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ARTICLE INFO ABSTRACT
Keywords: Amidst the global COVID-19 pandemic, the urgent need for timely and precise patient prognosis
COVID-19 assessment underscores the significance of leveraging machine learning techniques. In this study,

Machine learning
Lasso

SVM

Prognostic prediction

we present a novel predictive model centered on routine clinical laboratory test data to swiftly
forecast patient survival outcomes upon admission. Our model integrates feature selection al-
gorithms and binary classification algorithms, optimizing algorithmic selection through meticu-
lous parameter control. Notably, we developed an algorithm coupling Lasso and SVM
methodologies, achieving a remarkable area under the ROC curve of 0.9277 with the use of
merely 8 clinical laboratory parameters collected upon admission. Our primary contribution lies
in the utilization of straightforward laboratory parameters for prognostication, circumventing
data processing intricacies, and furnishing clinicians with an expeditious and precise prognostic
assessment tool.

1. Introduction

COVID-19, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, in 2019, swiftly
becoming a global pandemic with significant ramifications for society, economies, and healthcare systems [1]. The virus, primarily
transmitted via respiratory droplets, exhibits a prolonged incubation period, facilitating transmission by asymptomatic carriers.
Symptoms range from fever, cough, to severe manifestations like pneumonia, acute respiratory distress syndrome (ARDS), and
multi-organ dysfunction [2]. Early identification of patients at risk of severe outcomes is imperative for effective intervention and
treatment success.
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Numerous prognostic models for COVID-19 have been developed, relying on demographic data, comorbidities, physical exams,
laboratory findings, and imaging [3-5]. Clinical laboratory parameters, including blood biochemistry markers, immunological pa-
rameters, and inflammatory biomarkers, offer crucial insights into prognosis. For instance, elevated inflammatory markers often signal
disease exacerbation, while fluctuations in immunological parameters reflect the dynamic immune response.

To optimize the utility of clinical data and enhance predictive accuracy, integrating machine learning algorithms has become
pivotal. Techniques like Support Vector Machines (SVM), Random Forest, and Logistic Regression can discern intricate relationships
within data, facilitating precise predictions [6]. By amalgamating these algorithms with routine clinical data collected upon patient
admission, predictive models furnish clinicians with timely and precise prognosis information, aiding in clinical decision-making and
intervention strategies.

This study aims to develop a machine learning algorithm based on SVM, utilizing routine laboratory parameters collected upon
patient admission for swift prognosis prediction in COVID-19 patients. The resultant algorithm serves as a reliable and expedient
decision support tool for clinicians, enabling enhanced treatment and care for COVID-19 patients.

2. Methods

Our objective centers on prognosticating the outcomes of COVID-19 patients, specifically categorizing them into either the” fatal
group” or” survival group”, accomplished through a binary classification task. To delineate the overarching structure of our study, we
depict the comprehensive framework in Fig. 1, characterized predominantly by three integral components: data preprocessing, feature
selection, and binary classification.

2.1. Data source and study population

The data for this study originates from patients admitted to Nanjing Drum Tower Hospital of Jiangsu Province, China, who have all
received a diagnosis of COVID-19 infections. The dataset consists of 599 patients, out of which 199 cases (33 %) exhibit varying
degrees of missing clinical or experimental information. After excluding these 199 patients, a total of 400 patients were included in the
final data analysis for this study.

Among the 400 patients, there are 275 male and 125 female patients. The age of the patients ranges from 30 to 104 years, with an
average age of 76.69 years. The patient prognosis is distributed as follows: 330 cases have successfully recovered and regained their
health, while 70 cases have unfortunately resulted in fatalities.

For the purpose of machine learning analysis, we have incorporated a comprehensive set of 63 indicators as features. These in-
dicators encompass a range of clinical and experimental parameters, including but not limited to C-Reactive Protein (CRP), Estimated
Glomerular Filtration Rate, and High-Density Lipoprotein Cholesterol (HDL-C).

2.2. Data preprocessing
In order to ensure the reliability and quality of our analysis, a series of meticulous data preprocessing steps were undertaken prior
to conducting any subsequent analyses.

Initially, to maintain the integrity of laboratory parameters for feature selection, any samples with missing data were meticulously
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Fig. 1. The research framework of this study.
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identified and subsequently excluded from the study. This careful step was undertaken to ensure that our subsequent analyses were
based on a complete and accurate set of information. After addressing missing data, the dataset underwent a crucial outlier detection
process. The z-score method was applied to pinpoint and eliminate outlier samples that exceeded a threshold of 3 times the standard
deviation. By removing these extreme values, we aimed to mitigate the influence of potentially erroneous data points on our subse-
quent analyses. To enhance the comparability of the diverse feature values, a normalization procedure was meticulously executed. This
step involved transforming the feature values of all samples to a standardized range, specifically within the interval of 0-1. By doing so,
we aimed to mitigate any potential bias arising from the differing scales of individual features, thus enabling a more meaningful
comparison and interpretation of results.

In essence, the data preprocessing phase constituted an essential cornerstone of our study. The exclusion of samples with missing
data, identification and removal of outliers, and the subsequent normalization of feature values collectively laid a robust foundation
for the subsequent machine learning analysis, ensuring the accuracy, reliability, and interpretability of our findings.

2.3. Machine learning algorithms

The core objective of our study is to predict patient prognosis mortality rates based on a comprehensive set of 63 features,
employing binary classification machine learning algorithms. However, not all of the 63 features bear direct correlation to patient
mortality rates. Following meticulous data preprocessing, we adopted established feature selection algorithms to refine and narrow
down our feature set. Subsequently, we harnessed binary classification algorithms to forecast patient mortality rates, leveraging the
chosen set of features.

2.3.1. Feature selection

To enhance interpretability, we opted for feature selection algorithms over dimensionality reduction methods like Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Our study employs four distinct feature selection methods: the
chi-squared test, mutual information, analysis of variance (ANOVA), and the Least Absolute Shrinkage and Selection Operator (Lasso).

The chi-squared test, designed to measure the association between two categorical variables, plays a pivotal role in feature se-
lection. It assesses the relationship between a feature and the target variable by comparing observed and expected frequencies,
quantifying the degree of association. This method is suitable for classification involving discrete variables [7].

Mutual information, a measure of dependence between random variables, evaluates the information sharing between a feature and
the target variable. Higher values indicate stronger dependence, aiding in the selection of relevant features [8]. It works for both
classification and regression tasks, handling both discrete and continuous features.

ANOVA, designed to analyze disparities among multiple groups, assesses variances between different groups, such as target var-
iable categories [9]. By calculating the F-statistic, it determines if means across groups are equal, indicating a feature’s potential
influence. ANOVA is suited for classification scenarios with continuous features.

Lasso, with its L1 regularization component, excels in both feature selection and regression tasks. It forces certain feature co-
efficients to zero, effectively selecting important features. Lasso is valuable for datasets with many features and handles continuous
features, making it efficient in scenarios with feature redundancy [10].

By integrating these feature selection methods, our analysis streamlines the feature space, enabling the identification of crucial
predictors for patient prognosis mortality rates.

2.3.2. Binary classification algorithms

In our pursuit of predicting post COVID-19 infection patient survival, we carefully selected five binary classification algorithms:
logistic regression, random forest, support vector machine (SVM), naive Bayes, and k-nearest neighbors.

(KNN). While our primary objective is to swiftly assess patients’ prognoses based on laboratory indicators, we refrained from
incorporating computationally intensive algorithms, such as neural networks.

Logistic regression, despite its name, is a vital linear classification algorithm. It maps the output of a linear function to a proba-
bilistic realm before classifying based on a predefined threshold [11]. It excels in binary classification, producing a probabilistic es-
timate of class membership likelihood.

Random forest, an ensemble learning method, combines multiple decision trees, each trained on distinct data subsets. Their col-
lective predictions, through voting or averaging, make classification decisions. Random forests shine in complex data scenarios with
high-dimensional features [12].

SVM is a powerful classification algorithm aiming to find a hyperplane maximizing the separation between classes [13]. It handles
non-linear data through kernel functions and identifies support vectors on class boundaries. SVM is effective in high-dimensional,
small-sample datasets. Naive Bayes, based on Bayes’ theorem, assumes feature independence. It works with discrete and contin-
uous features, delivering robust performance even with limited data [14].

KNN classifies samples based on their proximity to training samples. It selects K nearest neighbors and determines the class through
majority voting. KNN excels in uniform data distribution with limited noise [15]. Deploying these algorithms, our study reveals in-
sights into patient survival prognosis post COVID-19 infection, leveraging their unique strengths to uncover complex patterns in our
data.
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3. Results

We conducted a comprehensive assessment of binary classification outcomes by employing established metrics including accuracy,
Area Under the Curve (AUC), precision, recall, and F1 score. To ensure statistical robustness, all experimental results were acquired
through the rigorous application of a 10-fold cross-validation methodology.

3.1. Feature selection performance

Fig. 2 displays the relationship between the percentage of selected features and the binary classification AUC scores. The range
spans from 5 % to 100 %, with the SVM algorithm employed for binary classification. The graph indicates a gradual decline in binary
classification performance as the number of features increases. Within the range of 10 %-15 % of the total feature count, optimal
binary classification performance is observed, notably highlighted by the Lasso feature selection algorithm achieving an AUC score
exceeding 0.925.

3.2. Feature importance

Table 1 details the subsets of features selected by the four feature selection algorithms at the point of highest SVM algorithm AUC.
The final row of the table signifies the common features across the algorithms, elucidating shared critical features in this context.

We proceeded to perform an in-depth analysis of the contribution of the 8 features selected by the Lasso algorithm to the binary
classification model, employing the SHapley Additive exPlanations (SHAP)method. This evaluation, as depicted in Fig. 3, provides
insights into the significance and influence of each feature on the model’s predictions.

3.3. Binary classification performance

A comprehensive comparative assessment of the five binary classification algorithms was conducted, as outlined in Table 2. All five
algorithms utilized the feature subset derived from the Lasso algorithm as input, furnishing predictions regarding the survival out-
comes of COVID-19 patients. Notably, our observations indicate that the recall of prediction outcomes generally surpasses precision, a
phenomenon potentially attributed to the pronounced imbalance in sample composition between recovered and deceased cases.

Moreover, we observed that the Naive Bayes algorithm, while displaying a lower AUC compared to SVM, manifests superior scores
in Accuracy, Precision, and F1 metrics. This divergence implies the susceptibility of the Naive Bayes approach to the influence of class
imbalance, rendering it more adept at handling such scenarios.

Fig. 4a exhibits the Receiver Operating Characteristic (ROC) curves corresponding to each fold within the context of the 10-fold
cross-validation. Meanwhile, Fig. 4b visually presents the composite view of the average ROC curves for the suite of five distinct
binary classification algorithms.

The intricacies of classification model reliability are demonstrated through the reliability curves [16] depicted in Fig. 5. This
graphical representation conveys the alignment between predicted probabilities generated by the classification model and the actual
observed frequencies. The extent of deviation from the 45-degree diagonal line indicates the discrepancy between model predictions
and observed outcomes. Notably, the reliability curves underscore the heightened predictive accuracy and confidence exhibited by
logistic regression and SVM models.

Feature Selection Performance
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Fig. 2. Percentage of features used for training versus AUC score for determining the optimal number of features using the SVM.
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Table 1
Best performing feature sets for feature selection algorithms.
Method number of AUC Features
features
Chi-Squared 13 0.9216 C-Reactive Protein, Cholinesterase, Triglycerides, Aspartate Aminotransferase (AST), Creatinine, Blood urea

nitrogen (BUN), Lactate Dehydrogenase (LDH), Direct Bilirubin, Lymphocyte Percentage, Basophil Percentage,
Atypical Lymphocyte Percentage, Nucleated Red Blood Cell Count (NRBC Count), D-Dimer
Mutual 9 0.9229  C-Reactive Protein, High-Density Lipoprotein Cholesterol (HDL-C), Gamma-Glutamyl Transpeptidase (GGT),
Information Alkaline Phosphatase (ALP), Blood urea nitrogen (BUN), Lactate Dehydrogenase (LDH), Apolipoprotein Al
(ApoA1), Direct Bilirubin, Hematocrit (Hct), Lymphocyte Percentage, Lymphocyte Count, Nucleated Red Blood
Cell Count (NRBC Count), D-Dimer

ANOVA 6 0.9190 C-Reactive Protein, Cholinesterase, Aspartate Aminotransferase (AST), Blood urea nitrogen (BUN), Lactate
Dehydrogenase (LDH), Direct Bilirubin

Lasso 8 0.9277  Lactate Dehydrogenase (LDH), C-Reactive Protein, Blood urea nitrogen (BUN), Atypical Lymphocyte
Percentage, Cholinesterase, Platelet Count, Monocyte Percentage, Total Bilirubin

Intersection 3 / Blood urea nitrogen (BUN), Lactate Dehydrogenase (LDH), C-Reactive Protein

SHAP Summary Plot
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Fig. 3. SHAP-based feature importance.
Table 2
Performance results of the five binary classification algorithms.
Classifier Accuracy AUC Precision Recall F1
LogisticRegression 0.8250 0.9160 0.8250 0.9999 0.9041
RandomForest 0.8675 0.9030 0.8747 0.9818 0.9246
SVM 0.8325 0.9277 0.8347 0.9939 0.9073
Naive Bayes 0.8800 0.9009 0.9301 0.9273 0.9271
KNN 0.8750 0.8816 0.9022 0.9545 0.9268

Lastly, we present the results of dimensionality reduction using Principal Component Analysis (PCA) [17] and t-distributed Sto-
chastic Neighbor Embedding (t-SNE) [18] algorithms in Fig. 6a and b. Employing these techniques, the 8 features selected by the Lasso
algorithm were transformed into two dimensions, and their distribution was visualized. This visualization reveals distinct distribution
patterns between recovered and deceased cases, represented by yellow and purple dots respectively, highlighting the discernible
dissimilarity between the two groups.

4. Discussion

The global outbreak of the COVID-19 pandemic has made timely and effective assessment of patient prognosis an urgent necessity.
Machine learning holds significant importance in predicting the prognosis of COVID-19 patients. Machine learning leverages large-
scale clinical data to uncover potential factors related to prognosis. It establishes predictive models, assisting doctors in formu-
lating better individualized treatment and care plans. Consequently, this enhances patients’ survival rates and the quality of their
recovery. Currently, there are several machine learning models employed for predicting the prognosis of COVID-19 patients. However,
most of these models rely on a diverse range of complex data such as clinical symptoms and medical imaging, resulting in the intricacy
of data collection and processing, as well as time-consuming prediction processes [5,19]. Here, we present a prognosis prediction
model based on routine clinical laboratory test data. By utilizing routine clinical laboratory parameters collected upon patients’
admission, rapid prognosis prediction for patients is achieved without the need for complex data. We predict patient mortality by
combining feature selection algorithms with binary classification algorithms, and we select the optimal algorithm combination
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Fig. 4. ROC curves for binary classification models predicting COVID-19 survival outcomes. (a) ROC curves for each fold in 10-fold cross-validation.
(b) ROC curves for 5 binary classification algorithms.
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Fig. 5. Reliability curves for the five binary classification algorithms.

through controlled variable methods. Ultimately, we have constructed an algorithm based on Lasso and SVM, utilizing eight clinical
laboratory test data points obtained upon patient admission: LDH, CRP, BUN, Atypical Lymphocyte Percentage, Cholinesterase,
Platelet Count, Monocyte Percentage, and Total Bilirubin. This algorithm accurately predicts patient prognosis, with an area under the
ROC curve reaching 0.9277.

The culminating experimental outcomes substantiate the superior performance of the amalgamation involving Lasso feature se-
lection and the SVM binary classification algorithm. This success can be attributed to three pivotal factors. First, the Lasso algorithm
adeptly distills crucial features even in the presence of multicollinearity [20]. Second, the SVM algorithm exhibits a robust resistance to
challenges stemming from class imbalance [21], its intrinsic ability to recalibrate penalty terms contributes to a pronounced focus on
the minority class, thereby heightening predictive accuracy. Third, the convergence of Lasso and SVM, both entrenched in the realm of
linear models, underscores their harmonious synergy and consequent compatibility [22].

CRP, LDH, and BUN were identified as common features selected by several models in our investigation. These clinical parameters
have also been demonstrated to be associated with patient prognosis in multiple studies. CRP is a non-specific inflammatory marker,
with a significant increase observed in CRP levels among the majority of severe patients [23]. Furthermore, meta-analyses have
indicated a notable correlation between elevated CRP levels and the severity of COVID-19 in patients [24]. LDH is commonly present in
various tissues, and SARS-CoV-2 can directly infect lung cells, leading to tissue damage and subsequently causing an increase in LDH
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Fig. 6. Visualization of features selected by Lasso using PCA and t-SNE algorithms. (a) PCA. (b) t-SNE.

levels. The inflammatory response triggered by SARS-CoV-2 can also contribute to elevated LDH levels. Elevated LDH levels can raise
the likelihood of severe illness in patients by approximately 6 times and increase the mortality rate by about 16 times [25]. Serum BUN,
an essential indicator of kidney function, plays a critical role in understanding COVID-19 progression and mortality, which are closely
associated with multi-organ dysfunction. Kidney impairment in COVID-19 patients may result from SARS-CoV-2’s direct attack,
cytokine storms, and hypoxemia. Furthermore, a systematic review has highlighted elevated serum BUN levels as a key risk factor for
increased severity and mortality in these patients [26].

In this study, the Lasso algorithm demonstrated the highest AUC, with its selected features comprising not only CRP, LDH, and BUN
but also five additional laboratory parameters. Thrombocytopenia is a significant feature of SARS-CoV-2 infection and an important
indicator of poor prognosis. Increased platelet consumption and decreased production may be contributing factors to the development
of thrombocytopenia [27,28]. Cholinesterase is an enzyme produced in the liver that hydrolyzes acetylcholine. Impairment of liver
function and the influence of inflammatory cytokines may result in a reduction of cholinesterase levels. The cholinesterase level upon
patient admission can serve as one of the predictive factors for severity and prognosis [29]. The elevation of total bilirubin reflects
damage to the patient’s liver function, and severe impairment of liver function is also a significant influencing factor for adverse
patient prognosis. The counts of atypical lymphocytes and monocytes are two hematological parameters identified by our model. The
increase in atypical lymphocytes and monocytes could be attributed to SARS-CoV-2 infection, and these abnormalities are crucial
characteristics during the early stages of COVID-19 infection [30]. The feature parameters identified by the machine learning model
constructed in this study exhibit significant variations during the course of COVID-19 infection. Our model achieves precise prediction
of patient prognosis by integrating these crucial laboratory parameters, enhancing the accuracy of prognosis assessment.

Our dataset is limited by its relatively small sample size, which consists solely of patients from a single hospital. As a result, the
scalability of our proposed method to larger datasets may potentially incur performance degradation. Furthermore, our machine
learning approach is designed as a two-stage process, involving the selection of features and classification algorithms, both of which
can significantly impact outcomes. This could lead to suboptimal results, especially in scenarios where significant disparities exist
between the distributions of test and training data. Moving forward, we aim to explore end-to-end deep learning methodologies and
validate our approach using larger-scale, multicenter datasets. This will enhance the generalizability and practical utility of our
method.

In summary, we have designed an algorithm that integrates Lasso and SVM techniques, achieving precise prognostic predictions for
COVID-19 patients based on just 8 clinical laboratory parameters collected early upon hospital admission. The strength of our study
lies in its use of straightforward clinical laboratory parameters for prediction, thereby simplifying data processing and offering cli-
nicians a rapid and accurate tool for prognostic assessment.
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