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Robustness of radiomics 
to variations in segmentation 
methods in multimodal brain MRI
M. G. Poirot1,2*, M. W. A. Caan2, H. G. Ruhe1,3,4, A. Bjørnerud5,6,7, I. Groote7,8, L. Reneman1 & 
H. A. Marquering1,2

Radiomics in neuroimaging uses fully automatic segmentation to delineate the anatomical areas for 
which radiomic features are computed. However, differences among these segmentation methods 
affect radiomic features to an unknown extent. A scan-rescan dataset (n = 46) of T1-weighted 
and diffusion tensor images was used. Subjects were split into a sleep-deprivation and a control 
group. Scans were segmented using four segmentation methods from which radiomic features 
were computed. First, we measured segmentation agreement using the Dice-coefficient. Second, 
robustness and reproducibility of radiomic features were measured using the intraclass correlation 
coefficient (ICC). Last, difference in predictive power was assessed using the Friedman-test on 
performance in a radiomics-based sleep deprivation classification application. Segmentation 
agreement was generally high (interquartile range = 0.77–0.90) and median feature robustness to 
segmentation method variation was higher (ICC > 0.7) than scan-rescan reproducibility (ICC 0.3–0.8). 
However, classification performance differed significantly among segmentation methods (p < 0.001) 
ranging from 77 to 84%. Accuracy was higher for more recent deep learning-based segmentation 
methods. Despite high agreement among segmentation methods, subtle differences significantly 
affected radiomic features and their predictive power. Consequently, the effect of differences in 
segmentation methods should be taken into account when designing and evaluating radiomics-based 
research methods.

Radiomics is an established method for quantitative analysis of radiological images. It involves processing of 
medical images to extract large numbers of quantitative image features1–3. In clinical oncology, radiomics has 
(greatly) contributed to prediction of patient outcome and clinical decision-making support4. The radiomics 
approach has also seen applications in early diagnosis of Alzheimer’s disease using positron emission tomogra-
phy (PET)5,6. These successes have increased interest for applications of radiomics in other disciplines, such as 
psychiatry. The application of radiomics for psychiatric disorders constitutes to a relatively new field of research: 
psychoradiology7–9.

Radiomics in psychiatry has seen several applications such as classification, prediction, and treatment 
selection7,9 in diseases like schizophrenia10–14, attention hyperactivity disorder15, bipolar disorder16, and major 
depressive disorder17,18. In these applications, various magnetic resonance imaging (MRI) modalities have been 
employed such as structural T1-weighted imaging, T2-FLAIR-weighted imaging, diffusion tensor imaging (DTI), 
functional MRI (fMRI), and arterial spin labeling (ASL).

Despite these promising applications, reliability of radiomics has been hindering its broad validity and gen-
eralizability. Variability and uncertainty can be introduced in each step in the six-step radiomics pipeline: first, 
image acquisition19–27, processing26,28–37 and segmentation2,3,38–42, then feature extraction and selection, and 
finally statistical inference1,3,38,39,43,44.
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Reliability of radiomics with respect to image acquisition and image processing has been under extensive 
scientific scrutiny, especially in oncology, where 87% of studies on robustness of radiomic features has been 
performed45. This research has yielded standardization of MRI-acquisition protocols and standardization of 
radiomics definitions that the field of psychoradiology can draw from46,47. However, the segmentation in oncol-
ogy has mainly been focused on effects of semi-automatic segmentation37,48–53 of tumor mass rating, whereas 
psychoradiology makes use of different fully-automatic whole-brain anatomical segmentation methods54. Thus, 
oncological findings on robustness to segmentation methods are hard to translate to psychoradiology.

Radiomics has also shown promising applications in the domain of PET imaging55. Here, robustness of radi-
omics features to co-registration has been shown to impact outcome prediciton56 Radiomic features have also 
been used in a comparative method to assess the sensitivity and performance of segmentation methods57,58. The 
importance of robustness for prediction has also been researched in PET56. These works share the same motiva-
tion for ascertaining robustness and provide methods for it. However, the scope of existing literature does not 
cover our imaging modalities, anatomy of interest, and consequently segmentation methods of use.

Thus, domain specific research focusing on the robustness of brain MRI radiomic features for psychora-
diology has been lacking. To our knowledge, only one study has been published in this respect. In this study, 
Li et al.59 found that texture features are the most reproducible brain MRI features in T1-weighted images for 
hippocampal segmentations. Whole-brain and subcortical segmentation accuracy was assessed in comparative 
settings by several authors60–62 Other studies that investigated segmentation accuracy were limited to one or two 
anatomical regions, such as the hippocampus63–68, amygdala66 and caudate and putamen69, but have not reported 
effects on radiomic features. In this work, we analyze the impact of variations in segmentation methods on a full 
radiomics pipeline that uses DTI and T1-weighted radiomic features for classification purposes. Segmentation 
methods included are two established methods: FreeSurfer SAMSEG70,71 and FreeSurfer ASEG72. Two other 
methods included are recent deep learning-based methods: FastSurfer61 and Med-DeepBrain62. We analyze this 
full radiomics pipeline in three subsequent steps:

We analyzed segmentation agreement between pairs of segmentation methods to aid interpretation of fol-
lowing robustness findings.
We analyzed robustness of radiomic features to segmentation method variation by computing the ICC across 
segmentation methods for each radiomic feature. We compare these numbers to scan-rescan reproducibility 
of radiomic features.
We compared discriminative power of the radiomic features generated by these four segmentation methods 
by subjecting them to a diagnostic test, consisting of classifying sleep-deprived subjects and non-deprived 
controls. Literature has shown subtle differences in changes in structural and diffusion weighted imaging after 
sleep deprivation73–77. For sake of dimensionality reduction and generalizability, classification was performed 
on a subset of all features, as is recommended in literature27,78–80.

Results
Of all 46 participants, data were present and consistent. No subjects had to be excluded for initial analysis. None 
of the segmentations nor DTI co-registrations failed. Thirty-two anatomical regions were available for all seg-
mentation methods. Two examples of such segmentations are provided in Supplementary Fig. S1. Subsequently, 
radiomic feats were extracted from T1-weighted and DTI data over four time points (TPs). The total number of 
features extracted was 107, each of which can be attributed to one of the seven feature classes mentioned earlier.

Segmentation agreement.  Dice-coefficients were computed for each segmentation method pair. Fig-
ure  1 shows segmentation agreement for each anatomical area, but left–right averaged where possible. Seg-
mentation agreement as computed for each anatomical area was high (inter quartile range (IQR) = 0.77–0.90). 
Average agreement was highly correlated (ρ = 0.93) between left and right anatomical areas, with the exception 
of the pallidum where left scored worse than right with a Dice-score difference of 0.1.

Radiomic feature reliability.  Supplementary Fig. S2 provides an exhaustive overview of radiomic feature 
reliability as calculated for each feature, for each anatomical region, for each modality and according to the two 
earlier defined metrics: scan–rescan reproducibility and robustness to segmentation method variation. Remain-
ing values were averaged over anatomical regions and feature class (Fig. 2). The choroid plexus, inferior lateral 
ventricles and cerebrospinal fluid (CSF) were excluded due to subpar segmentation quality as prescribed in 
methods Sect. 4.4.

Feature selection and classification.  For the sleep deprivation classification, four subjects were excluded 
because of missing data, one of which was in the sleep wake cycle (SWC) group. Thus, the remaining cohort 
consisted of 22 subjects in the normal SWC group and 20 in the sleep-deprived group. The training partition 
consisted of 30 subjects, the validation partition of eight subjects, and the test set of four subjects.

Initially, about 27 thousand features were generated for each subject: 107 radiomic features, 32 anatomical 
regions, four TPs and two modalities. A subset of features was selected for subsequent analysis in three steps 
described in “Radiomics-based classification and statistical analysis”. In the first step, only first-order shape and 
first-order-based features of the DTI images were included. In the second, excluded anatomical regions are the 
choroid plexuses, the third and fourth ventricles and the CSF. After feature selection, only 640 features remained 
(32 radiomic features, 20 anatomical regions, one coefficient-over-time, one modality). As side analysis, we 
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compared this approach with Chi-Squared based data driven feature selection for which the results can be found 
in Supplementary Table S1.

Computation time per fold amounted to be about a minute. Median performance results were computed 
both in terms of the training loss optimized (BCE) as well as classification accuracy (Table 1). The Friedman test 
yielded 31.18 (p value < 10–6), rejecting the hypothesis that performance was similar among different pipelines. 

Figure 1.   Pairwise segmentation agreement matrix. Dice-coefficients between each pair of segmentation 
methods for each subcortical area. Left–Right averages are shown where possible. Clarification of abbreviations: 
WM white matter, DC diencephalon, CSF cerebral spinal fluid, Inf Lat Vent inferior lateral ventricle.

Figure 2.   Reproducibility and robustness for each class of radiomic features. For an explanation of 
abbreviations see Supplementary Note S6.
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Post hoc testing found that performance using ASEG significantly differed from other methods, and FastSurfer 
differed from SAMSEG. Full results of post hoc testing can be found in Supplementary Table S2.

Discussion
In this work, we have found that despite high whole-brain segmentation agreement, radiomic feature robust-
ness to variability among these selected segmentation methods is only moderate. Consequently, this variability 
significantly affects radiomics-based classification performance.

As compared to literature, this work presents three novel analyses. First, this work presents a broader analysis 
of radiomic feature reliability than previously presented in literature, by including both a wide range of subcorti-
cal areas as well as two MRI modalities, i.e., T1- and diffusion weighted MRI.

Second, whereas existing literature is generally confined to one-to-one comparisons of methods, our work 
provides an independent comparison of four segmentation methods. The unbiased nature of this work counters 
a potential bias in favor of a newly introduced methods in study design. In addition, by including four segmenta-
tion methods in the same setup, this work provides a more comparable comparison among them.

Third, as opposed to most literature concerning comparison of sensitivity of whole-brain segmentation 
methods, our work takes a radiomic approach. We thereby go beyond other work testing sensitivity on volume 
measurements alone, such as in application to Alzheimer’s disease61,62.

Segmentation agreement.  In the first part of this work, we have analyzed the agreement between seg-
mentation method pairs. Disagreement can stem from a variety of sources. For one, it can be anatomically 
dependent. Insufficient contrast of the specific anatomy in T1 can make certain anatomical regions hard to seg-
ment. In addition, a high surface-to-volume ratio can leave certain anatomical regions vulnerable to rapid reduc-
tion of Dice-coefficients. Non-anatomically inherent disagreement can be caused by differences in segmentation 
labeling definitions. This is the likely reason for the low Dice-coefficients in the inferior lateral ventricle and CSF 
produced by the SAMSEG method as compared to the other three methods. Additionally, differences in labeling 
definitions in atlases for conventional methods or training data for deep learning can be the root of systemic 
bias. This might be the cause for slightly reduced agreement between SAMSEG and the other methods, e.g., for 
cortical GM and WM. Thus, all methods showed high agreement, with only SAMSEG showing slight deviation.

Reliability of radiomic features.  The second part of this work concentrated on the effects on radiomic 
feature reliability, broken down into scan-rescan reproducibility and robustness to variations in segmentation 
method. We discuss these reliability results along the lines of causes of modality, radiomic feature (class), and 
anatomical region.

Variations in radiomics measures using the different segmentation methods were lower than scan-rescan 
variability using any given segmentation method. Robustness in DTI consistently outperformed T1-weighted 
imaging, but this does not hold true for scan-rescan reproducibility. A potential cause of DTI outperforming 
T1-weighted imaging might be that T1-weighted images contains sharper contrast around anatomical region 
borders, increasing the effect of slight variations in segmentation method. Our results do therefore not present 
a clear preference in the robustness of one MR modality over another.

Reproducibility of shape and first-order radiomic feature classes generally outperformed higher-order feature 
classes. Previous work on the impact of co-registration on PET radiomics features has found similar results56. 
However, specifically on the matter of hippocampal segmentation, previous work found textural features to be 
the most reproducible59. However, single feature robustness could be application dependent, meaning that a 
feature that is found to be highly precise for a certain dataset and disease could have poor stability when assessed 
for another dataset or disease29. In both reproducibility and robustness, the GLSZM feature class stood out as 
the worst performing. On a feature level, robustness varies greatly as can be seen by the IQR in Fig. 2 and high 
variance in ICC in Supplementary Fig. S2.

Last, our results show that on an anatomical region level, radiomic feature reliability is relatively independent 
of anatomical region, apart from the CSF, choroid plexus, and inferior lateral ventricle. In these anatomically less 
relevant regions, low T1-intensity and low FA values are likely at the root of low reliability.

Robustness of radiomics‑based prediction.  In our work, previous findings in literature and clear 
robustness findings allowed for manual radiomic feature selection.

We assumed that this manual selection would improve our predictive performance. Supplementary Table S1 
shows that manual feature selection did outperform Chi-squared based selected features. This could be attributed 

Table 1.   Classification performance of pipelines for each segmentation method. Median performance of 
cross-validation folds and IQR are shown. Best performance shown in bold.

BCE loss Accuracy

SAMSEG 0.53 (0.37–0.70) 77% (60–89%)

MED-DEEPBRAIN 0.50 (0.30–0.69) 82% (62–91%)

ASEG 0.60 (0.47–0.72) 71% (62–82%)

FASTSURFER 0.46 (0.25–0.66) 84% (74–92%)
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to at least two factors. First due to the close resemblance between our data set and the data sets on which evidence 
for imaging biomarkers of sleep deprivation were found. This could have improved selection of anatomical areas, 
selection of relevant features as well as feature engineering. Second, in data driven feature selection we observe 
overfitting potentially caused by the vast amount of features per sample drowning out signal.

Due to the low performance achieved on data driven feature selection, we have decided not to go deeper into 
the specific features selected, as we expect them the selected sets to contain predominantly noise. In manual 
feature selection, expanding on these biomarkers identified has already been performed by works from which 
we drew our selection methods and further optimizing the sleep deprivation model lies beyond the scope of 
this work.

Although feature selection inherently means that some relations might have been lost and are not investigated 
in this work. However, model optimization and proving generalization of a predictive method on the topic of 
sleep deprivation is not within the scope of this work. Thus, we did not optimize hyperparameters such as model 
architecture or training parameters. Additionally, explanatory analysis of the contribution of radiomic features 
to this sleep deprivation classification lies outside of the scope of this work.

Despite the slight imbalance in the sleep deprivation labels (22/20) incurred by exclusion of subjects, accu-
racy still conveys the model performance in an intuitive way. Our work presents an independent comparison of 
methods that includes more segmentation methods than has previously been presented in literature. Radiomics 
prediction using deep learning based segmentation outperformed classical methods. Post hoc testing found this 
difference significant for FastSurfer as compared to both ASEG and SAMSEG. For Med-DeepBrain this was only 
significant when compared to ASEG, and not to SAMSEG. SAMSEG also significant outperformed ASEG, but 
not the other methods. This illustrates potential advantages of newer, specifically deep learning based methods 
in segmentation. Future research should confirm that these methods perform equally well or better in other 
applications.

Study limitations.  Main limitations of the study come down to the application sensitive nature of radiom-
ics. First of all, with the data acquisition: our study is limited to the two modalities used and shows differences 
in robustness metrics. Our results regarding robustness may not necessarily generalize to other modalities such 
as fMRI or ASL. Second, results regarding the differences in predictive performance of different segmentations 
methods might not generalize to other psychoradiological applications.

The dataset was relatively homogeneous and small in size. The population consisted of relatively young healthy 
individuals, which improves segmentation quality and potentially lowers disagreement among segmentation 
methods. Due to the dataset size, the size of the test set was limited which potentially increases variation in the 
cross-validation performance results. Since we did not stratify for labels in our partitioning scheme, some vari-
ation could also be attributed to slight imbalances due to the small sample size of our dataset.

Whole-brain segmentation only included 32 subcortical anatomical regions. We chose to limit the scope of 
this research to subcortical anatomical regions for two reasons: Cortical parcellation not available for SAMSEG, 
and cortical labeling definitions were inconsistent between VUNO Med-DeepBrain and FreeSurfer ASEG and 
FastSurfer methods.

Conclusion.  Our work shows that small changes in segmentations due to a variation in image segmentation 
method affects radiomic features and subsequent predictive modeling when using these features. The robustness 
of these features is largely independent of the anatomical region, and lower-order radiomic features are generally 
more robust. Noteworthy, modern deep learning-based segmentation methods resulted in radiomic features that 
more accurately distinguishing sleep-deprived cases from controls. Our study suggests that methodological dif-
ferences in fully automatic segmentation are of importance in radiomic feature-based cross-study comparison.

Material and methods
Dataset.  A scan–rescan randomized case–control MRI neuro-imaging dataset of healthy adults (n = 46, age 
26 ± 7 years; 29 women) was used, as described in previous studies73–76. Twenty-three subjects were randomly 
assigned to either a night of sleep deprivation, or a normal SWC. T1-weighted and DTI scans were acquired at 
four TPs over two days: TP1, around 9 a.m. after a night of normal sleep in their own home; TP2, around 8 p.m. 
approximately 11 h after T1; TP3 approximately 23 h after TP1; And finally, TP4, in the afternoon of the second 
day around 4 p.m. Participants in the normal SWC group went home to sleep between TP2 and 3, while those in 
the sleep deprivation group stayed at the hospital. This data collection was approved by the Regional Committee 
for Medical and Health Research Ethics, South-Eastern Norway (REK Sør-Øst, ref: 2017/2200) and conducted 
in line with the Declaration of Helsinki. All participants provided written informed consent. Data, code and 
documentation used in the study are available from the corresponding author upon reasonable request.

MRI acquisition and processing.  Image acquisition consisting of T1-weighted and DTI and processing 
and was conducted in accordance with recommended standard brain segmentation protocols provided by the 
FreeSurfer group81.

T1-weighted brain images were scanned using a 3T Siemens Magnetom Prisma scanner (Siemens Healthcare, 
Erlangen, Germany) using a 32-channel head coil. The acquisition parameters81 were as follows: repetition time 
(TR) = 2530 ms, echo time (TE) = 3.5 ms, flip angle = 7°. The voxel size was 1.0 × 1.0 × 1.0 mm and field-of-view 
(FOV) was 256 × 256 mm2 (256 × 256 matrix) with 176 sagittal slices. Acquisition time was six minutes three 
seconds.

Preprocessing of T1 data consisted of motion correction, skull stripping and intensity normalization using 
the FreeSurfer image preprocessing pipeline (autorecon2)82.
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The DTI scan protocol has been described previously73. It consisted of a full-brain multi-shell Stejskal-Tanner 
pulsed mono-planar gradient scheme83 with a single-shot spin-echo multiband-accelerated echo-planar imag-
ing (EPI) readout module84. Seventy-six axial slices with b-values = [500–1000–2000–3000–4000] (s/mm2) and 
non-coplanar diffusion-sensitized gradient directions were acquired with the corresponding numbers of gradient 
directions ndir = [12–30–40–50–60]. The following parameters were applied: TR = 2450 ms, TE = 85 ms, flip-
angle = 78°. The voxel size = 2.0 × 2.0 × 2.0 mm, FOV = 212 × 212 mm2 (106 × 106 matrix), slice thickness = 2 mm, 
and multiband acceleration factor = 4. Acquisition time was eight minutes and 21 s. In addition, five non-diffu-
sion-weighted image sets (b = 0) of opposite phase-encode direction—but otherwise identical imaging param-
eters—were acquired for correction of susceptibility distortions. Acquisition time was 31 s.

Each DTI volume was affinely registered to the average non-diffusion weighted volume using the FMRIB’s 
Linear Image Registration Tool (FLIRT)85, correcting for intra-scan subject motion and eddy-current distor-
tions. After non-brain tissue was removed86, voxel-wise eigenvalues and eigenvectors were extracted from the 
estimated diffusion tensor and fractional anisotropy (FA) was calculated. The fractional anisotropy (FA) map 
was co-registered to the structural scan and resampled to 1.0 × 1.0 × 1.0 mm using the statistical parametric 
mapping (SPM) toolbox for Matlab 2019b (The MathWorks, Natick, Massachusetts). We manually checked for 
co-registration errors.

Segmentation and Segmentation agreement.  Four whole-brain segmentation methods were 
selected: FreeSurfer Automatic Segmentation (ASEG)87 version 7.1.0, FreeSurfer Sequence Adaptive Multimodal 
Segmentation (SAMSEG)70,71, FastSurfer61 and VUNO Med-DeepBrain62 (VUNO Inc., Seoul, South Korea) 
version 1.0.1. A description of each of these methods is provided in Supplementary Note S1. The selection 
of segmentation methods used was based on three considerations: first, the selection was limited to methods 
producing the same anatomical labeling. Second, methods were required to use the same modality as source, 
being T1-weighted MRI. And last, the different methods represent a mix of underlying methodologies. This mix 
consists of commonly used conventional and recently introduced methods that aim to outperform conventional 
methods through deep learning.

We generated segmentation labels from T1-weighted images and semantically matched these across segmenta-
tion methods, excluding areas that were not available for all methods. All segmentations were checked manually 
for all subjects to exclude potential failures. Segmentation agreement was determined by computing the Dice-
coefficient given in equation below with X and Y being sets of segmentations. It was implemented using numpy 
(v. 1.23.0). For the exact implementation, we refer to the repository that can be found in the data availability 
statement. The Dice-coefficient was calculated for each segmentation method pair, for each anatomical area88. 
We interpreted Dice-coefficients using the same range of strength of agreement as for the Kappa coefficient and 
computed IQRs to aid interpretation89.

Radiomic feature extraction reliability analysis.  We used seven classes to subdivide radiomic fea-
tures, roughly in order of complexity: shape-based features90, first-order features90, gray level co-occurrence 
matrices (GLCM)91, gray level dependence matrices (GLDM)92, gray level run length matrices (GLRLM)93, gray 
level size zone matrices (GLSZM)94, and neighboring gray tone difference matrices (NGTDM). A description of 
these feature classes can be found in Supplementary Note S2.

We computed radiomic features for each anatomical area, in each scan modality and at each TP using 
PyRadiomics95 (v 0.3.0.1) implemented in Python (v. 3.8.4). Geometry tolerance was set to 10–3 mm. Other 
parameters such as bin properties were left to default and can be found in Supplementary Table S3. Feature 
definitions are in compliance with Imaging Biomarker Standardization Initiative (IBSI)46 and are described 
extensively at the proprietary repository96.

Next, we computed radiomic feature reliability for each anatomical area and each radiomic feature. Reliability 
was assessed for two measurements: first, scan-rescan reproducibility was calculated by computing the two-way 
mixed intra-class correlation (ICC)97 between TP1 and TP2, thus before any effects of sleep deprivation. Second, 
robustness to segmentation method variation was computed similarly using ICC among all four segmentation 
methods. ICC was implemented using the Pingouin98 (v. 0.3.10) for Python. Resulting values were averaged over 
all subjects. Throughout this work, averaging of coefficients was performed using Fisher’s z-transformation99. At 
first, computation of radiomic feature reliability produces a comprehensive overview of reliability of each feature 
for each MR modality. Second, reliability metrics were averaged per anatomical region and radiomic feature 
class. Anatomical regions with failing segmentation agreement were excluded to avoid including segmentation 
errors or regions with different semantical definitions that were not previously excluded in the matching of seg-
mentation labels from affecting radiomic feature properties. Failure was defined as a Dice-coefficient below 0.5.

Radiomics‑based classification and statistical analysis.  To investigate the effect of the segmenta-
tion method variation on the discriminative power of radiomic features, we used a binary classifier to separate 
sleep-deprived subjects from controls. This classifier was trained on the radiomic features produced by each of 
the four segmentation methods.

We assumed that manual feature selection outperforms data-driven feature selection for two reasons: first, 
the number of samples per feature is extremely low and second imaging biomarker features of sleep deprivation 
have been identified in previous studies73–77. To test this assumption, we compared the performance of manual 

Dice Coefficient =
2 ∗ |X ∩ Y |

|X| + |Y |
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feature selection with the 500 best Chi-squared selected features. Chi-squared feature selection was implemented 
in Scikit-learn100 (v. 1.0.2).

Manual feature selection was performed in three steps. First, a selection in modalities and radiomic features 
was made based on a combination of literary findings on effects of sleep deprivation and two classes with highest 
radiomic feature reproducibility. Second, anatomical regions with failing agreement, as described in the previ-
ous section, were excluded. Left–right hemisphere values were not averaged, such that potential asymmetric 
properties remained. Last, to better express the temporal relationship in the data while reducing dimensionality, 
the values at the four TPs were used to compute a first-order polynomial. Only the coefficient-over-time of this 
polynomial was used for prediction.

A neural network was trained on the remaining radiomic features. The input of the network consisted of a 
one-dimensional vector of radiomic features, and sleep deprivation as binary class label. The network consisted 
of three blocks, each consisting of a batch normalization layer, a rectified linear unit (ReLU) activation layer101, 
linear layer and a dropout regularization layer, in that order. These blocks were followed by a sigmoid layer 
combined with a binary cross-entropy (BCE) loss.

The network was implemented in PyTorch102 version 1.7.1, on a single Nvidia GeForce RTC 2080 SUPER 
(Nvidia Corporation, Delaware, California) graphics processing unit (GPU) with CUDA103 version 10.2. Adam 
optimization with L1-regularization, default weight initialization, and a constant learning rate of 10–3 were used 
for training and a batch size of 16. The regularization factor was set to 10–3 and dropout probability to 0.3. Train-
ing was performed until loss on the validation set refrained from decreasing. After training the parameters were 
reinstated to the state with lowest validation loss for testing.

A complete data approach, excluding subjects with missing scans, was followed. This is required to allow 
for the identical computation of the temporal effect using a polynomial. Data was divided into a training parti-
tion of 70%, validation partition of 20% and test partition of 10% of the included samples with which tenfold 
cross-validation was performed. Each fold was initialized differently, but for each method the same sequence 
of randomization seed was used with the same partitioning to ensure comparability of the performance of the 
model of each fold.

Shapiro–Wilk test was used to test normality of the paired BCE-lossperformance over all folds. Friedman 
test implemented in SciPy100 version 1.6.2 was used to test the hypothesis that model performance expressed as 
BCE-loss did not differ among methods used. We follow this up by performing a Nemenyi post-hoc test to find 
which pairwise groups have significant difference. This test was implemented in the scikit-posthocs104 package 
version 0.7.0 with a significance level of 0.05.

Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its 
supplementary material. The documented code base is available on GitHub (https://​github.​com/​DEPRE​DICT/​
SLEEEP). Raw MRI data to support the findings of this study are available from the corresponding author, upon 
reasonable request.
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