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The design concept and dosimetric characteristics of a new applicator system for 
intraoperative radiation therapy (IORT) are presented in this work. A new hard-
docking commercial system includes polymethylmethacrylate (PMMA) applicators 
with different diameters and applicator end angles and a set of secondary lead 
collimators. A telescopic device allows changing of source-to-surface distance 
(SSD). All measurements were performed for 6, 9, 12 and 18 MeV electron 
energies. Output factors and percentage depth doses (PDD) were measured in a 
water phantom using a plane-parallel ion chamber. Isodose contours and radiation 
leakage were measured using a solid water phantom and radiographic films. The 
dependence of PDD on SSD was checked for the applicators with the smallest 
and the biggest diameters. SSD dependence of the output factors was measured. 
Hardcopies of PDD and isodose contours were prepared to help the team during the 
procedure on deciding applicator size and energy to be chosen. Applicator output 
factors are a function of energy, applicator size and applicator type. Dependence 
of SSD  correction factors on applicator size and applicator type was found to be 
weak. The same SSD correction will be applied for all applicators in use for each 
energy. The radiation leakage through the applicators is clinically acceptable. The 
applicator system enables effective collimation of electron beams for IORT. The 
data presented are sufficient for applicator, energy and monitor unit selection for 
IORT treatment of a patient.

PACS number: 87.00.00, 29.20.-c
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I. InTroDucTIon

During the last few years, intraoperative radiotherapy (IORT) with electron beams has been 
reintroduced into the clinic (primarily due to mobile linear accelerators). Intraoperative radio-
therapy involves the delivery of a single large radiation dose to the exposed tumor at the time 
of surgical exploration or to the bed of a resected tumor. When a conventional, non-dedicated 
accelerator is employed for intraoperative radiotherapy, a specially designed IORT applicator 
system must be used. 

An applicator system for IORT serves three major functions: collimation of the electron 
beam, delineation of treatment volume, and retraction of normal tissues. The applicator used 
at our institution is a commercial device of the hard-docking type, which means that the treat-
ment applicator positioned in the patient is rigidly attached to the collimator head of the linear 
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accelerator. Some of the IORT systems of the hard-docking type have been previously described 
in the literature.(1-4) The recent publications on the dosimetry and design of a soft-docking type 
IORT device are also important.(5,6) To the best of our knowledge, no data on the IORT applica-
tor used at our institution has been published.

The aim of this work is to present the data that we deemed necessary for clinical use of the 
IORT device. The lateral extent and depth of the target volume can be determined by direct ma-
nipulation in the surgical wound or by means of an ultrasonic scan with the transducer inserted 
into the surgical cavity. Energy and applicator size are then selected such that the 90% isodose 
surface, to which the radiation oncologist prescribes dose, would cover this target volume with 
limited margins. The depth dose data and dose distributions should be presented in a graphical 
way that makes the task of applicator and energy selection fast and comprehensive. Dosimetric 
measurements were made to allow calculation of the MU setting for any irradiation condition 
(energy, applicator size, treatment distance). From these data, the delivered dose, D, and moni-
tor units, MU, are related by the equation (assuming that 1 MU = 1 cGy):

 
 D = MU × PDD(d) / 100 × OF × S      (1) 

In this equation, PDD(d) is the percent depth-dose (along the clinical central axis, defined 
later), OF is the applicator output factor (dose per monitor unit at the depth of maximal dose 
and at the SSD = 100 cm), S is the SSD correction factor. 

It was also recommended that, before placing an IORT system into clinical service, extent 
of radiation leakage through the applicator wall should be determined.(7) 

 
II. MATErIALS AnD METHoDS

A. IorT device description
The IORT device manufactured by Arplay Medical (Izeure, France) was developed in collabora-
tion with the Lyon Sud hospital. For IORT treatments at our institution, the device is attached 
to an Elekta Precise (Elekta Oncology Systems) accelerator. The device includes an adapter 
that connects to the linac head, and a set of PMMA applicators with circular cross sections. 
The major components of the system are schematically shown in Fig.1. A photograph of the 
system is shown in Fig. 2.

The telescopic device allows changing of the source-to- applicator-end distance in the range 
up to 100–110 cm. This makes the task of positioning a patient and attachment of the applicator 
to the adapter comfortable.  

The fixed collimator has a square aperture of 10 by 10 cm2. The secondary collimators are 
made of lead (thickness of 0.5 cm) and have circular apertures. The secondary collimator aper-
ture size is 0.2 cm less than the inner diameter of the applicator in use. The shape of the fixed 
collimator (square), and the thickness and dimensions of the lead collimator are defined by the 
manufacturer. Collimator jaws settings of the accelerator are kept constant at 14 by 14 cm.

A total of 10 circular applicators of different diameters and end angles made of PMMA with 
a wall thickness of 0.4 cm are available. The applicators inner diameters are 40, 50, 60, 80 and 
100 mm. The applicator end, which is positioned in the patient, can be straight or beveled to 30°. 
At the patient end of the applicator, a ring of brass is placed to minimize the dose contribution 
from the wall scatter. PMMA offers the advantage of being transparent compared to metallic 
applicators, which makes positioning of the applicator comfortable for the surgeon. 

After the applicator is positioned in the surgical wound, the patient is brought to the accel-
erator on a surgical couch that can be tilted in the longitudinal and lateral directions, and can 
be moved up and down. By changing height and tilt of the couch as well as gantry angle and 
source-to- applicator-end distance, the upper part of the applicator is inserted into the IORT 
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Fig. 1. Illustration of the main components of IORT device.

Fig. 2. Photograph of the IORT device.
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device adapter and secured in this position with two nuts. Distance meter readings, which are 
transformed into SSD, are taken at this stage.

 
B. Depth-dose measurements
The central axis for beveled applicators has little significance clinically because vertical depth 
from the phantom surface has more relevance for IORT. Therefore, a new “clinical” axis is 
defined as the line projecting perpendicularly from the phantom surface and intersecting the 
central axis of the applicator at the surface, as shown in Fig. 3.(8) 

For straight applicators, the angle of incidence Θ is equal to 0°. However, for beveled ap-
plicators, Θ is equal to the angle of the bevel, and the clinical and geometrical central axes are 
not identical.  

The depth doses for all applicators were measured in a water phantom along the clinical 
axis and normalized such that 100% represents the value of maximum dose. Beveled appli-
cators were placed with the beveled end along the cross-plane direction (i.e. flush with the 
water surface).

All scanning and point measurements were made in water using a PTW Markus ion chamber 
(PTW FreiburgGmbH, Freiburg, Germany) with a commercially available water phantom (The 
Blue Phantom, IBA Dosimetry). Depth-ionization curves were converted into depth-dose curves 
using the available AAPM protocols based on the TG-25 report.(9) 

All measurements were performed at SSD = 100 cm. For the smallest and the biggest ap-
plicators, depth doses were also measured at SSD = 110 cm. The differences in depth dose were 
found to be negligible in both cases. Hence, depth dose changes as a result of SSD changes 
will be ignored in the calculations.

Fig. 3. Cross-sectional view of the IORT positioned above a phantom with definition of the geometrical and clinical axes.
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c.  output factors
Applicator output factors are defined as the ratio of output for the applicator of interest to the 
output for the 14 × 14 cm2 standard electron applicator. First, electrometer readings (Mref), 
were taken in reference conditions (14 × 14 cm2 applicator with SSD = 100 cm) for a fixed 
number of monitor units, for all energies in use. The output factors were then measured by 
placing the ion chamber at dmax along the clinical axis. At dmax position, the electrometer reading 
Miort was taken for the same number of monitor units as it was in the measurement of Mref. 
Although there might be some differences of the stopping-power ratio and the perturbation 
factor between the two irradiation setups, these differences are sufficiently small to have little 
effect on the ionization to dose conversion. This additional uncertainty in output was estimated 
to be between 1% and 2%.(6)  

Hence, the signal from the ion chamber, M, can be considered directly proportional to the 
absorbed dose to water, D. Thus, for the same number of monitor units, the following relation-
ship is valid at dmax:

 Diort = (Miort / Mref) * Dref   [Gy] (2)

The accelerator is calibrated to deliver 1 cGy per MU at dmax for all nominal electron ener-
gies in reference conditions. Hence, the output factor OF in the IORT geometry and at dmax is 
given by: 

         

 OF = Miort / Mref   [cGy / MU] (3)

Repeated measurements using the ion chamber were made under reference conditions at 
the beginning and at the end of the measurement series, to correct for any changes in accel-
erator output. 

Applicator output factors were measured for all 40 energy/applicator combinations.

D. SSD correction
For the SSD correction factor, we decided to rely on the interpolated results of measurements 
at three different distances: SSD = 100 cm, SSD = 105 cm and SSD = 110 cm. Measurements 
were performed using a Markus chamber placed in the RMI 457 Solid Water phantom (Gammex  
Inc., Middleton, WI) and Farmer 2570 electrometer (NE Technology Ltd., Berkshire, UK). 
An SSD correction factor S was defined as the ratio of output at arbitrary SSD to the output 
at SSD 100 cm for the same applicator and the same energy. Thus, SSD correction factor for 
SSD 105 cm and SSD 110 cm could be found as the ratio of electrometer readings M at the 
corresponding distances to the electrometer reading M (100) at SSD 100 cm. 

S (100 cm) = 1
S (105 cm) = M (105) / M (100)
S (110 cm) = M (110) / M (100)
Based on these three points, a quadratic polynomial was created in order to allow calculation 

of SSD factor for any SSD between 100 cm and 110 cm.

 
 S = A1* SSD(cm)2 + A2 * SSD(cm) + A3 (4)

E. Isodose measurement
KODAK X-OMAT (Eastman Kodak, Rochester, NY) ready-packed films were sandwiched 
between slabs of Solid Water RMI 457 phantom and irradiated edge-on in the IORT set-up at 
SSD = 100 cm. For consistency, each film was irradiated in the cross-plane direction, which 
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was required for beveled applicator measurements made in the plane containing the applica-
tor’s major elliptical axis.

Film optical density was subsequently analyzed using a VIDAR 16 Pro film scanner and the 
Wellhofer OmniPro software (IBA Dosimetry America, Bartlett, TN, U.S.A.). Isodose contours 
for all energy/applicator combinations were produced. 

F. radiation leakage measurements
One of the advantages of IORT is that the area to be irradiated can be localized and critical 
normal tissue can be placed outside the target area. Thus normal tissue will receive much 
lower dose. 

However, the dose to the surrounding tissue can still be greater than desired due to the 
leakage through the PMMA applicator wall and through the collimation system. The tissue of 
concern may be located lateral to the treated area beyond the applicator end or next to the side 
of the applicator.

The effect of leakage was measured by placing X-OMAT radiographic film in a solid water 
phantom perpendicular to the outer surface of the applicator and parallel to the central axis. 
Comparison of this exposed film to one exposed at the end of the IORT applicator demonstrated 
the amount of leakage and where it is greatest.  

 
III. rESuLTS 

The percent depth doses along the clinical axis of the largest applicator (100 mm) as a function 
of energy are plotted for the straight and beveled end, respectively, in Fig. 4 and Fig. 5. 

These plots illustrate the fact that for all measured applicator sizes and energies, depth doses 
for the beveled applicators were lower than depth doses for the straight applicators for the same 
respective applicator diameter and energy. This difference should be taken into account during 
energy selection for an IORT treatment.

Fig. 4. Straight end IORT device: measured PDD along the clinical axis for each beam energy.
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Graphical comparison of measured depth doses for the largest (100 mm) and the smallest 
(40 mm) applicators is presented in Fig. 6. As expected, the difference in PDDs becomes more 
pronounced as the beam energy increases.

Fig. 5. Beveled end IORT device: measured PDD along the clinical axis for each beam energy.

Fig. 6. Graphical comparison of measured PDD for 40 mm and for 100 mm applicators, straight end in different energies.
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A. output
Output factors as a function of applicator diameter and electron energy are presented for the 
straight and the beveled applicators in Fig. 7 and Fig. 8, respectively. 

It can be seen that, for the IORT applicator, the output dependence on field size is stronger, 
especially for low energies. The reason for that variation is the difference in design of the 
standard and the IORT applicators, specifically the position of the final collimator. In the stan-
dard applicator, the field is defined by an insert which is placed very close (usually 5 cm) to 
the skin. In the IORT applicator, field size is defined by the secondary collimator (see Fig. 1) 
which is situated 25 cm from the applicator end. The concept of side-scatter equilibrium is 
very important in understanding the variation of output as function of collimator size and 
position. At the level of a final beam-defining collimator, if more than 99% of electrons that 
could reach the point of interest (measurement) in the phantom pass through the collimator 
opening, then side-scatter equilibrium is said to exist. When the collimator closes sufficiently, 
some electrons that could have reached the point of interest are removed from the beam and 
side-scatter equilibrium is lost, and this leads to output factor decrease.  Obviously, when the 
collimator is placed further from the point of interest, the field size at which the loss of side-
scatter equilibrium takes place increases. This effect is most significant at low electron energies, 
since the angular scattering power for electrons is approximately inversely proportional to the 
square of the energy. (See Ref. 2)

Fig. 7. Output factors for straight applicators versus applicator diameter for each beam energy.
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B. SSD correction
SSD correction factors were found to be applicator size independent (differences less than 
0.4%). This observation contradicts the general understanding with external electron beams 
which exhibit strong field size dependence. The reason for this contradiction is again in IORT 
applicator design: when SSD changes, the secondary collimator which defines the radiation 
field moves further from the source so that SSD variations do not lead to changes in the field 
size. SSD correction factors averaged over all applicators sizes are presented in Table 1 and 
Table 2, for the straight and beveled applicators, respectively. 

It can be seen that the maximum difference in the SSD correction factors between the 
straight and the beveled end applicators is 1.5%, for the 6 MeV energy and SSD 110 cm. These 
differences were deemed clinically insignificant, and it was decided to apply the same SSD 
correction factors for all applicators in use. For this purpose, the average values of the SSD 
factors in Tables 1 and 2 were taken (Table 3). Coefficients of the quadratic polynomials are 
presented in Table 4.

Table 1. SSD correction factors for the straight applicators.

 Energy/SSD 100 105 110

 6 MeV 1.000 0.875 0.768
 9 MeV 1.000 0.891 0.797
 12 MeV 1.000 0.897 0.809
 18 MeV 1.000 0.900 0.817

Table 2. SSD correction factors for the beveled applicators. 

 Energyl/SSD 100 105 110

 6 MeV 1.000 0.886 0.780
 9 MeV 1.000 0.893 0.803
 12 MeV 1.000 0.898 0.805
 18 MeV 1.000 0.898 0.814

Fig. 8. Output factors for beveled applicators versus applicator diameter for each beam energy.
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Table 3. SSD correction factors for all applicator sizes and types.

 Energy/SSD 100 105 110

 6 MeV 1.000 0.880 0.774
 9 MeV 1.000 0.892 0.800
 12 MeV 1.000 0.898 0.807
 18 MeV 1.000 0.899 0.815

Table 4. Coefficients of the quadratic polynomials for calculation of SSD correction factors.

 Energy A1 A2 A3 R2

 6 MeV 0.000262 -0.077646 6.143542 1.000
 9 MeV 0.000304 -0.083923 6.348482 1.000
 12 MeV 0.000239 -0.069577 5.563333 1.000
 18 MeV 0.000351 -0.092150 6.706427 1.000

c. Isodoses
Isodose contours for beveled and for straight applicators for the 6 MeV and 18 MeV beams 
have been plotted for the 40 mm and 100 mm applicators in Fig. 9 and Fig. 10, respectively. 
Straight applicators produce a circular field and, therefore, the isodose distributions of Figs. 9 
(c) and (d) and 10 (c) and (d) represent any plane coincident with the clinical axis. For beveled 
applicators, the isodose distributions of Figs. 9 (a) and (b) and 10 (a) and (b) represent the plane 
containing the applicator’s major elliptical axis, and are asymmetrical about the clinical axis. 
The beveled applicator isodose distributions for the plane containing the applicator’s minor 
elliptical axis are symmetrical about the clinical axis, and are closely represented by the straight-
applicator distributions for the same respective applicator diameter and energy. The rounding 
of the isodose lines for the higher electron energies can be observed, as well as the difference 
between straight and beveled applicators. These results emphasize that the radiation oncolo-
gist and the surgeon must be aware of the difference in the shape of the isodose distributions 
when the beveled applicators are used. Depth dose data on the central axis are not enough for 
selection of energy and applicator size for adequate coverage of the target.
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D. Leakage
The collimation system of the IORT device allowed for minimal leakage to the patient. Radia-
tion leakage through the applicator increased with applicator size and beam energy, and was 
found to be greatest for the 100 mm applicator and 18 MeV beam. Distribution of absorbed dose 
along the wall of the 100 mm applicator at 18 Mev is shown in Fig. 11. Note that the maximum 
dose was at the applicator surface in the vicinity of the brass ring (point A). At this point, the 
radiation leakage was about 13% of the maximum dose to the target. At point B (5 cm above 
the brass ring), the leakage was about 8% and, at the point C (5 cm below the brass ring), the 
leakage was about 3%. For the 40 mm applicator and 18 MeV beam, the doses at points A, B 

Fig. 9. Isodose contours for beveled ((a),(b)) and for straight ((c),(d)) applicators for the 6 MeV and 18 MeV beams for 
the 40 mm applicators.

Fig. 10. Isodose contours for beveled ((a),(b)) and for straight ((c),(d)) applicators for the 6 MeV and 18 MeV beams for 
the 100 mm applicators.
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and C were 5%, 4% and 2% respectively. Radiation leakage for the beams with lower energy 
significantly decreased.

 
IV. concLuSIonS

Applicator output factors were a function of energy, applicator size and applicator type. The 
overall range of output factors was demonstrated to be 0.726–1.089 for all applicator sizes and 
energies. Properties of output factors were qualitatively explained by a complex dependence 
of scattered radiation on geometry and on energy.

Analyzing IORT depth dose data for beveled applicators required definition of “clinical” 
central axes. PDD values for beveled applicators were less than the corresponding percent depth 
doses for the straight applicators.

Dependence of SSD correction factors on applicator size and applicator type was found to 
be weak. For each energy, the same SSD corrections were applied for all applicators in use. 

Fig. 11. Leakage through the applicator wall. Distribution of absorbed dose along the wall of the 100 mm applicator  
at 18 Mev: A - at the vicinity of the brass ring; B - at 5 cm above the brass ring; C - at 5 cm below the brass ring.  
Blue = < 2%; pink = 3%-4%; red = 5%-8%; yellow = 9%-13%.
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Calculation of SSD correction factors were based on the quadratic polynomial equations valid 
for all SSD values between 100 cm and 110 cm.

Examples of isodose distribution were presented. These examples demonstrated how the 
geometric coverage of the 90% isodose contour varied as a function of electron energy,  applicator 
size and applicator type.

We have found that the prescription of the electron beam energy should be based on the 
isodose distribution rather on depth dose data on the central axis alone.

The radiation leakage through the applicators is clinically acceptable (maximum about 13%; 
practically less than 8% for all applicators and energies). 

The data presented above are sufficient for applicator, energy and monitor unit selection for 
IORT treatment of a patient. 
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