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Abstract

Protein phosphorylation and dephosphorylation is central to signal transduction in nearly every 

aspect of cellular function, including cardiovascular regulation and diseases. While protein 

kinases are often regarded as the molecular drivers in cellular signaling with high specificity and 

tight regulation, dephosphorylation mediated by protein phosphatases is also gaining increasing 

appreciation as an important part of the signal transduction network essential for the robustness, 

specificity and homeostasis of cell signaling. Metal dependent protein phosphatases (PPM, also 

known as protein phosphatases type 2C, PP2C) belong to a highly conserved family of protein 

phosphatases with unique biochemical and molecular features. Accumulating evidence also 

indicates important and specific functions of individual PPM isoform in signaling and cellular 

processes, including proliferation, senescence, apoptosis and metabolism. At the physiological 

level, abnormal PPM expression and activity have been implicated in major human diseases, 

including cancer, neurological and cardiovascular disorders. Finally, inhibitors for some of the 

PPM members have been developed as a potential therapeutic strategy for human diseases. In this 

review, we will focus on the background information about the biochemical and molecular features 

of major PPM family members, with emphasis on their demonstrated or potential roles in cardiac 

pathophysiology. The current challenge and potential directions for future investigations will also 

be highlighted.
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1. Introduction

Protein phosphorylation/dephosphorylation is central to signal transduction and functional 

modulation, affecting virtually every process of cellular physiology. Protein kinases are 

responsible for adding the phosphate group on serine/threonine or tyrosine residues of 

their substrate proteins, leading to altered biochemical function, interaction, localization 

and stability, which are critical to cardiac pathophysiology [1–4]. Like all signaling 

processes, protein phosphorylation is dynamically and reversibly controlled not only by 

protein kinases, but also by their counteracting protein phosphatases, which are responsible 

for removing the phosphate group from targeted proteins. In the human genome, at 

least 518 possible protein kinases [5] and approximately 200 phosphatases [6,7] have 

been identified. For protein phosphatases, they are categorized into three major classes 

according to their substrate specificities, i.e., tyrosine, serine/threonine (Ser/Thr) and dual-

specific phosphatases [7,8]. Protein kinases are often viewed as the drivers of signal 

transduction attributed by their high specificity and robust regulation [9,10]. In contrast, 

protein phosphatases, in particular Ser/ Thr phosphatases, are often viewed as being 

constitutive and nonspecific, serving to balance and maintain signal homeostasis. Such bias 

may have contributed to the overwhelming imbalance in drug targets between kinases and 

phosphatases, with only a few exceptions.

Among the Ser/Thr phosphatases, three superfamilies have been identified based on their 

sequence and structure features [11], including phosphoprotein phosphatases (PPP), metal 

dependent protein phosphatases (PPM) and transcription factor II F (TFIIF)-interacting 

carboxyl terminal domain (CTD) phosphatases (FCP) [7,12]. FCP phosphatases are 

exclusively responsible for dephosphorylation of RNA polymerase II CTD [13]. On the 

other hand, the PPP phosphatases include PP1, PP2A and PP2B (calcineurin) subfamilies 

and have the broadest spectrum of substrates [14–16]. PPPs are oligomeric holoenzymes, 

composed of a handful of conserved catalytic subunits in complex with one or two 

regulatory subunits selected from a large pool of such proteins. It is believed that these 

regulatory subunits are essential for the diverse subcellular localization and substrate 

specificity carried out by the PPPs family [14–16]. In contrast, the PPM phosphatases are 

mostly monomeric enzymes [15,17]. Although relatively limited studies have been devoted 

to PPM phosphatases compared to the PPP family members, recent progress has identified 

many interesting roles for PPM isoforms in cellular stress response, growth signaling and 

metabolism [17,18]. The unique features of PPM phosphatases, the current knowledge of 

their biochemical properties, and their potential role in the context of cardiac health and 

diseases will be the focus of discussion here. Instead of striving for comprehensiveness, we 

aim to highlight the major gaps for future investigations and the potential therapeutic values 

for PPM family members.

2. PPM family: shared structural and biochemical features

PPM phosphatases are highly conserved in their sequences and structure with homologous 

genes identified from prokaryotes, animals and plants [17]. However, significant 

diversification occurred during evolution [17]. In mammals, a total of 18 functional and 

2 enzymaticdead (pseudo-phosphatases) PPM isoforms are annotated [17]. Unlike PPPs, the 
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PPM family members are largely monomeric enzymes with intrinsic sequence and structural 

features necessary for their targeted subcellular localization and substrate recognition. Most 

PPMs show Mg2+ or Mn2+ dependence for their catalytic activity, although Fe2+ has also 

been reported to activate while Cd2+ can inhibit some PPM activities [17].

PPM family members all share a highly conserved catalytic core, even for the two 

pseudo-phosphatase members. Based on the known structure of human PPM1A [19], the 

catalytic core contains two β-sheets forming a sandwiched pocket, surrounded by four 

major α-helices. There are two metal chelating motifs embedded within the catalytic core 

for most PPM isoforms, which explains the metal-dependent activation for PPM family 

phosphatases (Fig. 1A). Beyond the conserved catalytic core, the 13 loops connecting the 

β-sheets and the α-helices in the catalytic core contain isoform specific features in sequence 

and lengths (Fig. 1B), which likely determine the unique biochemical features of each PPM 

isoform, including activation mechanism, substrate recognition and subcellular localization. 

A comprehensive review of the structure of PPM family members in the context of their 

biochemical properties has been published by Kamada et al. [17]. Although PPMs mostly 

function as monomeric enzymes, protein complex recruitment and enzymatic activities can 

also be regulated by post-translational modifications, including phosphorylation, oxidation 

and protein-protein interaction. While some mechanisms have been revealed for the selected 

isoforms, there is no overarching scheme of PPM activation that is applicable to all PPM 

isoforms. Therefore, it is possible that the structural diversity of PPM dictates the unique 

features of each isoform in function and regulation.

3. Functional spectrum of PPM family members

Despite their highly conserved molecular features, individual PPM isoforms participate 

in different cellular signaling processes with diverse features in substrate specificity, 

localization and regulatory interaction [17,18,20,21]. For simplicity, we will focus on 

selected members of the PPM family which have demonstrated potential roles in the 

cardiovascular system. In addition, the PHLPP subfamily will be discussed in more detail 

elsewhere in this special issue.

3.1. PPM1A and PPM1B in stress-signal transduction

PPM1A, also called PP2Cα, is one of the best characterized members of PPM family of 

phosphatase [22]. It is ubiquitously expressed [23] and is identified in complexes with 

stress-activated protein kinases (SAPKs) including p38 MAPK and c-Jun N-terminal kinase 

(JNK) [24], transforming growth factor-β (TGF-β) activated kinase (TAK) [25], NFκB [26] 

and Dvl/β-catenin/Axin complexes [27]. It can also dephosphorylate CDK9 T-loop [28], 

SMAD1/2/3 [29,30], ERK [31–33], antiviral response genes MAVS and SING [34,35], in 

addition to a number of other substrates. Accordingly, PPM1A can serve as a negative 

regulator for SAPK and NF-κB dependent stress responses, TGF-β activation and Wnt 

signaling [20]. In the PPM1A knockout mice, Smad1/2/3 phosphorylation is elevated; 

angiogenesis, inflammation and epithelial repair and regeneration during wound healing 

are impaired [36–38].
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Although PPM1A and PPM1B share extensive similarities in sequence and structure, 

they also have distinct biological functions with both overlapping as well as unique 

substrates. In addition to the shared substrates of SAPKs, MEKK3 and IKKβ with PPM1A, 

PPM1B (or PP2Cβ) also dephosphorylates receptor-interaction protein kinase 3 (Rip3) 

[39] and proliferator-activated receptor-γ (PPARγ) [40]. Therefore, PPM1B contributes to 

the important processes of necroptosis, adipogenesis and inflammatory responses. PPM1B 

knockout mouse is embryonic lethal [41], highlighting its essential role in development and 

cellular homeostasis.

Despite the extensive literature reported on the substrate kinases in cardiac regulation, 

PPM1A and PPM1B are poorly studied in the context of cardiac physiology and pathology. 

Among these reports, PPM1A expression and activity are correlated with cardiac fibroblast 

activation induced by pathological stressors such as aldosterone or anti-fibrotic compounds 

including Simvastatin or Metformin [42,43], or cardiac lipid accumulation [44]. However, 

direct evidence supporting the role of PPM1A and PPM1B in cardiac pathophysiology 

have not been reported. Conceivably, however, PPM1A and PPM1B, by virtue of targeted 

regulation of stress activated MAP kinases and NFkB, can potentially affect cardiomyocyte 

hypertrophy and pathological remodeling. From its targeted regulation of Rip3 and PPARγ, 

we can also speculate that PPM1A/B may have a significant role in modulating myocyte 

viability, mitochondrial function and metabolic activities under stress conditions. Since these 

two PPMs are ubiquitously expressed, their cell type specific expression pattern should be 

carefully evaluated in intact heart and their potential roles need to be investigated with 

cell-type specific manipulation offered by current genetic tools.

3.2. Nuclear PPM1D and PPM1G in stress response and gene regulation

PPM1D (or wildtype p53-induced protein phosphatase 1, Wip1) is the most extensively 

studied member of the PPM family [45]. PPM1D is specifically located in the nucleus 

potentially through two conserved nuclear localization motifs [46]. It has strong substrate 

preference towards the pT-X-pY motif, a signature feature found in the activation/ 

regulatory lip across all three branches of the MAP kinases [47]. Phosphorylation and 

dephosphorylation of the pT-X-pY motif serves as an essential switch for MAP kinase 

activation/inactivation by upstream MAP kinase kinases (MKKs) and protein phosphatases 

[48]. While PPM1D is not the only protein phosphatase to have such activity, it might 

have a significant role in MAP kinase mediated transcriptional regulation in the nucleus. 

One prominent substrate of PPM1D is ataxia telangiectasia mutated (ATM) kinase, which 

is a central player in DNA damage response and p53 activation [49]. Tempering ATM 

activity and p53 activation is a common molecular scheme shared by many cancer cells. 

PPM1D amplification or gain-of-function mutations have been reported in different types 

of cancer [50–52]. PPM1D knockout mice develop immune disorders with major impacts 

on T- and B- cell development, neutrophil differentiation, and macrophage activation in 

association with disrupted p53, mTOR or p38 signaling [53], but are resistant to cancer [54]. 

In addition to ATM mediated cell-cycle arrest, PPM1D also regulates proliferation through 

other check-point proteins, including CHK2, HIPK2, H2AX and H2AZ. Finally, PPM1D 

also modulates PPARγ phosphorylation and activity, as well as autophagy regulator Unc-51-

like kinase (ULK) in adipose tissue, and thus participate in adipogenesis, lipid homeostasis 
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and atherosclerosis formation [55,56]. In short, PPM1D is a nuclear protein phosphatase 

engaged in stress-signaling, DNA damage response, and transcription regulation, with 

important roles in cell-differentiation and proliferation.

Much of the current literature on PPM1D focuses on its role in p53 regulation and 

DNA damage response in cancer. However, p53 mediated transcription reprogramming and 

DNA damage response are common molecular signatures in heart failure caused by ROS 

injury, ischemia/reperfusion and anti-cancer therapies [57,58],. Abnormal activation of p53 

mediated signaling and DNA damage response have also been found in arrhythmogenic 

cardiomyopathy (ACM) caused by LaminA/C and Tmem43 deficiency [59–61]. Therefore, 

it is surprising that very limited study has been devoted to PPM1D’s function in the 

heart. Consistent with its role as an inhibitor to stress/injury induced signaling, Liu et 

al., reported that PPM1D knockout mice showed exacerbated injury following myocardial 

infarction [62]. Finally, PPM1D mutation is also a common genetic lesion associated with 

clonal hematopoiesis during aging and cancer [63,64]. There is growing recognition that 

clonal hematopoiesis represents an important mechanism of abnormal inflammation in 

heart failure, particularly associated with aging [65]. Therefore, a direct role for PPM1D 

in cardiac inflammation may be worth investigating. Overall, PPM1D, by regulating 

genome integrity, could play a significant role in ischemia-reperfusion injury, postinfarction 

remodeling, arrhythmogenic cardiomyopathy, cardiac complication associated with cancer 

therapy, and aging related chronic heart failure.

PPM1G is another nuclear enriched PPM family member which interacts with and 

modulates Cajal bodies and survival motor neuron complex (SMN) to regulate RNA splicing 

machinery as part of the spliceosome complex [66]. The molecular basis of PPM1G nuclear 

targeting is not clear. Loss of PPM1G in mice led to early embryonic lethality with major 

neural developmental defects [67]. However, its role in cardiac physiology and disease has 

not been reported. Considering the importance of RNA processing in cardiomyopathy and 

heart failure, it would be highly informative to explore its function in the context of cardiac 

development and disease progression under pathological stresses.

3.3. Mitochondrial PDPs and PPM1K in metabolic regulation

PDP-1, PDP2 (Pyruvate dehydrogenase phosphatase 1 and 2) are located in the 

mitochondrial matrix through conserved mitochondrial targeting pre-sequence at their N-

terminal which is cleaved from the mature forms [68,69] a conserved feature among 

mitochondrial matrix proteins [70]. Unlike other PPM family members which function 

as monomeric enzymes, the PDPs are the catalytic subunits which form heterodimeric 

enzymes with a regulatory subunit (PDPR). As indicated by their names, PDPs are highly 

specific pyruvate dehydrogenase (PDH) phosphatases, helped by the specific tethering 

between PDPs and the lipoyl motif of the PDH E2 subunit through the regulatory subunit 

PDPR [68]. PDH is the rate limiting enzyme in pyruvate catabolic pathway leading to 

Acetyl-CoA production and is an essential link between glycolysis and ATP production 

and fatty-acid biosynthesis. PDH activity is potently regulated by phosphorylation and 

dephosphorylation of its E1α subunit. PDH kinases (PDKs) are responsible for PDH-E1α 
phosphorylation and inactivation. On the other hand, PDPs activate PDH activity by 
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removing E1α phosphorylation. PDKs have been extensively studied, and the altered 

expression and activities of PDKs have been implicated in metabolic flux regulation, 

Warburg effect and mitochondrial respiration [68,69]. Importantly, different from other 

PPM isoforms, PDPs show marked Ca2+ dependent induction of their activities in addition 

to Mg2+/Mn2+ dependence [71,72]. This feature could be an important molecular basis 

linking adrenergic and metabolic signaling (such as catecholamine and insulin stimulation) 

and mitochondrial activities, since PDP activity promotes pyruvate utilization to fuel TCA 

cycle and ATP production [69,72,73]. Defects or abnormal activation/ inactivation of PDKs 

have been extensively studied in a broad list of human diseases, including diabetes, cancer 

and neurological defects. In stark contrast, PDPs in heart have received limited attention 

so far. A few reports show the expression and activities of PDPs are correlated with 

hypertrophy and aging in the heart and can impact on cardiomyocyte differentiation [74–76]. 

But the direct and specific impact of abnormal activity or expression of PDPs in cardiac 

development, pathogenesis of diabetic cardiomyopathy, ischemic injury and pathological 

remodeling remain to be explored.

PPM1K is another mitochondrial targeted PPM member owing to the presence of 

a mitochondrial targeting pre-sequence at its N-terminus, and its substrate has been 

demonstrated to be the branched-chain α-ketoacid (BCKA) dehydrogenase complex 

(BCKD) [77,78]. Interestingly, BCKD is a genetic duplicate of PDH and catalyzes the 

rate limiting step of branched-chain amino acid (BCAA) catabolism [79]. Parallel to the 

regulatory scheme of PDH, BCKD activity is also potently regulated by phosphorylation 

and dephosphorylation of its E1α subunit by BCKD kinase (BCKDK) and PPM1K. BCKD 

deficiency is causal to Maple-Syrup Urine Disease (MSUD), characterized by abnormal 

accumulation of BCAA/BCKA and lethal neurological complications. More recently, BCAA 

defects have also been implicated in autism, cancer, obesity, diabetes and heart failure 

by modulating nutrient sensing pathways such as mTOR and insulin, as well as ROS 

and glutamine homeostasis [80]. Loss of PPM1K in human is associated with a mild 

form of MSUD [81] while reduced expression of PPM1K is associated with heart failure, 

obesity and insulin resistance in both human samples and animal models [82,83]. In animal 

models, loss of PPM1K expression promoted while PPM1K over-expression attenuated 

heart failure induced by pathological stressors (including pressure-overload and myocardial 

infarction) and metabolic challenge [82,84]. Although BCAA catabolic defects appears to 

be an important metabolic signature in the diseased heart [85], the underlying mechanism 

remains elusive [85–87]. A recent report also shows PPM1K and BCKDK can directly 

regulate cytosolic ATP-citrate lyase, which potentially integrates BCAA catabolism and lipid 

metabolism [80,88]. Therefore, the non-canonical activities of PPM1K should be carefully 

considered as well. In summary, PDPs and PPM1K are both mitochondrial isoforms of the 

PPM family regulating glucose and BCAA metabolism by targeting their corresponding 

key steps of catabolism. There is emerging evidence to implicate their contribution to 

cardiac development and metabolic health. However, their full involvement in cardiac 

metabolic regulation under normal development and disease progression have just begun 

to be recognized.
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3.4. Membrane associated PPM1L, PHLPP1 and PHLPP2 in local cell signaling

PPM1L is an ER targeted PPM isoform due to its transmembrane motif in its N-terminal 

region [21]. In addition to TAK1 as a shared substrate with PPM1A and PPM1B, PPM1L 

specifically dephosphorylates IRE1 [89], a branch of the ER stress response pathway, and 

functions to attenuate unfolded protein response mediated by IRE1 activation. Uncontrolled 

IRE1 activation has been linked to cell death and PPM1L knockout female mice showed 

defective lactating capacity in their mammary gland and lactation-induced cell death in 

mammary epithelium [89]. PPM1L is identified as a candidate gene affecting metabolic 

regulation through systems genetic approach [90] and is shown to be necessary for 

normal adipocyte maturation related to IRE1 mediated signaling [91]. In cardiomyocytes, 

PPM1L also targets the CaMKII phosphorylation site of phospholamban (PLB) [92]. 

Upon overexpression in mouse hearts, PPM1L exacerbated ischemia-induced cardiac 

dysfunction, presumably by tempering either cytoprotective ER stress response or PLB 

mediated calcium homeostasis. It is important to note that PPM1L has remarkable substrate 

specificity. While it potently suppresses IRE1 auto-phosphorylation, it has no impact on 

PERK phosphorylation, which is also an ER membrane associated signaling branch in 

unfolded protein response [91]. In addition, PPM1L specifically dephosphorylates CaMKII 

dependent Thr-17 phosphorylation on PLB but shows no effect on the neighboring PKA 

dependent Ser-16 phosphorylation [92]. This level of specificity defies the traditional view 

of Ser/Thr phosphatases downstream target specificities. However, the molecular basis of 

such specificity is unknown, and it is likely that PPM1L may have other downstream targets 

in a cell type specific manner and serves as a potent regulator for ER-membrane associated 

local signaling. Giving the important role of PPM1L in ER stress and SR calcium regulation, 

it would be expected that PPM1L can potentially play a role in regulating cardiac stress 

response and contractile regulation, particularly under pathological conditions.

PHLPP1 and PHLPP2 are two PH-domain containing PPM isoforms with targeted 

localization to cytoplasmic membrane [17]. They have been extensively studied in cardiac 

hypertrophy and signaling by Purcell lab, and will be discussed in detail elsewhere in this 

issue [93–96].

3.5. Other PPM isoforms

PPM1E and PPM1F, also known as POPX1 and POPX2, are two highly homologous PPM 

isoforms [17]. PPM1F is ubiquitously expressed, while PPM1E is more restricted to brain 

and testicular tissue. PPM1E and PPM1F bind to and dephosphorylate p21-activated protein 

kinase (PAK) and calcium calmodulin dependent kinase (CaMK) [97]. However, there are 

limited studies on their function in vivo based on genetic manipulations. PPM1H is a 

cytosolic PPM isoform with known phosphatase activities towards SMADs 1/5/8, Rab and 

p27 [98–102]. Beyond some indication of its role in BMP signaling and tumor resistance, 

its function in cardiovascular system is unknown. Finally, ILKAP (Integrin-linked Kinase 

Associated Protein) was originally identified as a binding partner of ILK and negatively 

regulates ILK signaling to downstream GSK-3β activation [103–105]. More recently, it has 

been reported that ILKAP targets HIF-1α and has an essential role in hypoxia induced 

apoptosis [106]. Although both integrin signaling and hypoxia are highly relevant in cardiac 

pathophysiology, the functional significance of ILKAP-mediated regulation in the heart has 
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not been reported. It can be speculated that these PPM family members can potentially 

regulate TGF-β signaling and mechanical sensing, thus contributing to cardiac remodeling in 

response to pressure or volume overload.

4. PPM: potential new therapeutic targets for heart diseases

As discussed in detail above, the PPM family of Ser/Thr protein phosphatases consists 

of functionally diverse members. Although they share a highly conserved catalytic 

core, each member demonstrates remarkable specificity in either substrate recognition or 

intracellular localization (Fig. 2). While much of the insights about PPM function have 

been established in cancer, neural and other cell systems, more evidence is emerging for 

their relevance in cardiac physiology and pathology. Considering the known pathways 

involved in PPM mediated regulation, including stress-signaling, cell death regulation, 

DNA-damage response, fuel-specific metabolism and ligand induced extracellular signaling, 

it is highly likely that they may play important roles in cardiac response to pathological 

stress and injuries. However, except for a handful of examples, majority of the PPM 

family members have not yet been well studied in the heart, arguing for a great need 

for future investigations. At the fundamental level, PPM mediated substrate targeting has 

remarkable specificity, but the molecular basis remains to be decoded which will allow 

substrate specific interference. Tissue-specific role in heart should be better investigated with 

the emerging single cell-based transcriptome or proteome analysis platforms. Inactivation 

or activation (loss- or gain-of function) studies need to be implemented in specific cardiac 

constituents (myocytes, endothelium, fibroblasts, macrophage et al.) using targeted genetic 

manipulations. In particular, stress-induced cardiac hypertrophy, dysfunction, fibrotic scar 

formation and metabolic disorder should be investigated more specifically as potential 

outcomes of PPM mediated regulation in the heart (Fig. 3).

One challenge to investigating PPM function and translating the outcome to cardiac 

physiology and diseases is the lack of PPM specific pharmacological reagents. Unlike 

protein kinases, there is a paucity of available inhibitors or agonists targeting protein 

phosphatases, especially for PPM family members. In the past decade, several isoform 

specific inhibitors have been reported, mostly targeting PPM1A, PPM1D, PHLPP1/2 and 

PPM1E/F isoforms and have been tested as potential cancer therapy [17]. However, substrate 

selectivity for many of these compounds have not been fully demonstrated, and their IC50s 

are mostly in micromolar range with only a few PPM1D inhibitors in nanomolar range. As 

more structural information of PPM isoforms have become available, efforts to develop PPM 

pharmacological reagents based on in-silico modeling becomes feasible, and new classes of 

PPM-manipulating small molecules may become available in the future.

Earlier studies demonstrate that PPM1K competes with BCKDK to interact with their shared 

binding motif on BCKDH E2 subunit and confer dephosphorylation or phosphorylation of 

the E1α subunit [77,78]. But specifically inhibiting BCKDK using an allosteric inhibitor to 

block BCKDK interaction with E2 allows PPM1K mediated activation of BCKDH activities 

[107]. Indeed, PPM1K knockout exacerbates while inhibition of BCKDK interaction with 

BCKDH confers potent amelioration to pressure-overload induced heart failure [82,85], 

highlighting the potential of PPM targeted manipulation as a viable therapeutic strategy for 
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heart failure. The functional landscape of PPM in cardiovascular physiology and diseases 

remains a vastly under-explored frontier in signal transduction. With continuing success in 

genetic and pharmacological manipulation, we can expect more progress in this exciting 

area of research in the coming years.
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Fig. 1. 
Structural features of PPM1 family. A. Crystal structure of PPM1A, extracted from 

https://structure.ncbi.nlm.nih.gov/icn3d/share.html?jT2XiUe6vY7NqXAp8. B. Illustration 

of PPM1 structure showing the distribution of β-sheet, α-helical, and 13 loops (L1–L13).
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Fig. 2. 
Intracellular localization, targets and potential downstream cellular effects for major PPM 

isoforms.
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Fig. 3. 
Potenital targeted signaling pathways and pathological implications for individual PPM 

family members. ROS, reactive oxygen species; ER, endoplasmic reticulum; SR-Ca, 

sarcolama calcium.
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