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Abstract: This narrative review highlights the complexities of the gut microbiome and health-
promoting properties of prebiotic xylans metabolized by the gut microbiome. In animal husbandry,
prebiotic xylans aid in the maintenance of a healthy gut microbiome. This prevents the colonization of
the gut by pathogenic organisms obviating the need for dietary antibiotic supplementation, a practice
which has been used to maintain animal productivity but which has led to the emergence of antibiotic
resistant bacteria that are passed up the food chain to humans. Seaweed xylan-based animal food-
stuffs have been developed to eliminate ruminant green-house gas emissions by gut methanogens in
ruminant animals, contributing to atmospheric pollution. Biotransformation of pentosan polysulfate
by the gut microbiome converts this semi-synthetic sulfated disease-modifying anti-osteoarthritic
heparinoid drug to a prebiotic metabolite that promotes gut health, further extending the therapeutic
profile and utility of this therapeutic molecule. Xylans are prominent dietary cereal components of
the human diet which travel through the gastrointestinal tract as non-digested dietary fibre since
the human genome does not contain xylanolytic enzymes. The gut microbiota however digest
xylans as a food source. Xylo-oligosaccharides generated in this digestive process have prebiotic
health-promoting properties. Engineered commensal probiotic bacteria also have been developed
which have been engineered to produce growth factors and other bioactive factors. A xylan protein
induction system controls the secretion of these compounds by the commensal bacteria which can
promote gut health or, if these prebiotic compounds are transported by the vagal nervous system,
may also regulate the health of linked organ systems via the gut–brain, gut–lung and gut–stomach
axes. Dietary xylans are thus emerging therapeutic compounds warranting further study in novel
disease prevention protocols.
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1. Introduction

This study highlights the gut microbiome and how it generates prebiotic metabolites
from dietary components with beneficial effects on members of the gut microbiota and
linked organ systems in health and disease [1–3]. Devani-Davari et al., 2019 [4], state that
prebiotics are a group of nutrients that are degraded by gut microbiota, and many additional
studies cited in this review show how this leads to the maintenance of the varied cell
populations present in the gut microbiome and also has health-related benefits [4]. The term
prebiotics should not be confused with the term probiotics. A consensus statement released
by the international scientific association for probiotics and prebiotics has recommended
a definition for the use of the term probiotics [5] as “live microorganisms that, when
administered in adequate amounts, confer a health benefit on the host”. Etymologically
the term probiotic is a Greek term meaning “for life”. A prebiotic is “a dietary substrate

Pharmaceuticals 2022, 15, 1151. https://doi.org/10.3390/ph15091151 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph15091151
https://doi.org/10.3390/ph15091151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-2020-0056
https://orcid.org/0000-0001-9237-0524
https://doi.org/10.3390/ph15091151
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph15091151?type=check_update&version=1


Pharmaceuticals 2022, 15, 1151 2 of 17

that is selectively metabolized by the host microbiome to confer a health benefit” [5,6].
Dietary supplements have been suggested to have the ability to combat COVID-19 disease
and the gut dysbiosis associated with this condition [7,8] and confectionaries containing
phytochemicals with anti SARS CoV-2 activity have even been developed.

Xylans and their microbiome generated metabolites are important prebiotic com-
pounds. The human genome does not encode enzymes with xylanolytic capability, and
thus, dietary xylans transit the gastrointestinal tract undegraded, acting as indigestible
dietary fibre that promotes throughput of the digested gut contents. However, the intestinal
microbiota utilise xylans as a nutrient source and produce xylan metabolites with prebiotic
properties that promote gut health. Specific microbiota members have been engineered
to produce cytokines, growth factors and other bioactive proteins, and secretion of these
compounds can be induced by a xylan induction system [9–11]. This is an innovative
approach to the treatment of specific diseases and represents a technological revolution
through a new therapeutic interface that can be regulated by control of the diet. Thus,
therapeutic responses can be effected not only in the gut but also in major linked organ
systems such as the liver, lung and brain through the gut–liver [12,13], gut–lung [14,15]
and gut–brain [16,17] axes.

2. Xylans Are Abundant Plant Carbohydrates

Xylan is the third most abundant naturally occurring carbohydrate biopolymer on
Earth after cellulose and chitin [18]. Xylan is a component of the secondary cell walls
of dicotyledonous plants, all cell walls of cereals and a major structural carbohydrate
of seaweeds [19]. The human genome does not contain xylanolytic enzymes, and as
a consequence, dietary xylans transit through the gastrointestinal tract undegraded. They
are a major contributor to the fibre content of foods, serving as a bulking agent which
promotes the movement of digested food components through the small and large intestine.
The gut microbiota produce a range of xylanolytic enzymes that degrade xylans [20] into
prebiotic metabolites that regulate the microbiome and significantly contribute to health
and well-being [21]. The intestinal epithelium is important in the maintenance of T cells in
the gut. Intraepithelial CD8α T cells in close contact with intestinal epithelial cells and the
underlying basement membrane aid in the detection of invasive pathogens. T cell survival
depends on β1 integrin interactions with type IV collagen in the basement membrane.
Knock-out of β1 integrin expression in CD8α T lymphocytes decreases levels and the
migratory properties of intraepithelial T cells in-vivo and the protective responses they
provide against pathogenic bacteria. Type IV collagen interactions with β1 integrins on
intraepithelial T cells are not only important for T cell survival but the provision of T-cell
protective properties in mucosal immunity [22].

The gut microbiome contains 10–100 trillion microorganisms [23] that control the
digestion of food and regulate the immune [24,25] and central nervous systems [26] and is
also linked to other major organ systems like the liver [27] and lung [28]. Gut dysbiosis
is associated with long COVID-19 disease [29] and with secondary antibiotic resistant
bacterial infections such as Clostridium difficile that have emerged in the COVID-19 pan-
demic, [30] adding a further complication in the treatment of long COVID-19 disease. Some
members of the microbiome digest fibre [31] and release short-chain fatty acids [32], which
regulate gut health providing gut barrier properties; prevent weight gain [33] and lower
cholesterol levels [34] and the incidence of diabetes [35], heart disease [36] and the risk
of cancer [37–39]. Gut commensal bacteria produce a range of xylanolytic enzymes that
allow them to utilise dietary xylans as nutrients [20,40]. Long-chain xylans are one of the
most common dietary fibres in the human gastrointestinal tract that promote the growth of
Bifidobacterium pseudocatenulatum [41]. Xylo-oligosaccharides are prominently generated
from xylans by B. pseudocatenulatum, and these have prebiotic properties that counter gut
dysbiosis, [41,42] reducing the inflammatory response in the gut induced by obesity [43].
Methods have been developed to prepare xylans and xylo-oligosaccharides to evaluate
their potential health benefits [41,44–47]. Nutraceutical supplements are being developed
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to combat COVID-19 disease [48,49] and are also of application in the treatment of critically
ill patients [50–53].

2.1. Dietary Xylans

Xylans are complex polysaccharides classified as (i) glucuronoxylans (GXs), (ii) ara-
binoxylans (AXs) and (iii) glucuronoarabinoxylans (GAXs) based on their constituent
monosaccharides [18,54]. Xylans are the second most abundant hemicellulose and rep-
resent ~25–35% of the carbohydrate biomass of woody tissues of dicotyledonous plants
and lignin rich tissues of monocotyledons, comprising up to 50% by dry weight of grasses
and cereal grains. [18,54] Xylans are complex heteropolysaccharides containing a β-(1,4)-
glycosidically linked D-xylose backbone, L-arabinose (L-Ara), D-glucuronic acid (D-GlcA),
D-GlcA methylated at O-4, or acetyl group [18] side chains (Figure 1a,b). These side chains
can be further esterified with acetic and ferulic acids [54]. The type and frequency of these
side chains and their modifications vary with the tissue source of the xylan and determine
whether the xylan has gel-forming properties in situ or acts as a structural carbohydrate [55]
(Figure 1a,b). Xylans in woods and cereal stems are acetylated, and they cross-link cellu-
lose fibres, providing high mechanical support to these tissues [56]. Arabinoxylan in the
cereal endosperm has water retention properties and maintains the hydration of the seed
head [55]. Seaweed xylans occur as 1,3-β-D-xylans; 1,3:1,4-β-D-xylans and 1,4-β-D-linked
xylans, and these are assembled into triple-helical microfibrillar structures that have sim-
ilar supportive properties to the cellulose fibres found in terrestrial plants [57]. Xylans
thus have a variable structure and function depending on their tissue of origin. AX is
a prominent gel-forming xylan in the endosperm of cereal seed heads and its hydration
properties ensure the viability of the embryo in the aleurone layer is maintained [55]. GAX
in the secondary plant cell wall of the cereal stem has a mechanically supportive role and is
acetylated and substituted with ferulic acid to variable degree [56]. In addition, ferulic acid
esters derived from lignin are also found attached to O-5 of L-Ara in wood xylans and form
a linkage group for the xylan to cellulose fibres. Stem and wood xylans also contain α1–2
or α1–3 linked D-GlcA and 4-O-methylated D-GlcA as well as α L-Ara furanose (α L-Araf)
and O-acetyl groups attached to the xylan main chain. Wood xylans are more heavily
substituted with acetyl and ferulic acids compared to cereal xylans [58].

2.2. Pentosan Polysulfate, a Therapeutic Semi-Synthetic Sulfated Xylan

Pentosan polysulfate (PPS) is a semi-synthetic sulfated xylan produced from beech
wood xylan. PPS is heavily sulfated and is referred to as a heparinoid; however, it has
a higher charge density than both heparin and heparan sulfate (HS), is less heterogeneous
and is a small molecular weight drug (4–6 kDa) (Figure 1c). PPS is a potent disease
modifying osteoarthritic drug (DMOAD) [59–61], has been used to treat cystitis and painful
bowel disorder in humans and has anti-viral properties and potential anti-SARS CoV-2
activity [62–65]. Approximately one in every ten residues of PPS has a 4-O-methylated
D-GlcA side chain linked O-2 to the xylan backbone, but PPS is devoid of the other xylan
modifications mentioned above [66].

3. Degradation of Xylans in the Gastrointestinal Tract

The gut microbiota produce xylanolytic enzymes that generate a range of xylan prebi-
otic metabolites (Figure 1d). Degradation of xylan into xylo oligosaccharides (Figure 1e)
and into free xylose requires the combined action of degradative enzymes such as α-L-
arabinofuranosidase (EC 3.2.1.55), α-D-glucuronidase (EC 3.2.1.139), acetylxylan esterase
(EC 3.1.1.72) and ferulic acid esterases (EC 3.1.1.73), which release the side chains from the
xylan backbone. Endo-β-1,4-xylanase (EC 3.2.1.8) acts synergistically with β-xylosidase
(EC 3.2.1.37) to degrade the xylan backbone with the former hydrolysing the internal β-(1,4)
linkages of the xylan backbone to produce short xylo-oligosaccharides, and β-xylosidase
then removes xylose units from the non-reducing termini of these xylo-oligosaccharides
(Figure 1e). β-D-xylosidases are a diverse group of enzymes, and several families of xy-
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losidases have been characterised [67]. The L-Ara, D-GlcA, O-4 Me D-GlcA side chains of
xylans provide solubility to the xylan and some protection to enzymatic depolymerisation
of the xylan backbone. Ferulic acid modification of L-Ara side chains provides stabilising
attachment points for xylans, connecting them to cellulose fibres and providing mechanical
stability in plant tissues (Figure 1a,b).
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Figure 1. Diagrammatic representations of the diverse features of the structural organisation of
hardwood (a) and cereal xylans (b). Representative features are shown using symbol nomenclature for
glycans (SNFG). The main xylan chain is β1–4 glycosidically linked. Xylose (D-Xylp) and Glucuronic
acid (D-GlcAp) residues occur as pyranose and Arabinose as furanose (L-Araf) ring structures in
xylans. Structure of PPS showing its β1–4 linked linear xylan backbone containing a 4-O-methyl
glucuronate side chains attached O-2 to every tenth xylose residue of the main chain. R = sulphate
groups (c). Xylanolytic enzymes that co-operatively degrade xylans (d) into xylo-oligosaccharides
and eventually to xylobiose and then to D-xylose (e). CAZy [68] enzyme families are indicated
in brackets.

Typical xylan side chain structures from beech wood and cereals and their side chains
are shown in Figure 2. Xylans are composed of a β1,4-linked D-xylose backbone containing



Pharmaceuticals 2022, 15, 1151 5 of 17

at O-2 and/or O-3 α-L-Araf and acetyl groups, and exclusively at O-2 with GlcA or 4-O-
methyl-GlcA (MeGlcA) (Figure 2a–e). Complete enzymatic degradation of xylan requires
the co-ordinated action of several enzymes (Figure 1d). The gut microbiome synthesise
these xylanolytic enzymes. The xylanases are classified in the CAZy (Carbohydrate-Active
enZYmes) database [68] into six different glycosidic hydrolase families, GH5, GH7, GH8,
GH1O, GH11 and GH43 (Figure 1d). These differ in specificity, e.g., GH10 xylanases cleave
highly substituted xylan chains whereas GH11 only cleaves xylans with at least 3 unsub-
stituted xylose residues. The CAZy Database (http://www.cazy.org/) is dedicated to the
display and analysis of genomic, structural and biochemical information on carbohydrate
degradative enzymes [68]. The glucuronidases that hydrolyse the GlcA and MeGlcA deco-
rations on xylan chains are members of the GH67 family [69,70]. Two bacterial phyla, the
Bacteroidetes and Firmicutes, have evolved to degrade complex polysaccharides in the gut
such as xylans [71–74].

Endoxylanases generate prebiotic xylo-oligosaccharides from dietary xylans [20,47];
these promote beneficial symbiont microbes such as Bifidobacterium and Lactobacillus sp.
in the human gut and maintain mucosal health and immune function [75–78]. Xylo-
oligosaccharides also inhibit colonization of the gut by pro-inflammatory bacteria, such
as Salmonella sp., and promote growth of Roseburia intestinalis, an abundant butyrate-
producing Firmicute which improves gut barrier properties, and plasma lipid levels at-
tenuating pro-inflammatory effects of a high fat diet, decreasing LPS levels in blood and
LPS-induced IL-1β and IL-13 [78].

3.1. The Xylan Regulon and Production of Xylanolytic Enzymes

The xylan regulon [79] is a cluster of genes in commensal bacteria that encode for
a number of xylanolytic enzymes. These genes of the xylan regulon are activated by
dietary xylan. Gut commensal bacteria produce a number of endo β-D-xylanase gly-
cohydrolases (GH 30, 10, 11 and 30) which internally cleave β1–4 glycosidically linked
xylopyranose residues of the xylan backbone releasing xylo-oligosaccharides. These xylo-
oligosaccharides then act as substrates for a family of β-D-xylosidases which release
D-xylose monosaccharide units from the non-reducing termini of xylotriose and xylobiose.
Other side chain components (depending on xylan source) are released from the xylan
backbone by α-L-arabinofuranosidases (GH 43, 51, 54, 62), acetyl esterases (CE 1–7, 12) and
α-D-glucuronidases (GH 67,115); GH 1O endoxylanase (Xyn A1) releases arabinoxylobiose,
arabinoxylotriose, xylobiose, xylotriose and methylglucuronoxylotriose from glucuronoara-
binoxylans (GAXs). Gut commensal bacteria utilize the released monosaccharides as
a nutritional source.

3.2. Metabolism of GAGs in the Gut Microbiome and the Essential Roles They Play in
Gut Homeostasis

Glycosaminoglycans (GAGs) are constant components in the gut and are present
as proteoglycans or as free GAG forms. Some members of the gut microbiome produce
GAG depolymerizing enzymes that allow GAGs to be used as nutrient sources by the
gut microbiome [80]. Gut bacteria produce a range of sulfatases which are used in the
degradation of GAGs including heparin and HS, sulfated neurotransmitters such as sero-
tonin and dopamine, and the hormones melatonin, estrone, dehydroepiandrosterone, and
thyroxine [81–83]. GAGs have essential roles in the regulation of the colonization and prolif-
eration of beneficial symbiont bacterial populations and the prevention of gut colonization
by pathogenic bacteria [84]. Digestion of GAGs such as CS, HS, HA and dietary xylans by
the microbiome generates short chain fatty acids that improve gut health [84–87]. GAGs
are one of the most important host glycans that are continuously and abundantly present
in the intestine through continuous shedding of proteoglycan from the gut epithelium [88].
In murine gut models, CS disaccharides alter the microbiota increasing the prevalence of
Bacteroides acidifaciens [86], a bacterial strain that inhibits pathogenic colonization in the
gut via induction of IgA production [89]. Oral administration of other GAGs also elicits
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beneficial gut responses promoting growth of Lactobacillus bacteria which ensures gut
homeostasis [90,91]. Oral HS administered as enoxaparin, a low molecular weight heparin,
improves mucosal healing in a murine colitis model [92]. Dietary HS also improves recov-
ery of renal functions in nephrectomized rats [93]. Low molecular weight HA produced by
depolymerization of high molecular weight HA has also been shown to reduce membrane
permeability associated with colitis [94].

The Bacteroidetes are the second-most abundant bacterial phylum capable of cataboliz-
ing a diverse range of polysaccharides, including GAGs, which is attributable to the diverse
range of carbohydrate metabolizing enzymes (CAZymes) in their genomes [95–97]. Proteus
vulgaris, a component of a healthy gut microbiome [98], produces two well-characterized
chondroitinase enzymes that are not encoded in the human genome; thus, GAGs are of
limited nutritive value to mammalian cells but can be utilized by members of the gut
microbiome [99–101]. Unlike the Bacteroides, the ability to degrade GAGs is not widely
prevalent in other gut phyla. Salyers et al. [102] showed 154 faecal strains of Firmicutes
and Bifidobacteria (Actinobacteria) were incapable of metabolizing CS, HA and heparin.
Crociani and colleagues [103] also demonstrated that 239 strains of Bifidobacterium were
incapable of metabolizing heparin, CS, HA and polygalacturonate, and therefore, the abun-
dant Bacteroidetes with GAG-degradative properties have particularly important roles to
play in the maintenance of gut homeostasis.

Pathogenic bacteria can colonize gut tissues using GAGs and PGs as a site of entry to
infect host cells [104]. Enteric pathogens such as Toxoplasmosis gondii, E. coli O157:H7 [104]
and opportunistic pathogenic Streptococci [105] can utilise GAGs as entry points to infect
intestinal cells. Antibiotics used to treat these gastrointestinal pathogens detrimentally
affect beneficial gut bacteria and may cause gut dysbiosis. It is therefore essential that
beneficial gut bacteria be maintained as dominant symbionts to ensure that pathogenic
bacteria do not obtain a niche to colonise the gut microbiome.

Experiments with radiosulfate-labelled PPS (Elmiron) showed it was metabolised
into lower molecular weight forms of lower sulfation, with ~50% of orally-administered
PPS absorbed and excreted in the faeces; 11% of radiolabelled PPS was excreted by the
kidneys, and ~3% of the PPS was discharged in the urine as intact 4–6 kDa PPS [106]. PPS
has efficacy in the treatment of cystitis [107] and urinary tract infections, [108] indicating
that sufficient bioactive levels of intact PPS were present in the urinary tract to provide
a therapeutic effect in urinogenital infections. However, as already discussed, based on the
known GAG degrading capability and xylanolytic enzymes produced by gut microbiota
members, PPS would also be expected to be converted to prebiotic xylo-oligosaccharides,
with roles in the maintenance of gut health extending the therapeutic profile of PPS.

Sodium alginate is a sulfated polymer commonly used as a food additive in Asian
cuisines. An analysis of the human gut microbiota for bacteria capable of degrading algi-
nate into its mannuronic and guluronic acid components also revealed specific members
of the Bacteroides genus with this capability [109]. Additionally, the sulfate-reducing bac-
terium Desulfovibrio piger, which colonizes the gut of ∼50% of all humans, would also be
expected to contribute to alginate degradation [110–114]. Mammalian cells also produce
a number of sulfatases that degrade GAGs and sulfated cerebrosides. These include N-
sulfoglucosamine sulfohydrolase, N-acetylglucosamine-6-sulfatase, iduronate 2-sulfatase,
N-acetylgalactosamine-4-sulfatase, cerebroside sulfatase and N-acetylgalactosamine-6-
sulfatase [115].
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4. Xylans Promote a Healthy Human Microbiome and Linked Organ Systems

Digestion of xylans by the microbiome maintains stable health promoting bacterial
symbionts in the gut [116]. Carbohydrate epitopes released from dietary polysaccharides
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by the microbiota educate the human immune system in infancy, aiding in the provi-
sion of tolerance to food types and minimising the development of food allergies in later
life [117–121]. The microbiota of the gastrointestinal tract have a close symbiotic relation-
ship with the human host with roles in health maintenance, metabolism of indigestible
dietary fibre and synthesis of some vitamins and neurotransmitters [122]. The prevalence
of beneficial symbiont species in the gut prevents the colonization of the gut by harmful
pathogenic cell populations. The human microbiota of the large intestine are dominated by
the Firmicute and Bacteroidetes phyla which represent >90% of the total microbial commu-
nity [123]. Roseburia intestinalis, a butyrate-producing Firmicute, is also important in gut
health [116]. Metagenomic and transcriptomic studies have identified distinctive signa-
tures in gut microbiota in neural disorders such as autism and bipolar disorders [124–126].
Machine learning techniques are also now being applied to the diagnosis of diseases from
dynamic changes in the gut microbiome [127]. The gut microbiota produce bioactive
fragments of polysaccharides that undergo fermentation in the gut, which educate the
immune system in infancy [128], and immunomodulatory responses that subsequently
develop in later life [129], such as development of immune tolerance to food groups and
prevention of food allergies [130]. This is a rapidly evolving area of intensive investigation
using powerful technologies across multiple research disciplines. The FLEXIGUT ratio-
nale is an integrated -omics data analysis framework designed to understand exposomic
associations with food substances that result in chronic low-grade gut inflammation [131].
FLEXIGUT aims to characterize human life-course environmental exposures to specific
substances and how they impact on gut inflammation and resultant instructive immune
responses. Available evidence shows gut metabolites impact on cell populations in vivo
affecting cellular responses to fat storage, hypolipidemia, hypoglycaemia, appetite and
disease processes [131].

A human study comparing the impact of diet versus drugs on the control of cellular
metabolism found that diet had as strong an impact as drugs on many cellular processes and
diseases such as obesity, diabetes, heart disease and neurological diseases [126,132–136].
Diet is a powerful medicine, involving nutrient-signalling pathways effecting the gut
microbiome [137]. The formation of a healthy microbiome in early childhood is important
for the establishment and maintenance of human health in later life. The full impact of
the gut microbiome on the attainment of tolerance to certain foods and the neurological
pathways that train innate immune responses and how these impact on allergic and
autoimmune disorders however is incompletely understood [117–121].

5. Manipulation of the Microbiome Increases Farm Animal Productivity
5.1. Use of Recombinant Xylanase as a Food Additive for Monogastric Farm Animals Improves
Feedstuff Utilization and Animal Productivity

Australian ruminants have an extensive microbiome containing bacteria which pro-
duce a vast repertoire of digestive enzymes that can efficiently degrade native Australian
grasses that have a high lignin and xylan content. A recombinant β-D-xylanase (Ronozyme®

wx2000) has been developed as a feedstuff additive to unlock the nutritive properties of
xylans in foodstuffs for monogastric farmland animals to improve the nutrient yield of
corns and cereals commonly used as foodstuffs for poultry and pigs [138–141]. This results
in increased performance and optimal growth of these animals, improves food efficiency,
and reduces production of waste products and emissions. An increased gut health in terms
of elimination of harmful bacterial populations in the gut microbiome also translates into
healthier more productive animals.

5.2. Elimination of Antibiotic Supplementation in Animal Foodstuffs

The use of prebiotic-generated phytonutrients has been shown to represent an alter-
native to the use of antibiotics to maintain animal productivity [142]. Prebiotic-generated
phytochemicals have been proposed as an ideal alternative to the use of antibiotics in the
poultry industry [143]. Dietary xylo-oligosaccharide supplements and xylanase additives
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increase body weight gain and beneficial gut fermentation metabolites in broiler chickens
fed on corn-based diets leading to improved feed utilization and gut health and a reduced
need for the use of dietary antibiotics [144]. Ferulic acid (FA), a major phenolic metabolite of
plant hemicelluloses, released upon degradation of these carbohydrates by gut microbiota,
protects against oxidative stress and inflammation in the gut, promoting animal health and
more efficient feedstuff utilization. FA also decreases serum interleukin (IL)-1β, IL-2, IL-6
and tumour necrosis factor (TNF)-α levels and their impact on gut inflammation, which
inhibit animal growth and commercial productivity. FA also increases the growth of benefi-
cial symbionts such as the gut Firmicutes and Bacteroidetes. The alleviation of inflammation
and oxidative stress by FA and its ability to maintain a healthy gut microbiome results in
the superior performance of farm animals on feedstuffs they would normally digest poorly
without help from the gut microbiota [145]. Metagenomics has been used to examine the
chicken microbiome genome to better understand how it impacts on health and weight
gain efficiency. As in humans, the microbial populations in chicken gut modulate metabolic
functions, feed efficiency and health due to the chicken’s ability to digest carbohydrates.
This not only produces growth promoting energy-rich metabolites but also aids in the
homeostasis of a healthy microbiome [146]. The bovine rumen microbial community also
harbours potent carbohydrate-digestive enzyme systems that are particularly efficient in
the digestion of plant biomass [147]. The intestinal microbiota are also recognized to have
important roles to play in healthy piglet development through effects on intestinal matu-
ration, education of the immune system and development of tolerance to new foodstuffs
improving piglet health and growth performance [148].

5.3. Manipulation of the Gut Microbiome to Reduce Methane Emissions and Atmospheric Pollution
by Ruminant Animals

Agriculture is the largest contributor to global methane emissions, and ruminants
(cattle, sheep and goats) are the dominant animal contributors. Carbon emissions from
agriculture contribute around 13% of the carbon footprint of Australia, and of these, 43%
are from methane produced by ruminant animals. Methane emissions are estimated to
increase 30% by 2050 if current agricultural practices are not amended, yet few countries
have set methane reduction targets. Rumen microbiota (methanogens) produce methane
from the fermentation of polysaccharides that is then belched out into the atmosphere.
Seaweed-based animal feedstuffs are rich in prebiotic hemicelluloses, including xylans,
which constitute 25–30% of their carbohydrate biomass. This seaweed-based feedstuff
promotes the growth of beneficial symbiont gut bacterial populations and eliminates colo-
nization of the gut microbiome by pathogenic cell populations [149–151] or methanogens
that generate methane [152,153]. A collaboration between Meat & Livestock Australia
and James Cook University has developed a cost-effective seaweed foodstuff called Fu-
tureFeed [154]. This utilizes a native Australian seaweed in a nutritious animal foodstuff
product that significantly reduces methane emissions from ruminant livestock but con-
comitantly increases livestock productivity and the quality of meat production. Methane is
the second most abundant greenhouse gas after CO2 and is present at ~20% of the levels
reported for atmospheric CO2. Methane however is 25–80 times more effective than CO2
at trapping heat in the atmosphere. A significant reduction in methane emissions from
ruminant livestock can thus make a significant positive contribution towards improvement
in global atmospherics contributing to a slowing down of global climate change with no
loss in agricultural productivity.

5.4. The Health Promoting Properties of Xylo-Oligosaccharide Prebiotics in the Treatment of
Human Gut Dysbiosis

Xylo-oligosaccharides are an emerging prebiotic which promote gut health [155], coun-
tering the gut inflammation which occurs after antibiotic treatment and the recovery of
beneficial Lactobacillus, Bifidobacterium, Firmicutes cell populations in the gut microbiome,
previously depleted by antibiotic treatment [76,156]. Re-establishing these gut bacterial
populations also prevents colonization of the gut by pathogenic bacterial cell popula-
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tions [156] and has been found to have beneficial properties associated with the treatment
of neurological disorders of cognitive decline through the gut–brain axis [157,158].

5.5. The Use of Engineered Commensal Bacteria to Deliver Bioactive Therapeutic Compounds
Controlled by a Xylan Protein Induction System

Engineered commensal food-grade bacteria have been developed for the delivery of
anti-inflammatory cytokines and other biologically active molecules in the gut. Lactococ-
cus lactis has been engineered to co-express tetanus toxin, murine IL-2 or IL-6, a novel
vaccination route [159]. The L. lactis system secretes active IL-10 as a delivery system in
inflammatory bowel disease models and in patients with Crohn’s disease [160]. L. lactis is
not a colonizing bacterium and, combined with limited bioactive growth factor half-lives,
repeat therapeutic dosing strategies are required for the treatment of inflammatory bowel
disease [161,162]. An alternative strategy has been developed using engineered Bacteroides
ovatus, a commensal anaerobic Gram-negative bacterium of the colon. Growth factor se-
cretion is regulated by a xylan induction system [163–167]. Keratinocyte growth factor-2
(KGF-2) and TGF-β are epithelial growth factors with immunoregulatory properties of
therapeutic value in the treatment of inflammatory bowel disease. The use of engineered
B. ovatus for focal delivery of KGF-2 and TGF-β has considerable potential in the treatment
of inflammatory bowel disease. Bacteroides spp. are prominent commensal anaerobes found
in the mucin layer coating the colonic mucosa and thus ideally placed for therapeutic
protein delivery to the injured epithelium. The ability of B. ovatus to utilise xylan as its sole
carbon source contributes to its predominance as a representative of the colon microbiota.
Desulfated PPS is also capable of acting as a xylan for induction of selected proteins by the
gut microbiota. This represents a novel level of therapeutic sophistication for PPS. This
aspect of the prebiotic therapeutic application of PPS warrants further evaluation.

6. Conclusions

Microbiome enzyme systems of the human gut are capable of degrading dietary xylans
generating prebiotic metabolites. PPS, a semi-synthetic xylan heparinoid is an efficacious
DMOAD that has also been used in the treatment of cystitis and painful bladder disor-
ders and as an anti-arthritic. Biotransformation of PPS by the gut microbiota converts
it to a health promoting xylan prebiotic extending its therapeutic profile. Xylan derived
oligosaccharides produced by the gut microbiome are emerging agents in the promotion
of human health. These have been examined in the treatment of a number of chronic
conditions affecting the brain, liver and lung tissues through the gut–brain, gut–liver and
gut–lung axes which are served by the vagus nerve which provides a regulatory two-way
communication system for the autonomic and parasympathetic nervous systems. These
novel prebiotic procedures display significant beneficial therapeutic potential warranting
further experimental examination in what represents a new therapeutic frontier.
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