPKM (without
adding 1) of input library. To m6A ratios based on the de-
nominators (peak RPKM of input) < 5 were treated as NAs
(not available) in the downstream analyses. The m6A peaks
with NAs in more than half of the samples were removed.
The continuous m6A peaks in the same gene were merged,
the merged peaks with more than 5 continuous sliding win-
dows (300 bp) were then divided into multiple peaks that
spanning no more than five sliding windows.

Different protocols of RNA fragmentations before im-
munoprecipitation in the preparations of different m6A-seq
libraries might cause the variations of read signals at the
actually same m6A peaks, resulting in diverse widths and
centers of the actual same m6A peaks thus false m6A differ-
ences in certain regions, we therefore defined the m6A ratio
of each merge peaks with multiple sliding windows as the
maximum m6A ratio of all windows for each sample respec-
tively. Global m6A differences among samples caused by di-
verse activities of m6A writers and erasers as well as techni-
cal variation of immunoprecipitation efficiencies would di-
lute and distort the signals of selective regulation of m6A,
we therefore used quantile normalization to normalize the
m6A ratios of the merged peaks across all samples.

Analyses of the m6A ratios across multiple cell lines

Hierarchical clustering of all samples was performed using
1- Pearson correlation coefficient as distance metric based
on m6A ratios or TPMs of the merged peaks with CVs
> 0.7 or 1000 genes with the largest CVs. The two hier-
archical clustering dendrograms were subsequently com-
pared using the ‘dendextend’ package (40) implemented in
R. HOMER software (41) was used for motif enrichment
analysis using randomly permutated sequences as the back-
group for RNAs. To compare the overlaps of miCLIP-seq
m6A sites (CITS + CIMS) in HEK293 cells (42) between
stable m6A peaks and variable m6A peaks, we only used the
m6A peaks identified in HEK293T cells according to the
above-described pipeline. Distributions of m6A peaks were
plotted on a mega gene with 10 bins in 5′ UTR, CDS, and
3′ UTR respectively using the methods as described in our
previous paper (23). Radar plot was plotted using ‘fmsb’
package implemented in R.

Construction of the co-methylation network

We merged the m6A ratios as well as TPMs of all samples
from each of the 25 unique cell lines by taking the averages.
29173 m6A peaks with CV of m6A ratio across 25 unique
cell lines >0.3 were used to construct the signed weighted
m6A co-methylation network using WGCNA package (43)
implemented in R. The adjacency matrix was constructed
by raising the 0.5 + 0.5 × correlation matrix to the power
of 7. The hierarchical clustering tree was then cut into 41
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co-methylation modules using dynamic hybrid tree-cutting
algorithm. The m6A index of each module was represented
by the eigengene, which was the first component of Prin-
cipal Component Analysis. The 41 modules were further
clustered into 12 larger modules based on the correlation
of their m6A indexes for the analyses required larger num-
ber of m6A peaks. Gene Ontology analysis was performed
using DAVID with the genes in all the modules as the back-
ground (44).

Analyses of the cancer module

The gene expression, mutation, and clinical data of
TCGA (https://tcga-data.nci.nih.gov/) were downloaded
from cBioPortal (45,46). We calculated the means of log-
arithm transformed TPM+1 of all genes in cancer the mod-
ule as the gene expression index of the cancer module. We
used the Cox regression to examine the correlations between
gene expression indexes of the cancer module and patient
survival in each cancer type. Gene Ontology analysis was
performed using DAVID with the genes in all modules as
the background (44).

Identification of m6A regulators

We used 1442 expressed RBPs out of 1648 genes annotated
under the term ‘RBP’ in Gene Ontology Database (47) to
scan for m6A regulators by testing the Pearson correlation
between the TPMs of RBPs and the eigengenes of the 41
m6A modules respectively. To exclude the spurious signifi-
cances due to the outliers in Pearson correlation, for each
correlation test between RBP expression and eigengene of
co-methylation module, we used the maximum P-values of
25 Pearson correlations calculated based on 24 of the 25 cell
lines (in the other word, we removed one cell line in each of
the 25 correlation). The correlations with FDR < 0.2 were
determined as significant correlations. The P-value cutoff
corresponding to the FDR of 0.2 were determined based
on the null distribution of P-values generated by 10 times
permutations. In each permutation, we randomly relabeled
the samples and performed the Pearson correlation between
RBP expression and eigengene of co-methylation module
using the above-described method. The P-value cutoff was
further determined as the P-value under which the average
number of significant correlations in permutations was only
one fifth of the observed number of significant correlations
using real data (Supplementary Figure S4A).

We downloaded the CLIP-seq peaks from starBase
database (version 3) (48–50) as well as the ENCODE CLIP-
seq dataset in HepG2 and K562 cells (51). Significance of
the overlapping between a set of CLIP-seq peaks and an
m6A module was calculated by testing whether the module
and other modules (as background) had equal fraction of
m6A peaks that overlap with the CLIP-seq peak (at least 1
bp) using � 2 tests. We obtained the 110 Motifs of 89 RBPs
from a published dataset based on large scare in vitro RNA-
compete (52) as well as other well-known RBP motifs (53–
55). Significance of the enrichment of an RBP motif in an
m6A module was calculated by testing whether the mod-
ule and other modules (as background) had equal fraction
of m6A peaks that contain the RBP motif using � 2 tests.

The significant overlapping was defined as the ones with
Benjamini-Hochberg FDR < 0.05 based on all the tests.
The final list of m6A regulators were those RBPs with gene
expression significantly correlated with the modules and
with CLIP-seq targets or motifs significantly enriched in the
same modules. The proteins that interact with METTL3,
METT14, WTAP, VIRMA and m6A based on IP mass
spectrum data were directly obtained from the published
papers (4,56–59).

Analyses of the low-input m6A-seq data

The reads of the second end were trimmed to 50 bp from
3′ end for downstream analyses. We mapped the raw data
to human genome and calculate m6A ratios for each slid-
ing window using the above-described protocol. We used
‘exomePeak’ package implemented in R to identify the
m6A peaks and determine the differentially methylated m6A
peaks with FDR < 0.05 (60). To examine whether the m6A
peaks within the associated module or with CLIP-seq bind-
ing showed stronger switch of m6A ratios upon RBP knock-
down, we calculated the fold change of m6A ratios upon
RBP knockdown for each m6A peaks in all the modules.
If one RBP significantly correlated with multiple modules
as predicted, we merged these modules together as the RBP
associated module for the analyses. To filter out the ambigu-
ous fold change values due to small denominators, only the
peaks with input window RPKM > 5 in all samples and
m6A ratio > 0.1 in both replicates of control samples were
considered for the analyses. The data were visualized using
the Integrative Genomics Viewer (IGV) tool (61). Differen-
tial gene expression analyses were performed based on the
input data using DESeq2 (62) according to the read counts
of each gene determined by HTSeq (63). The genes with
FDR < 0.05 and mean CPM (Couts per Million) > 100
were determined as the differentially expressed genes.

Cell culture

Cells were maintained at 37◦C with 5% CO2 in a hu-
midified incubator and passaged every 2–3 days. Wild
type HEK293T and HepG2 cells were cultured in high-
glucose Dulbecco’s Modified Eagle Medium (DMEM,
ThermoFisher Scientific) supplemented with 10% FBS (Ex-
Cell Bio). All cells were tested for absence of mycoplasma
contamination using Myco-Blue Mycoplasma Detector
(Vazyme).

Plasmid constructs and transfection

For gene knocking-down, short-hairpin RNA (shRNA) oli-
gos were synthesized, annealed and inserted into pLKO.1
vector. The pLKO.1-shRNA plasmids were then trans-
fected into HEK293T cells with packing vectors pMD2.G
and psPAX2 to produce lentiviruses. To overexpress the
RBPs, we inserted the full-length coding regions amplified
from HEK293T cDNA library by polymerase chain reac-
tion (PCR) into pCDNA3.1 vector followed by adding the
Flag tag. The pCDNA3.1-RBP plasmids were transfected
into HEK293T cells with Lipofectamine 2000 (Invitrogen)
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according to the manufacturer’s instructions. All the se-
quences of shRNA oligos and PCR primers are listed in
Supplementary Table S2.

RNA isolation and real-time quantitative PCR

Total RNA was extracted using NucleoZOL reagent
(Macherey-Nagel) or MiniBEST Universal RNA Extrac-
tion Kit (Takara, Japan). First-strand cDNA was synthe-
sized by reverse transcription of 1 �g RNA using HiScript II
1st Strand cDNA Synthesis Kit (Vazyme, China) according
to the manufacturer’s protocol. Quantitative real time-PCR
was performed using TB Green Premix Ex Taq (Takara,
Japan) in QuantStudio 7 Flex Real-Time PCR System (Life
Technologies, USA). β-actin and GAPDH were used as ref-
erence genes for input normalization. The mRNA expres-
sion was measured by quantitative PCR using the ��CT
method. Primers for quantitative PCR were listed in Sup-
plementary Table S2.

CRISPR-Cas9 mediated METTL3 knockout

Transiently transfected plasmid expressing two sgRNAs
targeting human METTL3 exons was adopted for in-
ternal fragment deletion in specified size according to
CRISPR-Cas9-2hitKO system. Two target guide RNAs
were designed using the online tool (http://tools.genome-
engineering.org) with high scores and minor off-target ef-
fects and then subcloned into CRISPR-Cas9-2hitKO plas-
mid. (All the sequences of sgRNA oligos were listed in
Supplementary Table S2). To establish the knockout cell
lines, CRISPR-Cas9-2hitKO plasmid carrying two sgRNA-
expressing cassettes were transfected into HepG2, GFP
expressing cells were enriched by FACS (MoFlo Astrios
EQ, Beckman Coulter) 3 days later and seeded at low
density for single colony isolation. Knockout efficiency
was tested by DNA sequencing and verified by western
blotting.

Co-immunoprecipitation and western blot

Whole-cell extracts were extracted by directly lysing the
cells with 1 × RIPA Buffer (Cell Signaling Technology)
with 1 mM PMSF (Beyotime) added immediately before
use. Samples were boiled by adding 6 × sodium dode-
cyl sulphate (SDS) sample buffer for 10 min at 100◦C
and resolved using SDS-polyacrylamide gel electrophore-
sis. To perform immunoprecipitation, we lysed the cells
by RIPA lysis buffer. The lysates were sonicated at 4◦C
and cleared by centrifugation at 12 000 rpm for 15 min
at 4◦C. Immunoprecipitation was carried out by incubat-
ing the FLAG beads (Bimake) at 4◦C with the lysate
overnight. Immunoprecipitates were washed three times in
cold E1A lysis buffer (250 mM NaCl, 50 mM HEPES (pH
7.5), 0.1% NP-40, 5 mM EDTA, protease inhibitor cock-
tail (Roche)) and boiled with 2 × SDS sample buffer for
10 min. The proteins were probed with the following anti-
bodies: METTL3 Rabbit mAb (1:2000, 15073-1-AP, Pro-
teintech), METTL14 Rabbit mAb (1:500, 51104S, Cell Sig-
naling Technology), Monoclonal ANTI-FLAG M2 anti-
body (1:1000, F1804, Sigma), GAPDH (1:2000, 5174, Cell

Signaling Technology), ALKBH5 (1:3000, ab195377, ab-
cam) and FTO (1:1000, 31687, Cell Signaling Technology).
Immuno-detection was performed using HRP-conjugated
Affinipure Goat Anti-Mouse IgG(H+L) (1:5000, SA00001-
1, Proteintech) or HRP-conjugated Affinipure Goat Anti-
Rabbit IgG(H+L) (1:5000, SA00001-2, Proteintech) and
ECL prime substrate (Bio-Rad) according to the manufac-
turer’s instructions.

Low-input m6A-seq

Low-input m6A-seq was performed based on the protocols
previously described by Zeng et al. (64) with several mod-
ifications. Briefly, a total volume of 8–10 �g total RNA
was fragmented using the 10 × RNA Fragmentation Buffer
(100 mM Tris–HCl, 100 mM ZnCl2 in nuclease free H2O)
and purified with sodium acetate (Sigma-Aldrich), glyco-
gen (Thermo Fisher Scientific) and 100% ethanol. A total
of 30 �l of protein-A/G magnetic beads (10002D/10004D,
Thermo Fisher Scientific) were washed twice in IP buffer
(150 mM NaCl, 10 mM Tris–HCl, pH 7.5, 0.1% IGEPAL
CA-630 in nuclease free H2O) and incubated with 5 �g anti-
m6A antibody (202003, Synaptic Systems) in 500 �l of IP
buffer at 4◦C for at least 6 h. After washed twice in IP buffer,
the antibody-bead mixture was resuspended by fragmented
total RNAs in IP buffer and incubated at 4◦C for 2 h. Then
after washed twice in low-salt IP buffer, and twice in high-
salt IP buffer at 4◦C for 10 min each, the m6A enriched
fragmented RNAs were eluted and purified from the beads
using RNeasy Mini Kit (QIAGEN). Sequencing libraries
were generated using the SMARTer Stranded Total RNA-
Seq Kit v2 (634413, Takara). All libraries were sequenced
on an Illumina HiSeq X Ten platform to produce 20–40 M
strand-specific paired-end reads.

mRNA stability assay

Cells were seeded into 6-well plates and treated with actino-
mycin D (5 mg/ml) for 4, 2 and 0 h after culturing for 12
h. We used NucleoZOL reagent (Macherey-Nagel) to ex-
act the total RNAs followed by reverse transcription. The
abundances of the interest genes were detected measured in
each time point by real-time quantitative PCR (qPCR) us-
ing 18S rRNA as the reference gene. The qPCR primers are
listed in Supplementary Table S2.

Colony formation assay

After trypsinization and cell counting, 1200 HepG2 cells
were seeded per well in 6-well plates and cultured in DMEM
supplemented with 10% fetal bovine serum (FBS) for 7 days.
Cells were rinsed with phosphate buffered saline once and
fixed using paraformaldehyde and stained using crystal vi-
olet.

RESULTS

Development of a computational framework to systemati-
cally identify cell-specific m6A regulators

To overcome the above-mentioned difficulties of identifying
cell-specific m6A regulators using large-scale m6A methy-
lomes, we developed a computational framework through
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integrating gene expressions, binding targets and binding
motifs of a large number of RBPs with a co-methylation net-
work constructed using large-scale m6A methylomes across
diverse cell states (Figure 1).

First of all, a variety of technical issues of m6A-seq data
could hinder the successful systematic analyses of the quan-
titative m6A ratios calculated based on the m6A-seq data.
Therefore, we performed multiple processes to minimize the
influences of different types of technical issues (see ‘Ma-
terials and Methods’ section for details). Besides applying
stringent filters to rule out the unreliable quantifications, we
also merge the peaks across multiple samples and used the
with the maximum m6A ratio of 100 bp window to repre-
sent the m6A ratio of merged peaks with continuous win-
dows in each sample, therefore, the shifting of peak centers
and divergence of peak breadths due to technical biases in
preparing the m6A-seq libraries, such as variations in RNA
fragmentation lengths and sequencing lengths, will be con-
trolled. At last, quantile normalizations of the m6A ratios
are performed, so that not only variations of antibody effi-
ciencies can be corrected but also we can focus on capturing
the mechanisms that regulate selective subsets of m6A peaks
other than the global regulation dictated by m6A writers
and erasers.

We hypothesis that the m6A sites regulated by the same
m6A regulators should have correlated m6A levels (co-
methylation) across different cell states, and the m6A levels
of the module should also be correlated with the gene ex-
pressions of their regulators. Co-methylation module-based
analyses can greatly reduce the dimension of the data and
noise of individual m6A peaks. Therefore, we use WGCNA
(43) to construct a signed weighted co-methylation network.
For each module, we calculate the Pearson correlations be-
tween the m6A indexes (the first component of principal
component analysis) and the expression of 1442 RBPs an-
notated by GO database respectively. Since Pearson cor-
relation is very sensitive to outliers, we perform Jackknife
resampling (leave one out) and take the least significant P
value for each test (see ‘Materials and Methods’ section for
details). We then use random permutation to determine the
threshold of significance (see ‘Materials and Methods’ sec-
tion for details).

On the other hand, if an RBP regulate the m6A sites near
their targets, we expect to see the co-localization of RBP
binding sites with the m6A peaks of the module regulated
by the RBP, otherwise, the correlation may reflect the in-
direct effects of regulation such as through regulating the
abundance of another m6A regulator. In this framework,
we integrate the CLIP-seq data of 157 RBPs obtained from
starBase (version 3) (48,50) as well as ENCODE CLIP-
seq dataset (65) to test whether the RBP binding sites are
over-represented in the corresponding m6A modules. Since
most RBPs do not have available CLIP-seq data, we also
take advantage of the RNAcompete-derived motifs (52) as
well as several well-known motifs (53–55) of 89 RBPs to
test the enrichment of motifs in the associated modules.
The RBPs with gene expression significantly correlate with
specific modules and with binding targets or motifs signif-
icantly enriched in the same modules will be identified as
the high-confidence m6A regulators specifically regulate the
m6A sites in the associated modules.

Systematic analyses of m6A methylomes of multiple cell lines
revealed credible dynamics of m6A

In order to systematically elucidate the cell-specific trans-
acting regulation of m6A using real data, we applied the
above computational framework to the public available
m6A-seq data of 104 samples in 25 unique human cell lines
(Supplementary Table S1). We obtained about 15 000 m6A
peaks for each cell (Supplementary Figure S1A), and the
m6A peaks for these cell lines were strongly enriched near
stop codons, consistent with previous reports (1) (Figure
2A).

To evaluate the reliability of the normalized m6A ratios,
we performed unsupervised hierarchical clustering using
the m6A ratios of these samples (replicates were merged)
(Figure 2B). We found clear variations of m6A ratios and
that the samples were not clustered according to the techni-
cal issues including labs, RNA selection protocols and an-
tibodies (Figure 2B). Since gene expression obtained from
RNA-seq data (input of m6A-seq) was less affected by tech-
nical bias, we clustered these samples using gene expression
to represent the real relationship among these samples (Sup-
plementary Figure S1B). The hierarchical clustering den-
drogram generated using m6A-seq data were in general sim-
ilar as that generated using gene expression (P = 0.006;
permutation test using ‘dendextend’ package (40); Supple-
mentary Figure S1C). The same cell lines (MONO-MAC-6
and HEK293T) from different labs were also clustered to-
gether, whereas, the A549 cell lines from different labs were
not clustered together possibly due to the diverse expression
of m6A writers (see Supplementary Text 1 for clarification;
Supplementary Figure S1D and E).

Variable m6A sites are away from stop codons

To systematically study the patterns and mechanisms of
trans-regulating of m6A, we combined the m6A-seq data of
the same cell lines to obtain the methylomes of 25 unique
human cell lines. We found different m6A peaks had differ-
ent levels of variations across these cell lines (Supplemen-
tary Figure S1F). The m6A peaks near stop codons had sig-
nificantly smaller coefficient of variations (CVs) of m6A ra-
tios than the other m6A peaks, while the peaks in the long
internal exons were slightly smaller than that in UTRs and
coding regions (Figure 2C). As shown in Figure 2D, the 11
949 stable m6A peaks (CV < 0.3) tended to be enriched
near stop codons, whereas the 29 173 variable m6A peaks
(CV > 0.3) were enriched in coding regions and completely
lost the enrichment near stop codons and less enriched in
long internal exons, suggesting that the m6A sites near stop
codons are regulated mainly by cis-acting elements rather
than trans-acting factors (Figure 2E; an example is shown
in Figure 2F). Based on this definition, there were about
50% of stable peaks in each cell line (Supplementary Fig-
ure S1G), which was consistent with a recent report that
cis-regulation account for 33–46% of the variability of m6A
levels (16). In this study, we would like to focus on the vari-
able m6A peaks. Compared to those stable m6A peaks, the
variable m6A peaks occurred on the genes with similar gene
expression but had significantly smaller maximum m6A ra-
tios across all cell lines (Figure 2G and H).
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Figure 1. Schematic flow chart demonstrating the computational framework to identify trans regulators of m6A.

To test whether the variable m6A peaks were genuine
m6A peaks or technical noises, we used single-nucleotide-
resolution m6A sites in HEK293 cells obtained by miCLIP-
seq technology as gold standard to evaluate the m6A peaks
(42). We found the variable m6A peaks and stable m6A
peaks identified in HEK293T cells exhibited the similar pro-
portions that overlapped with miCLIP-seq reported m6A
sties, indicating that the variable m6A peaks were as gen-
uine as the stable peaks (Figure 2I).

Modular co-methylation of the variable m6A sites revealed
prevalent trans-acting regulation of m6A

We constructed a signed weighted co-methylation network
using WGCNA (43) based on the m6A ratios of 29 173 vari-
able m6A peaks across the 25 unique cell lines (Figure 3A).
We obtained 41 co-methylation modules, which were fur-
ther merged into 12 larger modules according to the cor-
relations of module m6A indexes (the first component of
principal component analysis) among them (Figure 3B and
Supplementary Table S3). As shown in Figure 3B, the m6A
indexes of the m6A modules showed strong cell type speci-
ficities, suggesting that cell-specific m6A methylomes may
be resulted from co-regulation of m6A sites by cell-specific

regulators. On the other hand, we found the co-methylation
modules showed specific topology of m6A and that the
m6A peaks in one module strongly enriched near transla-
tion start sites (Figure 3C), while the m6A peaks in another
two modules strongly enriched in long internal exons (Fig-
ure 3D), suggesting that the topology of m6A methylomes
are also dynamic and regulated by certain trans-acting fac-
tors. We also checked the motif enrichment of these mod-
ules and found these modules were enriched in distinct mo-
tifs (Supplementary Figure S2A). Moreover, the represen-
tative module-specific motifs tend to be lowly occurred in
other modules, suggesting the different modules are regu-
lated by diverse trans-acting factors (Supplementary Fig-
ure S2B). The genes in the 12 combined modules were en-
riched in different GO (47) categories (Supplementary Fig-
ure S2C), suggesting that the co-regulated m6A sites tend to
play specific functional roles in specific cells.

An m6A module was specifically methylated in cancer cell
lines

We found one of the 12 combined m6A co-methylation
modules (blue module) was highly methylated specifically in
cancer cell lines other than normal somatic cells as well as
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Figure 2. Analyses of m6A methylomes of multiple cell lines. (A) Normalized distributions of m6A peaks across 5′ UTR, CDS and 3′ UTR for representative
cell lines. (B) The unsupervised hierarchical clustering and heatmap of the m6A ratios for the m6A peaks with the largest CVs across all cell lines. The
technical information is indicated above the heatmap. (C) Box plot representing the CVs of m6A ratios for the peaks located at different regions of mRNAs.
(D) Normalized distributions of variable and stable m6A peaks across 5′ UTR, CDS and 3′ UTR. (E) Densities of logarithm transformed lengths of the
internal exons with variable m6A peaks and stable m6A peaks. The P-value of Wilcoxon test is indicated. (F) Tracks showing the read coverage of the
IPs, inputs and the merged m6A peaks of the representative cell lines as well as the HEK293 m6A sites from miCLIP-seq data on ILF2. The tracks are
shown for optimal viewing. The variable and stable m6A peaks are highlighted, respectively. (G) Box plots representing the logarithm transformed TPMs
of variable and stable m6A peaks. (H), Box plot representing the maximum m6A ratios across all cell lines of variable and stable m6A peaks. (I) Bar plot
showing the percentages of variable peaks and stable peaks that overlap with m6A sites obtained from miCLIP-seq. ‘n.s.’ denotes non-significant.

stem cells (Figure 4A). As shown in Figure 4A, the expres-
sion of the corresponding genes was much higher in those
cancer cell lines, suggesting that the enhanced m6A methy-
lation at the m6A sites in this module may result in elevated
abundances of the mRNAs harboring these m6As possibly
through increasing the RNA stabilities (57). Then, we took
advantage of the TCGA (The Cancer Genome Atlas) clin-

ical samples to further address the oncological roles of this
module. Interestingly, in 13 of the 14 cancer types included
in TCGA, the gene expression indexes of this module were
significantly higher in cancer tissues than in normal tissues,
suggesting the up-regulation of these genes are common
in cancers and may relate to the etiology of most cancers
(Figure 4B). Furthermore, the high gene expression indexes
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Figure 3. Classification and analyses of co-methylated m6A modules. (A) Classification of co-methylated m6A modules through dynamical cutting of the
clustering dendrogram of all variable m6A peaks. (B) Heatmap representing the m6A indexes of all the 41 co-methylation modules across all the cell lines.
(C) Normalized distributions of m6A peaks in different combined modules across 5′ UTR, CDS and 3′ UTR. (D) Densities of logarithm transformed
lengths of the internal exons with m6A peaks in different combined co-methylation modules.

of the cancer module were significantly correlated with the
shortened survival time of patients in CESC (cervical squa-
mous cell carcinoma), KIRC (kidney renal clear cell carci-
noma), KIRP (kidney renal papillary cell carcinoma), LGG
(low grade glioma), SARC (sarcoma) and LUAD (lung ade-
nocarcinoma) (Figure 4C and Supplementary Figure S3A–
F). In each cancer, we ranked the cancer samples accord-
ing to the expression indexes of this module to test the cor-
relation between the expression of these genes and genetic
alteration spectrum of the key markers as well as clinical
phenotypes of these cancers. In breast cancer, the higher ex-
pression of these genes was associated with Triple Negative
Breast Cancer (TNBC) and positively correlated with the
occurrence of somatic mutations of TP53, PIK3CA, PTEN
and RB1 (Figure 4D). In LGG, the higher expression of the
genes in the module was positively correlated with the oc-
currence of somatic mutations of TP53, PTEN and EGFR
(Supplementary Figure S3G).

Systematic identification of m6A regulators

To systematically identify these regulators that regulated
specific m6A modules, we used the first component of PCA
(Principal Component Analysis) as the m6A indexes of the
41 original m6A modules. For each module, we calculated

the Pearson correlations between the m6A indexes and the
expression of 1442 RBPs annotated by GO database respec-
tively. As shown in Figure 5A, the P-values we observed for
all the tests were significantly smaller than the expected P-
values generated by permutation (see ‘Materials and Meth-
ods’ section for details), indicating a significant proportion
of real correlations statistically could not be explained by
random chances. Based on the profiles of the observed and
expected P-values, we identified 588 RBPs that were sig-
nificantly correlated with at least one m6A co-methylation
module by requiring FDR < 0.2, which denoted less than
118 (20% of 588) RBPs could be identified in random per-
mutations (see Methods for details; Supplementary Figure
S4A and B; Table S4). We referred these 588 RBPs to low-
confidence m6A regulators. As demonstrated in Figure 5B,
the gene expression of all the low-confidence m6A regula-
tors that correlated with module M15 showed very simi-
lar profile as the m6A ratios of all the m6A peaks in this
module (Figure 5B). Since we performed quantile normal-
ization of the m6A ratios across all cell lines, as expected,
we did not identify METTL3 and METTL14 that may reg-
ulate the m6A globally. However, we found the gene expres-
sions of RBM15B and ZC3H13, two known components
of the writer complex, were positively correlated with mod-
ule M11 and M25, respectively (Supplementary Figure S4C
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Figure 4. Discovery of a co-methylation module specifically methylated in cancer cell lines. (A) Heatmaps representing the Z-scores of m6A ratios (upper
panel) and gene expressions (low panel) of the peaks and corresponding genes across all cell lines. The types of cell lines are indicated at the top of the upper
panel. (B) Box plot representing the gene expression indexes of the genes corresponding to cancer-specific module for cancer and normal samples of 14
cancer types in TCGA. (C) Cox correlations between the gene expression indexes of the genes corresponding to cancer-specific module and the survival of
cancer patients of 14 cancer types in TCGA. OS: overall survival; DFS: disease-free survival; HR: hazard ratio. (D) Tracks representing the gene expression
indexes of the genes corresponding to the cancer-specific module and genetic alteration spectrum of the key markers as well as clinical phenotypes of the
breast cancer patients from TCGA. The patient samples are sorted according to the gene expression indexes of the cancer-specific module.

and D), while the expression of m6A eraser ALKBH5 was
negatively correlated with module M14 (Supplementary
Figure S4E), suggesting that some components of writer
complex as well as demethylase may also confer specifici-
ties of m6A. Besides, we also found a previously reported
specific m6A regulator SMAD3, which can specifically pro-
mote the installation of m6A (20), was positively corre-
lated with module M33 (Supplementary Figure S4F). The
proteins of m6A regulators would possibly interplay with
m6A writers or erasers at their binding sites on RNAs,
we collected the published Mass Spectrum data of protein
pull-down using the antibodies of METTL3, METTL14,

WTAP, VIRMA (4,59,66), we found 108 RBPs out of the
588 low-confidence m6A regulators could be pulled down
by at least one of the antibodies (Supplementary Figure
S4G). On the other hand, we found 44 RBPs out of the low-
confidence m6A regulators could be pulled down by m6A
modified oligos (58) (Supplementary Figure S4H).

Then we took advantage of the CLIP-seq data of 157
RBPs obtained from starBase (version 3) (48,50) as well as
ENCODE CLIP-seq dataset (65) to test whether the RBP
binding sites were over-represented in the corresponding
m6A modules. There were 22% of the significantly corre-
lated pairs of RBP expression and m6A module showed sig-
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Figure 5. Systematic identification of m6A regulators. (A) Q-Q plot comparing the distributions of expected P-values and observed P-values of the cor-
relations between the gene expressions of RBPs and m6A indexes of the co-methylation modules. (B) Heatmaps representing the m6A ratios of the m6A
peaks within the module M15 (upper panel) and the gene expressions of the RBPs that significantly correlated with the m6A indexes of M15 (lower panel).
The cell lines are sorted according to the m6A indexes of M15. (C and D) Barplot representing the percentages of the pairs of RBPs and modules that
enriched for CLIP-seq binding sites (C) or motifs (D) of the RBPs out of the pairs that showing significant and non-significant (top 1000 least significant)
correlations between gene expressions of the RBPs and the m6A indexes of the modules. (E) Venn diagram demonstrating the identification of 32 high-
confidence m6A regulators. (F) Scatter plot showing the correlation between TRA2A gene expression and m6A indexes of module M15 across all cell lines.
(G) Representative motifs enriched in module M15 and TRA2A CLIP-seq targets.

nificant enrichment of CLIP-seq peaks in the same m6A
modules, in contrast, it was only 4% for the top 1000 least
significant pairs of RBP and m6A modules, indicating a sig-
nificantly enriched occurrences of co-localization of RBP
binding sites with their significantly correlated modules (P
= 5.8 × 10−8, two-tailed Chi-square test; Figure 5C). Since
most RBPs did not have available CLIP-seq data, we uti-
lized the RNAcompete-derived motifs (52) as well as sev-
eral well-known motifs (53–55) of 89 RBPs for further eval-
uation. Similarly, we observed a trend that the motifs of the

RBPs were more likely to show significant enrichment in the
m6A modules correlated with the RBPs as compared to the
uncorrelated modules (P = 0.09, two-tailed Chi-square test;
Figure 5D). The RBP motifs were mostly enriched within
50bp of m6A motifs, suggesting that the RBPs may tend
to regulate the m6A sites around 50bp of its binding sites
(Supplementary Figure S4I). In the end, out of the 50 and
26 low-confidence m6A regulators with available CLIP-seq
data and known motifs respectively, 26 (52%) and 7 (27%)
RBPs also showed significant co-localization with the ex-



Nucleic Acids Research, 2020, Vol. 48, No. 4 1725

act correlated m6A modules based on CLIP-seq and mo-
tif analyses respectively (Figure 5E and Supplementary Ta-
ble S4). We referred these 32 RBPs to high-confidence m6A
regulators. As exemplified, the gene expression of an RBP
TRA2A significantly correlated with the m6A ratio of mod-
ule M15 (Figure 5F), which happened to enrich for a mo-
tif resembled the TRA2A motif obtained from CLIP-seq
(Figure 5G). On the other hand, since there were 516 low-
confidence m6A regulators without available CLIP-seq da-
tum or known motif, we would expect a dramatic increase
of the high-confidence m6A regulators when more and more
CLIP-seq data become available in the future.

Experimental validations of selected m6A regulators

Because eCLIP-seq of plenty of RBPs had been performed
in HepG2 cells (65), we selected 3 high-confidence m6A
regulators TRA2A, CAPRIN1 and MOV10, which were
highly expressed and with corresponding module highly
methylated in HepG2 cells, to experimentally validate their
regulatory functions on m6A. First of all, we tested whether
knocking down of these regulators affected the stoichiom-
etry of some m6A peaks in human HepG2 cells using
low-input m6A-seq (64). The m6A peaks identified in low-
input m6A-seq were enriched in stop codons as expected
(Supplementary Figure S5A). Then we performed Co-
Immunoprecipitation (Co-IP) to test whether these regula-
tors interacted with the major m6A writers (METTL3 and
METTL14) and erasers (FTO and ALKBH5).

The m6A ratios of the m6A peaks with TRA2A bind-
ing were significantly down-regulated upon TRA2A deple-
tion as compared to the m6A peaks without TRA2A bind-
ing (P = 1.6 × 10−13, two-tailed Wilcoxon test; Figure
6A), indicating that TRA2A promoted the installation of
m6A through binding near the m6A sites other than indi-
rect effects such as regulating another m6A regulator. Sim-
ilarly, the m6A ratios of the predicted m6A module reg-
ulated by TRA2A were also significantly down-regulated
upon TRA2A depletion as compared to other modules (P
= 3.1 × 10−3, two-tailed Wilcoxon test; Figure 6B). The
above results were very consistent with our observation
that the expression of TRA2A was positively correlated
with the m6A indexes of the corresponding modules. As ex-
emplified in Figure 6C, the TRA2A bound m6A peak in
the long non-coding RNA MALAT1 was downregulated
upon TRA2A depletion. We further found TRA2A inter-
acted with METTL3 independent of RNAs, suggesting that
TRA2A promote the installing of m6A near its binding sites
through recruitment of METTL3 (Figure 6D and Supple-
mentary Figure S5B).

Similar results were observed for CAPRIN1, the m6A ra-
tios of the m6A peaks within the related module and co-
localized with CAPRIN1 were significantly down-regulated
upon CAPRIN1 depletion as compared to the m6A peaks
in other modules and without CAPRIN1 binding (P = 5.4
× 10−8, two-tailed Wilcoxon test; Figure 6E), though the
CAPRIN1 CLIP-seq data were obtained from a different
cell line. Strikingly, we found CAPRIN1 interacted with
both METTL3 and METTL14, suggesting that CAPRIN1
can recruit the methyltransferase complex to promote the
m6A installation near its binding sites (Figure 6F). Whereas,

we did not find the depletion of MOV10 changed the m6A
ratios of the peaks within the related module (Figure 6G),
nor did we find the interaction of MOV10 with any of the
m6A writers or erasers. Therefore, MOV10 was not like a
genuine m6A regulator.

Therefore, we finally validated TRA2A and CAPRIN1
as genuine m6A regulators, and MOV10 was a false posi-
tive discovery. We further identified 427 and 124 differen-
tially methylated m6A peaks due to knockdown of TRA2A
and CAPRIN1 respectively using exomePeak software (60).
Similar as the CLIP-seq binding targets of these RBPs, the
differentially methylated m6A peaks were all enriched in
protein coding regions other than near stop codons, con-
sistent with our finding that m6A peaks near stop codons
were stable (Supplementary Figure S5C and D).

We then tried to investigate whether these m6A regula-
tors had any functional consequences by regulating m6A.
We noticed that TRA2A knockdown resulted in upreg-
ulated gene expression of 470 genes and downregulated
gene expression of only 79 genes, the up-regulated genes
were significantly enriched in KEGG pathway related to
protein processing in endoplasmic reticulum as well as
metabolism (Supplementary Figure S6A). Of the 470 up-
regulated genes, there were 107 genes with at least one
m6A peak co-localized with TRA2A CLIP-seq peak, these
genes were enriched in the pathway of protein processing
in endoplasmic reticulum, suggesting the functional role of
TRA2A on homeostasis of endoplasmic reticulum by regu-
lation m6A. Since m6A was reported to promote the degra-
dation of RNAs (8), we hypothesized that TRA2A induced
the m6A modification of specific RNAs to facilitate their
degradations. To test this hypothesis, we selected 11 up-
regulated genes with multiple m6A sites co-localized with
TRA2A CLIP-seq binding sites to examine the effects of
TRA2A on their RNA stabilities. We found 7 of the 11 genes
showed significantly increased stability in TRA2A knock-
down HepG2 cells, including 3 genes (HSPA8, RRBP1,
UGGT1) involved in ‘protein processing in endoplasmic
reticulum’ (Supplementary Figure S6B–D). After cultured
for several generations, we also noticed remarkably de-
creased viability of TRA2A knockdown HepG2 cells based
on colony formation assay (Supplementary Figure S6E),
which was possibly due to the induction of endoplasmic
reticulum stress in the longtime culturing of cells with de-
fects in maintaining homeostasis of endoplasmic reticulum.

DISCUSSION

In this study, we successfully developed a computational
framework to systematically identify trans regulators of
m6A through integrating gene expressions, binding targets,
and binding motifs of a large number of RBPs with a
co-methylation network constructed using large-scale m6A
methylomes across diverse cell states. Applying the frame-
work to the public available m6A-seq data of 25 unique cell
lines revealed pervasive trans-acting regulation of m6A and
identified 32 high-confidence m6A regulators with reason-
able experimental validation rate.

The successful identification of m6A regulators using
25 distinct cell lines demonstrated a powerful and widely
portable strategy to elucidate the trans-acting regulation of
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Figure 6. Experimental validation of selected m6A regulators. (A) Plot of cumulative fraction of log2 fold change of m6A ratios upon TRA2A knockdown
for the m6A peaks overlap or non-overlap with TRA2A CLIP-seq targets. P-value of two-tailed Wilcoxon test is indicated. (B) Plot of cumulative fraction
of log2 fold change of m6A ratios upon TRA2A knockdown for the m6A peaks within or not within the co-methylation modules correlated with TRA2A.
P value of two-tailed Wilcoxon test is indicated. (C) Tracks displaying the read coverage of IPs normalized by inputs as well as the miCLIP-seq m6A
sites and TRA2A CLIP-seq peaks in HepG2 cells on the long non-coding gene MALAT1. The m6A peak with down-regulated m6A ratio in shTRA2A
is highlighted. The dashed lines indicate the summits of the peaks. (D) Western blots showing the interaction between TRA2A and METTL3 with and
without RNase treatment respectively. * indicates a non-specific band (see Supplementary Figure S5B). (E) Plot of cumulative fraction of log2 fold change
of m6A ratios upon CAPRIN1 knockdown comparing the m6A peaks in the correlated modules and overlap with CAPRIN1 CLIP-seq targets versus the
peaks not within the correlated module or overlap with CAPRIN1 CLIP-seq targets. P-value of two-tailed Wilcoxon test is indicated. (F) Western blots
showing the interactions of CAPRIN1 with METTL3 and METTL14 with and without RNase treatment respectively. * indicates a non-specific band (see
Supplementary Figure S5B). (G) Plot of cumulative fraction of log2 fold change of m6A ratios upon MOV10 knockdown comparing the m6A peaks in
the correlated modules and overlap with MOV10 CLIP-seq targets versus the peaks not within the correlated module or overlap with MOV10 CLIP-seq
targets. P-value of two-tailed Wilcoxon test is indicated.

m6A based on a batch of m6A methylomes. In this study, we
definitely underestimated the prevalence of m6A regulators
due to technical limitations, such as the limited number of
cell lines, lack of available CLIP-seq data for most RBPs.
Moreover, we probably also missed the m6A regulators that
played important roles in extremely specific cells or physio-
logical and pathological processes. Since m6A-seq technol-
ogy becomes more and more applicable and affordable (64),
large-scale m6A-seq data in specific biological systems will
be available in near future. It is of great advantage to apply

our computational framework to these data in order to un-
cover the trans-acting mechanisms that may be important
for specific systems. For example, applying the framework
to a population of cancer samples may reveal novel m6A
regulators specifically regulate specific m6A sites involved
in tumorigenesis in certain types of cancers.

We noticed that there were two types of m6A sites accord-
ing to their variation among multiple cell lines. It is inter-
esting that the m6As around stop codons tend to be hard
wired thus very stable among different cells lines, these m6A
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sites could be considered as indispensable ‘structural m6A
sites’. They are installed at specific positions and are im-
portant for the basic functions and biogenesis of mRNAs.
The structural m6A sites around stop codons are proba-
bly regulated mainly in cis and directly mediated by m6A
methyltransferase complex. This idea is supported by the
previous report that VIRMA and ZC3H13, which are im-
portant components of methyltransferase complex, specif-
ically deposit m6A around the stop codon of mRNA (4,5).
On the other hand, the m6A sites away from stop codons,
such as those within coding regions, tend to display cell-
specificities, thus could be considered as ‘dynamic m6A
sites’. They are precisely and dynamically regulated through
a number of regulators expressed with spatial and tempo-
ral specificities, providing a novel mechanism for genes to
play diverse roles in different cells. As previously reported,
transcription factor CEBPZ induces the m6A specifically
within the coding region of its associated mRNAs through
co-transcriptional recruitment of METTL3 at the promot-
ers (19). In this study, we found TRA2A and CAPRIN1
also selectively modulate the m6A sites within the coding
regions (Supplementary Figure S5C and D). These results
further support that dynamic m6A sites are away from stop
codons.

Our study provided a new perspective on how the m6A
sites were regulated. It is well known that m6As are modi-
fied co-transcriptionally (17,67), thus m6A can be regulated
through co-transcriptional mechanisms. Two well-known
m6A regulators SMAD2/3 and CEBPZ are both transcrip-
tion factors and regulate m6A co-transcriptionally (19,20).
Moreover, a recent study reported that H3K36me3, a his-
tone marker for transcription elongation, could guide the
installation of m6A modifications with classic enrichment
near stop codons through direct recruitment of METTL14
(18). In this study, besides transcription factors, we also
found classic RBPs worked as regulators that selectively reg-
ulated subsets of m6A sites through direct recruitments of
methyltransferase complex, suggesting that various RBPs
and transcription factors work together to modulate the
precise levels of specific m6A sites. In contrast to transcrip-
tion factors, which always bind to the promoters, the RBPs
confer the m6A specificity by their RNA binding specifici-
ties. Moreover, the m6A sites can be controlled precisely
through the modulations of multiple regulators. There-
fore, it is very likely that m6A RNA methylation is pre-
cisely controlled in a similar manner as alternative splicing,
which is regulated complicatedly by histone modifications
co-transcriptionally as well as a variety of splicing factors
that bind the cis-regulatory elements of splicing (68).

Technically, reliable quantification of m6A sites on mR-
NAs is still of great challenges. Therefore, we made multiple
methodological improvements in order to mitigate the im-
pacts of technical biases of m6A-seq data, which were im-
portant for the successful identification of m6A regulators.
First of all, we compared our winscore-based method with
exomePeak (60) and MeTPeak (69) using one of the HepG2
m6A-seq dataset. Though our winscore-based peaks had a
similar number and distribution across 5′UTR, CDS and
3′UTR as exomePeak and MeTPeak, the density of m6A
motifs (number of RRAC motifs in 100 bp of peak) of

winscore-based peaks were more than 2-fold higher than ex-
omePeak and MeTPeak called peaks (Supplementary Fig-
ure S7A and B), suggesting our peaks are more centralized
to real m6A sites. This should be important for the quantifi-
cation of m6A peaks, because non-centralized long peaks
may dilute the signals of m6A differences. Another impor-
tant technical detail was that we defined the m6A ratio of
each merge peaks with multiple sliding windows as the max-
imum m6A ratios of all windows for each sample, respec-
tively. The exact locations and widths of m6A peaks may
be biased by the RNA fragment lengths, sequencing read
lengths and et al., it is of great advantage to use the peak
summits of each library for the overlapped peaks other than
the exact same region when comparing the m6A ratios us-
ing m6A-seq data from different labs. Third, to calculate the
m6A ratios, we required the input RPKM > 5 to deal with
the unreliable m6A ratios with low read coverage. Fourth,
we used quantile normalization to normalize the m6A ra-
tios across all samples, thus the bias caused by different im-
munoprecipitation efficiencies across the libraries were min-
imized. Last but the most important, we identified the m6A
regulators based on m6A modules other than single m6A
sites, which greatly minimized the impact of using the noisy
m6A quantifications of single m6A peaks.
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