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Abstract

Background: Knowledge of phase, the specific allele sequence on each copy of homologous chromosomes, is
increasingly recognized as critical for detecting certain classes of disease-associated mutations. One approach for
detecting suchmutations is through phased haplotype association analysis. While the accuracy of methods for phasing
genotype data has been widely explored, there has been little attention given to phasing accuracy at haplotype block
scale. Understanding the combined impact of the accuracy of phasing tool and the method used to determine
haplotype blocks on the error rate within the determined blocks is essential to conduct accurate haplotype analyses.

Results: We present a systematic study exploring the relationship between seven widely used phasing methods and
two common methods for determining haplotype blocks. The evaluation focuses on the number of haplotype blocks
that are incorrectly phased. Insights from these results are used to develop a haplotype estimator based on a
consensus of three tools. The consensus estimator achieved the most accurate phasing in all applied tests.
Individually, EAGLE2, BEAGLE and SHAPEIT2 alternate in being the best performing tool in different scenarios.
Determining haplotype blocks based on linkage disequilibrium leads to more correctly phased blocks compared to a
sliding window approach. We find that there is little difference between phasing sections of a genome (e.g. a gene)
compared to phasing entire chromosomes. Finally, we show that the location of phasing error varies when the tools
are applied to the same data several times, a finding that could be important for downstream analyses.

Conclusions: The choice of phasing and block determination algorithms and their interaction impacts the accuracy
of phased haplotype blocks. This work provides guidance and evidence for the different design choices needed for
analyses using haplotype blocks. The study highlights a number of issues that may have limited the replicability of
previous haplotype analysis.
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Background
Most genetic studies focus on analyzing genotypes to
detect significant genetic associations with diseases [1].
However, it has long been recognized that some disease-
associated haplotypes, the specific allele sequence on each
copy of homologous chromosomes, may be undetectable
with a focus on genotype alone [2, 3]. For example, the
different allocation of specific alleles on each copy of a
chromosome pair (which is ignored by genotype analysis)
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can impact the gene expression of an associated gene in
a different manner [2]. Phasing, also known as haplotype
estimation, reconstructs the haplotype sequences from
genotype data and has been essential for understand-
ing sequence-specific variation such as allele-specific
expression [4, 5], methylation effects [6], and compound
heterozygosity [2, 7]. Moreover, numerous studies have
shown that haplotype-based association analysis can iden-
tify variants that would be missed by a standard single
nucleotide polymorphism (SNP)-based analysis [8–10].
Despite its promise, phased haplotype association anal-

ysis is not commonly applied in genome-wide association
studies, likely due to the increased complexity of haplo-
type analysis. As shown in Fig. 1a, the analysis requires
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Fig. 1 The relationship between phasing and block determination in haplotype association analysis: a Outline of the core steps within a standard
SNP-based and a haplotype association analysis, highlighting the additional complexity of the haplotype-based approach. b the effect of block
determination given a phased sequence. Here, we show a haplotype from 10 heterozygous SNPs. While all the alleles should all be allocated to the
same allele, 2 have been allocated to the maternal v (marked as M in red) and the remaining to the paternal sequence (marked as P in black). As
such, the phased sequence has 2 switches (phasing errors) at the loci 5 and 7 and hence has a switch error of 2/10 (20%). If we chose a 3-SNP sliding
window with one SNP step, we find that 4/8 (50%) of the blocks contain errors. However, if a 5-SNP window was used, all blocks will contain errors.
Using different window sizes affect the error rate within the blocks, yet switch error calculated at the whole sequence scale is constant 20%

three main steps: phasing, block determination and
statistical analysis. A wide range of algorithms have
been designed for phasing of the genome, with recent
algorithms scaling to hundreds of thousands of indi-
viduals [11]. Block determination, overlapping or non-
overlapping, typically uses a fixed-size sliding window [9]
or is based on linkage disequilibrium (LD) so that each
block contains alleles that are more likely to be inherited
together [12, 13]. Finally, the phased blocks are assessed
statistically to determine significant association with
disease.
In haplotype association analysis, replicability of

detected associations will be affected by the error rate
within the phased haplotype blocks, which is dependent
on both the error rate of the chosen phasing method and
the approach chosen for block determination. An example
of how block determination methods impact error rates
is shown in Fig. 1b, where the phased sequence contains
switch errors (i.e. it swaps between paternal and mater-
nal allocations) at loci 5 and 7. However, the proportion of
haplotypes blocks that contain phasing errors varies from
50% to 100% depending on whether a 3- or 5-SNP slid-
ing window (shifted by one SNP at each step) approach
is used. This simple example shows how both the initial
phasing accuracy and the blocks determination method
selected can impact the accuracy of haplotypes within a
set of determined blocks.
Current haplotype association studies assume that hap-

lotypes within the determined blocks (either LD or sliding

window based) do not contain errors due to phasing
[9, 12, 13]. This assumption may increase false positive
associations [3, 14] given that phased haplotypes tend to
be accurate only in short regions and this accuracy can-
not bemaintained for long regions [15, 16]. Some genomic
regions contain more errors than others due to factors
such as differences in linkage disequilibrium, recombina-
tion rate, and the density of SNPs [17]. The impact of this
assumption on downstream analysis is unclear as the error
rate of phased haplotype blocks has not been explored.
Existing evaluations of phasing tools have been con-

ducted without considering the intended application of
the phased haplotypes. Such studies evaluate phasing
methods using metrics such as switch error, missing error,
incorrect genotype percentage, and performance time
[15, 16, 18, 19]. While these metrics are informative, they
are typically reported as aggregates from across either a
set of genomes or a single individual’s entire genome. Such
summary statistics do not necessarily reflect the quality of
the phased haplotypes within specific regions or blocks,
which is critical for downstream haplotype block analysis.
Furthermore, these evaluations do not consider the down-
stream application of phased haplotypes and hence do not
consider the joint impact of chosen phasing and block
determination methods on phasing error rate of resulting
haplotype blocks.
In this paper, we present the first evaluation of

the behaviour of state-of-the-art phasing tools, as it
relates to the direct use of phased haplotype blocks in
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downstream association analysis. We evaluate seven well-
known population-based haplotype estimation methods
(fastPHASE, BEAGLE, IMPUTE, MaCH, SHAPEIT2,
HAPI-UR, and EAGLE2) in addition to consensus hap-
lotype estimators, which combine results from multiple
phasing tools. We examine the interaction between phas-
ing tool and two block determination approaches, based
on sliding windows and LD thresholds, and their joint
impact on error rates of derived haplotype blocks. We
consider two different scenarios when phasing a particu-
lar region; either phasing the entire chromosome and then
extracting the region, or extracting the region and then
conducting phasing. Finally, the stability of the tools when
applied to the same datasets several times is reported for
all evaluation metrics.

Results
Different error locations obtained by different phasing
tools
The switch errors observed across the six tools in chro-
mosome 1 occurred at 12,145 different loci out of a
possible 36,923 heterozygous SNPs. The distribution of
error similarity by tool shown in Fig. 2a. The major-
ity of these switches were unique to a single tool
(∼56%), while only ∼5% of these loci were common
between all tools. This large variation between tools in

the sites of the switch errors implies that most tools
are likely to result in different haplotypes being formed
and hence may have a strong impact on haplotype
analysis.
Examining the phasing of individual chromosomes

highlights the variability of phasing tools. This variabil-
ity is not reflected in overall summary metrics of phasing
error. Figure 2b illustrates the different estimated haplo-
types obtained by the six considered tools for a random
individual within the same region. The example shows
a contrast between the summary metrics and the result-
ing haplotypes. For example, EAGLE2 and BEAGLE both
had a switch error of 5.4% (20 switches/372 heterozy-
gous SNPs) in the same example, yet the estimations are
different. Such examples motivate the development of
metrics that may be more relevant to phased haplotype
association analysis and that capture the error rate of the
haplotype blocks used for downstream statistical analysis.
Thus, we find that it is difficult to judge which estimation
is better without considering the downstream application
that will make use of the phase information.

A consensus haplotypemethod improves phasing accuracy
The differences between the tools encouraged us to con-
struct consensus haplotypes from the output of different
tools. Due to its long runtime, MaCH was only examined

Fig. 2 Similarity of switch location across phasing tools: a The frequency of shared switch error sites by different numbers of tools. The first bar
represents the frequency of the error sites reported by one tool. The second bar represents the frequency of the error sites reported by two tools,
and so on. b Estimated haplotypes for a random individual from seven different tools. The shown sequence corresponds to 372 heterozygous SNPs
out of 1400 SNPs in the region Chr17:11045667-17395608. Each line represents a haplotype estimated by the corresponding tool, with the
complementary phasing not shown (paternal regions become maternal and vice versa). Green represents the correctly phased haplotype runs that
are identical to the maternal haplotype, while the brown runs are identical to the paternal ones. The numbers aligned to each tool name are the
count of switches between the paternal and maternal copies
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on chromosome 17 and thus was not considered in any
consensus combinations.
The results in Table 1 shows that no single tool obtained

the best results for the three chromosomes. Theminimum
switch error is obtained by SHAPEIT2 for chromosome
1, BEAGLE for chromosome 6, and EAGLE2 for chromo-
some 17. These three tools were found to be consistently
always substantially better than the remaining four tools,
with fastPHASE demonstrating the highest switch error.
Taking advantage of the independent phasing outputs

between the individual tools, the best consensus, com-
bining SHAPEIT2, EAGLE2 and BEAGLE, improves the
accuracy for all datasets, with a 13% switch error improve-
ment compared to the best single tool. However, if one
of these tools is replaced with a less accurate tool (fast-
PHASE, IMPUTE and HAPI-UR), the consensus may
provide worse results than one of the individual tools.
Moreover, the addition of less accurate tools in con-
sensus construction, as exemplified by the consensus

Table 1 Switch error (%) obtained by the tools when applied on
chromosomes 1, 6, and 17

Approach Tool Chr1 Chr6 Chr17

Individual BEAGLE 1.39 1.12 2.03

SHAPEIT2 1.33 1.20 2.06

EAGLE2 1.36 1.6 1.90

HAPI-UR 2.14 1.81 3.00

IMPUTE 2.83 2.46 4.30

fastPHASE 4.10 3.43 5.32

MaCH - - 4.10

Consensus SHAPEIT2, EAGLE2 and
BEAGLE

1.14 0.98 1.68

SHAPEIT2, EAGLE2,
BEAGLE, IMPUTE and
HAPI-UR

1.2 1.04 1.76

SHAPEIT2, EAGLE2 and
HAPI-UR

1.24 1.08 1.79

SHAPEIT2, BEAGLE and
fastPHASE

1.37 1.14 2.06

SHAPEIT2, EAGLE2,
IMPUTE, fastPHASE and
HAPI-UR

1.41 1.19 2.1

EAGLE2, IMPUTE and
HAPI-UR

1.48 1.27 2.16

SHAPEIT2, fastPHASE and
HAPI-UR

1.66 1.43 2.41

IMPUTE, fastPHASE and
HAPI-UR

2.16 1.82 3.19

Numbers in bold are the minimum error obtained according to each approach
while underlined numbers are the minimum error obtained in all applied tests.
MaCH was applied only on chromosome 17 due to the intensive performance time
needed to phase other chromosomes. The tools are sorted according to the
average switch error. The top section of the table lists the performance of the tools
individually, while the bottom half lists the performance of the consensus
estimators based on different combinations of phasing methods

using 5 tools, can also increase the overall error rate.
Given the strong initial results for the consensus formed
by SHAPEIT2, EAGLE2 and BEAGLE, we consider this
approach in the rest of the tests reported in this study.

Accuracy of haplotype blocks varies according to the block
determination method
An evaluation of haplotypes obtained by a slidingwindow
We investigated the incorrect haplotype block percent-
age (IHBP, see Evaluation Criteria in Methods) obtained
by a sliding window applied on chromosomes 1, 6 and
17. Figure 3 shows the strong impact of the window
size on IHBP for all tools, which varied from an average
IHBP of 2% to more than 50% when the window length
increased from 5 SNPs to 100 SNPs. The haplotypes
obtained by the consensus approach had the minimum
IHBP for all window sizes, while EAGLE2, SHAPEIT2,
and BEAGLE clearly outperform the remaining phasing
approaches. The difference of the average IHBP (for all
datasets and windows) between the consensus haplotype
and the best single tool is almost 10 times higher than
the difference between the best two single tools. While we
do not attempt to define an optimal window width for all
cases, longer haplotype windows are always more likely
to contain a phasing error compared to shorter windows
as shown in Fig. 3. Moreover, Fig. 3 indicates that a long
sliding window approach, as used in previous work [9],
may have a high error rate, when a comparable sample of
unrelated individuals is used.
Since the error rate of phasing tools is likely to vary

dramatically given differences in recombination rates, het-
erogeneity and SNP density, we have also considered the
relationship between the phasing error rate and the num-
ber of incorrect blocks for the seven haplotype estimation
tools. We sample regions of 1400 contiguous SNPs 50
times from chromosome 17, this time categorizing them
based on the length of their correctly phased runs, i.e.
the average number of contiguous SNPs that are correctly
phased in respect to each other.
Figure 4 illustrates how, for a fixed window size, the

number of incorrect haplotype blocks increases for more
difficult to phase regions, where phasing difficulty is mea-
sured using the length of correctly phased runs. Taking
EAGLE2 as an example, we see that in regions that have
longer correctly phased runs (44 to 64 consecutive cor-
rectly phased SNPs), only 2% of haplotype blocks contain
errors. In contrast, in more difficult to phase regions (24
to 30 consecutive correctly phased SNPs), a median of 3%
of blocks contain errors. While these results indicate that
error rates between different regions of the same genome
can vary by over 50%, we note that similar observations
can be seen between regions on different chromosomes.
In these scenarios, the consensus method had the

minimum IHBP for different window sizes, and different
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Fig. 3 Impact of sliding window size on IHBP: Box plot summarizing the incorrect haplotype blocks percentage (IHBP) when applying different
window sizes (5, 10, 35, 60, and 100 SNPs) to chromosomes 1, 6, and 17. The x-axis represents the window size, while y-axis represents shows IHBP.
MaCH was only applied on chromosome 17 due to the extensive performance time required to phase chromosome 1, and 6, therefore its results are
represented as a line

regions. Moreover, there is no result for the haplotype
obtained by the consensus method when the length of the
correctly phased runs is less than 30 SNPs. This observa-
tion demonstrates the efficacy of the consensus method
as it was able to improve the accuracy and increase the
length of the correctly phased runs to exceed this range.
EAGLE2, BEAGLE, and SHAPEIT2 were the best tools
individually.

An evaluation of haplotypes blocks obtained by lD
The phasing error rate of blocks defined based on LD,
measured again as IHBP across chromosome 1, 6, 17,
is summarized for the different haplotype estimation
tools in Table 2. Consistent with results in the previous

sections, the consensus haplotype caller had theminimum
IHBP while SHAPEIT2, BEAGLE and EAGLE2 showed
substantially less error than the remaining individual
tools. Around 50% of the blocks incorrectly phased by
HAPI-UR are caused by incorrect imputation of at least
one missing SNP located in the block.
In order to compare the error rate for sliding window

and LD based block determination approaches, we used
a sliding window with a width of 5 SNPs, equal to the
mean of SNP count with blocks determined by LD. Both
approaches were applied on chromosome 1, 6, and 17, and
the incorrect haplotype block percentage was calculated
for each tool and summarized in Fig. 5. We see that the
error rate was halved in many cases when using an LD

Fig. 4 The relationship between the length of the correctly phased runs and IHBP: The incorrect haplotype blocks percentage (IHBP) was calculated
for a fixed window size (10 SNPs) applied to 50 datasets from chromosome 17. The x-axis shows the correctly phased runs, binned according to the
quartiles of the data. The y-axis shows IHBP. There is no bar for the consensus method in the range (24,30] as the length of the correctly phased runs
always exceeds this range
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Table 2 Incorrect haplotype block percentage (%) obtained by
the tools when applied on chromosomes 1, 6, and 17

Tool Chr1 Chr6 Chr17

Consensus haplotype 0.45 0.41 0.46

BEAGLE 0.46 0.43 0.49

SHAPEIT2 0.47 0.42 0.51

EAGLE2 0.48 0.44 0.48

HAPI-UR 1.26 1.27 1.25

IMPUTE 1.17 1.18 1.47

fastPHASE 0.54 0.5 0.58

MaCH - - 0.54

Numbers in bold are the minimum error obtained by any approach while
underlined numbers are the minimum error for a single tool. MaCH was excluded
from the tests applied on chromosome 1, and 6 due to extensive performance time

block approach (with a variable length from 2 SNPs to
34) compared to that of a sliding window. However, the
number of blocks to be evaluated is greatly altered
between the approaches, with a median number of blocks
6056 (interquartile range (IQR): 4390–6546) vs 31,729
(IQR: 22,269–34,327) for the LD-based and 5-SNP sliding
window approach, respectively. These results highlight
the trade-off between accuracy and comprehensiveness
that to need be made when selecting a block determina-
tion methods to use in phased haplotype analysis.

Impact of including surrounding regions on haplotype
estimation
Haplotype studies interested in specific regions or genes
[9, 20, 21], often phase only these particular regions rather
than the whole chromosome. Therefore, we investigated
the error rates of specific haplotype blocks when phas-
ing either the entire genome or just the regions containing

blocks of interest using SHAPEIT2, EAGLE2 and
HAPI-UR.
Figure 6 shows that there are only small difference in

accuracy regardless of whether phasing is performed on
entire chromosomes or only selected regions. The error
rate obtained by SHAPEIT2 and EAGLE2 was reduced
for all metrics when phasing the whole genome followed
by extraction of the regions of interest; however, the
magnitude of improvement was small. When including
surrounding regions, the median of sliding window-IHBP
was reduced from 2.4 to 1.0% when applying SHAPEIT2
and from 1.94 to 1.73% when applying EAGLE2. HAPI-
UR had different behaviour, achieving better results when
phasing the short regions, increasing the IHBP from 2.96
to 3.27% when using a sliding window approach. However,
given the poor performance of HAPI-UR on other evalua-
tions in this work, it is unclear whether this result is likely
to generalize to other tools. These results indicate that
phasing the entire genome is likely to lead to improved
results compared to phasing only specific regions, but the
improvement may not warrant the additional computa-
tion time.

Tool stability
We observed that the outputs of many of the phasing
methods evaluated changed across multiple runs when
the input remained the same, with this instability having
potential to affect the replication of downstream analysis.
While this observation was not made for EAGLE2, simi-
lar instability could be observed by permuting the order of
individuals in the dataset being analysed. To explore this
instability, we conducted a stability test for five tools.
Figure 7a illustrates the consistency of identifying a SNP

location as a switch error across 15 runs. This distribu-
tion shows that the majority of the errors were either

Fig. 5 Comparison of haplotype block determination approaches. Boxplot showing the incorrect haplotype block percentage calculated for the
blocks obtained by sliding window (5 SNPs width) or using an LD-based approach on the same dataset for each phasing method
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Fig. 6 Evaluation Tests when including and excluding surrounding regions. Boxplots summarize switch error and IHBP with blocks determined
using LD-based and sliding window (5 SNP) when phasing using SHAPEIT2, EAGLE2, or HAPI-UR is applied on the same regions in two different
scenarios: one with including surrounding regions (green), and when only including target region (blue)

unique for each run, or were common across the 15 runs.
The minimum error location variation was obtained by
EAGLE2 followed closely by the consensus approach. The
large proportion of errors unique to each run indicate
that there is a substantial amount of variation between
different runs of the same tool.
Figure 7b illustrates the differences between the estima-

tions of SHAPEIT2, consistently one of the most accurate
phasing tools, across the 15 iterations. This plot shows
how the characteristics of the data influence the accu-
racy of the haplotype estimation. Here, we find that the
estimation for the region from [350 to 500] was similar
across most of the 15 iterations, while the results vary sub-
stantially for the region at [0 to 350]. Such variation is

highly likely to affect downstream analysis and represents
a significant issue for haplotype association analysis.
While Fig. 7 highlights the variability of the error loca-

tions, we can also examine how the instability of the
phasing tools impacts the error rates of the haplotype
blocks determined via sliding window and LD. Figure 8
illustrates the variance of errors obtained by each tool
across multiple runs and highlights that there is substan-
tial variability across different applications of the same
tool. For instance, SHAPEIT2 shows switch error varying
around 15% difference between the best and worst per-
forming iteration of the tool. For all metrics, we again
see the consensus approach obtains the best accuracy
(in line with previous results). However, its variability

Fig. 7 Stability of switch error. a The percentage of errors that are consistent across different runs of the same phasing method and same data. For
example, the point (2, 9) in BEAGLE plot means that 9% of the errors reported by BEAGLE within 15 iterations occurred in the same location only in
two iterations. b 15 different estimations for the same random individual (around 500 SNPs within the region chr1:212540742-224862598) obtained
by SHAPEIT2 tool
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is similar to BEAGLE and SHAPEIT2, as it is based on
stochastic tools.

Discussion
Improving the accuracy of phased haplotypes and under-
standing the impact of block determination methods on
the accuracy of the haplotype blocks is critical to conduct-
ing accurate and replicable haplotype association analysis.
This is the first study to evaluate phasing tools and their
relationship with two standard methods for determin-
ing haplotype blocks with a focus on phasing accuracy
at block scale. Our evaluations showed that three tools,
SHAPEIT2, EAGLE2, and BEAGLE, consistently obtained
the best results in all applied tests, with performance
between these tools varying depending on the scenario
and data under evaluation. This observation is in line with
other studies that evaluated overall switch error [11, 19].
A consensus approach built from these three tools led to
further improvements in switch error and incorrect hap-
lotype block percentage. We demonstrated the trade-offs
between phasing accuracy, block length and block count
that are inherent between LD and sliding window based
methods for block determination. Finally, we examined
the stability of these tools and demonstrated that there is
a large variability in outputs for most tools between runs.

Ensemble approach improves haplotype estimation for all
considered scenarios
While most previous evaluation of phasing tools focuses
on overall switch error rates, our analysis compared
the error profile from the different tools (Fig. 2). The
comparison revealed that the switch error from differ-
ent tools occurs in different locations, encouraging us
to construct a consensus haplotype from the output of
multiple phasing methods. A key outcome of this work
is the robust phasing accuracy achieved by the consen-
sus approach constructed from SHAPEIT2, EAGLE2 and
BEAGLE across all metrics for all applied tests. This
approach achieves a 13% improvement in switch error
compared to the best individual tool and indicates a
strong improvement compared to previous methodolog-
ical phasing advances [22–24]. As expected, the perfor-
mance of the consensus is influenced by the individual
tools used in its construction, with less accurate tools low-
ering performance but remaining more accurate than any
individual tool.
While the consensus of SHAPEIT2, BEAGLE and

EAGLE2 gives the lowest error rates in all scenarios exam-
ined in this paper, the results in Table 1 show that there is
no guarantee that such an ensemble approach will outper-
form its constituent tools individually, with the inclusion
of fastPHASE in particular dragging down performance
of any consensus it was included in. However, if the tools
included in the ensemble are comparable in terms of

accuracy, we observe that the resulting consensus is likely
to lead to improvements in performance and robustness.
The downsides of the consensus caller approach are the

increases in runtime, due to multiple passes over the same
data. Hence, the tools may not scale effectively to large
datasets. In this study, BEAGLE was the bottleneck of the
consensus, taking one month to phase chromosome 1 for
12,008 individuals, while EAGLE2 and SHAPEIT2 accom-
plished the phasing task within a week, albeit using only
a single thread of an AMD Opteron 6200. However, given
that running multiple tools can be trivially parallelized
and that haplotype phasing only needs to be run once for
downstream analysis, the gain of the accuracy obtained
from the consensus approach may justify the additional
run time required.

Trade-offs in block determination methods
The differences between the choice of LD and sliding
window approaches for block determination in haplotype
association analysis have long been recognized [17]. The
former tends to produce fewer blocks whose length adapts
to recombination properties of the genomic region under
consideration, while the latter produces many, typically
longer blocks with the same length across the genome. In
this work, we have explored the impact that these trade-
offs have on phasing error, focusing on IHBP to evaluate
the proportion of blocks that are incorrectly phased. This
metric more clearly elucidates the likely impact of phas-
ing errors and block determination on the downstream
application of statistical association analysis. When using
a fixed size sliding window, our results showed a signif-
icant impact of the window size on the error rate of the
haplotype blocks (Fig. 3), with error rates varying signif-
icantly depending on the region being phased (Fig. 4).
The error rate variation, influenced by factors such as the
recombination rate and the density of SNPs, demonstrates
that a fixed size sliding window is likely to lead to many
haplotypes that contain errors. This is highly likely to have
a strong impact on the false negative and false positive
rates of downstream analysis and is likely to place some
limitations on the replicability of results.
In order to minimize the error rate within the hap-

lotypes obtained by a sliding window, the width of the
window should suit the length of the correctly phased
runs. As there is no optimal way to determine the best
window width, one solution may be an adaptive window
size whereby the size of the window is adjusted according
to the characteristics of the scanned region (e.g. is smaller
if recombination rates are high or SNP density is low).
Such an approach has been explored in the literature [25]
and our results lend further support for such an approach.
Alternatively, an LD-block approach may be used as this
inherently adapts to the properties of the data, albeit with
a number of settings that need to be defined by the user.
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Fig. 8 Impact of phasing method instability on error rates. Boxplot summarizing the variation of the obtained errors when applying the tools on the
same dataset 15 times. The plots are, from left to right: switch error (SE), IHBP calculated for blocks determined according to the LD (LDB), and IHBP
calculated for blocks determined by sliding window with a width of 10 SNPs (SWB)

We found that such an approach led to a strong reduction
in switch error rates and the number of defined blocks that
contain errors, at a cost of producing fewer, shorter block
segments. Thismay be detrimental if the variation of a sin-
gle region is needlessly broken into multiple independent
blocks. We note it may be possible to use the consen-
sus approach to determine block boundaries guided by
whether individual methods are consistent at a given posi-
tion or even to derive probabilistic block boundaries by
treating the consensus caller as an ensemble predictor
[26]. Combining this with probabilistic tests for haplotype
association analysis [3, 14] may further reduce type 1 error
rates in downstream analysis.

Tool stability
All algorithms for phase estimation considered in this
work are based onHiddenMarkovmodels which are often
trained using a stochastic algorithm, which may explain
why most phasing methods explored have different
outputs across multiple runs when the input and param-
eters remains constant. Only EAGLE2 produces stable
outputs by default. Although the variation in the error
rate for most phasing methods was small across differ-
ent iterations, the switches or the boundaries of correctly
phased runs were affected significantly. The majority of
the switches in the estimated haplotypes were either com-
mon across 15 iterations or unique to each iteration. We
note that while some of the tools allow for a random
seed to be passed in as a parameter, the default setting
for the methods uses random initialization and that such
seed parameters typically have no effect if the tools are
run in a multi-threaded mode. Moreover, small changes
in the input data, such as reordering samples, also appears
to change the phasing output. As such, we believe that
the instability observed in this study reflects the way

that these phasing tools are being used in most practical
applications.
The consensus haplotypes not only improved the accu-

racy but also had very stable results, rivalling those of
EAGLE2. This instability of error location can be seen
as similar to the difference in error location shown in
Fig. 1b). As such, it may also be possible to exploit the
instability of the tools to construct a consensus haplo-
type from the same tool applied several times on the same
dataset. In this way it may be possible to yield the robust
results from the consensus, while only running a single
efficient tool.
An important question that arises here is whether the

instability of the tools has a significant influence on
detected results. Given that we observe relatively high
error variation across the same data, one could imagine
that the different tools may vary even more dramati-
cally across different datasets. This is likely will not affect
EAGLE2, the only stable tool, as its stability is based on the
seeding conditions for a given set of input data and when
that data changes, variation may occur. This variability in
output is likely to be a key limitation on the replicability
of haplotype association analysis. Future research could
explore how the stochasticity of phasing algorithms could
be exploited to reduce phasing error rates.

The impact of including surrounding regions on phasing
Haplotype studies interested in specific regions or blocks,
such as those focusing on genes only [20, 21] or the
replication of association analysis after finding genomic
regions with significant associations [9], often phase only
these particular regions rather than the whole genome.
However, the choice to only focus on select genomic
regions and phase their blocks, as opposed to phas-
ing the genome and then extracting blocks, may affect
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the quality of phasing. We have found that SHAPEIT2
and EAGLE2 perform better when including surrounding
regions while HAPI-UR performed better when phas-
ing only the region of interest. While EAGLE2 is the
only stable tool according to the stability tests (using
default parameters), it obtained different results for the
same region when including or excluding surrounding
regions. These results indicate that phasing the entire
genome is likely to lead to improved results compared
to phasing only specific regions. However, the improve-
ment may not warrant the additional needed computation
time.

Limitations of the study
Our primary goal was to evaluate the interaction between
the choice of phasing tool and the block determination
algorithm and the impact these had on phasing error
rates. In particular, the analysis conducted in this work
did not explicitly explore the impact that these had on
downstream haplotype analysis, given the large amount
of variability that this could entail (different choices of
statistical tests, different assumptions of genetic archi-
tecture, etc.). In order to reduce the number of analyses
conducted, we have also limited the parameter options
of both the phasing tools selected and the block deter-
mination algorithms to their default parameters unless
otherwise explicitly stated. Finally, all error rates produced
here were on a small subset of individuals for whom phase
information was available (n=39). While this sample size
is comparable with previous evaluations [11, 27], increas-
ing the number of individuals for whom resolved phased
information is available would help further refine these
results and the differences between evaluated tools.

Conclusions
This study reports on the interaction between the choice
of phasing tool and the block determination algorithm,
with critical implications for the application of phased
haplotype blocks such as haplotype association analy-
sis. We provide a comprehensive evaluation of seven
different haplotype phasing tools (fastPHASE, BEAGLE,
IMPUTE, MaCH, SHAPEIT2, HAPI-UR, and EAGLE2).
We further introduce a consensus haplotype estimator
based on combining output from multiple phasing tools,
that achieved the lowest error rates across all scenarios
considered.
The work provides guidance and evidence for the key

constituent methods of haplotype analysis at block scale
by showing the positive and negative consequences of
each choice independently and when used together, as
well as highlighting the possibility of tool instability.
The insights provided by this work should inform future
haplotype-based analyses as well as drive methodological
research into phasing tools.

Methods
Datasets and preparation
Real haplotype data for a population is not readily
available for comprehensive evaluation. One common
approach to determine phasing data is to use data from
trios to resolve child haplotypes based on the sequence of
the parents [11, 16]. In this work, we make use of trios
obtained from HapMap project [28] using Utah Residents
(CEPH) with Northern and Western European Ances-
try (CEU). This dataset contains 19 unrelated individuals
and 39 complete families consisting of father, mother and
child (117 individuals, of these 39 children were included
while 78 parents were excluded for our study). Parent data
were used to resolve child haplotypes but were otherwise
excluded as our focus is on phasing unrelated individuals.
For phased children, 35% of SNPs were heterozygous,

0.3% were missing (unknown whether heterozygous or
homozygous) and 0.08% were Mendelian errors (incon-
sistent alleles among trios). Using the parent information,
we could resolve 80% of the child heterozygous SNPs,
and 40% of the missing SNPs. Heterozygous SNPs for
each child were resolved deterministically using the par-
ent information via “phasing by transmission”. A child’s
heterozygous and missing SNPs are resolved when at
least one of its parents has a homozygous SNP in the
same genomic locus. Haplotypes for the 39 children were
extracted from chromosomes 1 (36,923 SNPs), 6 (31,727
SNPs), and 17 (12,807 SNPs). The restriction to three
chromosomes was related to the high runtime needed by
some of the tools under evaluation.
The genotype data for the 39 CEU children and 19

unrelated individuals were combined with 11,950 indi-
viduals from coeliac disease dataset (EGA accession:
EGAS00000000057). While the additional genomic data
does not have resolved phase information, the large num-
ber of samples has been shown to improve the accu-
racy of haplotype estimation [16] and enables us to
emulate the performance of phasing tools in a real-
life scenario. The coeliac disease dataset contains 11,950
individuals (cases and controls) and 528,969 SNPs (Illu-
mina Hap 550). Details on the collection, and quality
control procedure applied on the dataset is described
previously [29].
Evaluation and errormetrics calculation were computed

only from the 39 children with partially known haplo-
types, while the haplotype estimation tools were applied
to the entire dataset of 12,008 individuals, in order to
maximise phasing accuracy.

Haplotype estimation methods
The seven haplotype estimation tools evaluated in this
study are summarized in Table 3. These tools are all
based on the probabilistic Hidden Markov Model (HMM)
framework of Li and Stephens [30]. However, a direct
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Table 3 Population-based haplotype estimation tools used in
this study

Tool-Version Year Heuristic to reduce haplotype search space

fastPHASE - 1.4.8 2006 Uses a haplotype-clustering model, where
the set of all possible haplotypes are
clustered into a small fixed number of
“ancestral” haplotypes [31].

BEAGLE - 4.1 2017 Uses a haplotype-clustering model with a
variable number of clusters, depending on
the region under consideration [24].

IMPUTE - 2.3.2 2009 Subsamples possible haplotypes that are
similar to those of the currently estimated
haplotype of an individual [32].

MaCH - 1.0.18.c 2010 Subsamples possible haplotypes from the
set of all possibilities randomly at each
iteration [33].

SHAPEIT2 - v2.r837 2012 Breaks the chromosome into small windows
of a few SNPs, estimates the phase of each
window using a method similar to
IMPUTEv2 and then estimates transitions
between windows [23].

HAPI-UR - v1.01 2012 Breaks chromosome into small windows,
that are initially very short but iteratively
grow to a user defined size, enabling
modelling of longer segments at once [34].

EAGLE2 - v2.3.5 2016 When no reference panel is provided (the
scenario in this study), EAGLE2 applies long
range phasing (EAGLE1 [27]) then efficiently
represents all haplotypes such that beam
search can be applied to evaluate only the
most promising phase paths [22].

application of the Li and Stephens approach scales lin-
early with the number of individuals and the number of
loci and quadratically with the number of possible hap-
lotypes, limiting its direct applicability to large datasets.
Given this, phasing tools have introduced heuristics to
reduce the computational cost of phasing while trying to
limit the impact on phasing accuracy. A brief summary
of the heuristic used by each tool is given in Table 3.
All the tools were applied using their default param-
eters. Genetic maps, which contain information about
recombination rates across the genome, were used as an
additional parameter to most tools (all except fastPHASE
and MaCH) with EAGLE2 taking a specific format1 while
all other tools used a PLINK format2. All genetic maps
were made with respect to the GRCh36 reference genome
(genome build hg18).

Consensus haplotype construction
We constructed a consensus haplotype of the estimations
obtained by several combinations of three and five tools.
The consensus haplotype is assembled as follows:

1https://data.broadinstitute.org/alkesgroup/Eagle/downloads/
2http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/

1. The haplotypes of the tools are aligned to each other
(one copy of the estimated haplotype pair from each
tool). The haplotypes should have the same allele at
the first heterozygous SNP.

2. Scan the haplotypes SNP by SNP, and for each SNP,
vote for the alleles and choose the final one (for the
consensus estimator) according to the majority.

3. If the allele at the scanned SNP for a tool doesn’t
agree with the final allele (based on the majority of
tools), switch the copies of the chromosome pair for
the remaining SNPs for this specific tool.

Evaluation criteria
The standard metric to assess the accuracy of haplo-
type estimation is switch error, the number of switches in
the estimated haplotype divided by all possible switches
(heterozygous SNPs count) [15, 16]. Most studies mea-
sure switch error as it reflects the accuracy with respect
to the neighbouring SNPs [24]. Switch error is formally
defined as:

SE =
∑n

i=1
switches
H−1

n
(1)

where switches is the number of the incorrectly phased
heterozygous SNPs in comparison to their predecessor
SNPs (SNPs in the previous genomic position), H is indi-
vidual’s heterozygous SNPs count, and n is the individuals
count in the dataset.
In this study, we focus on the accuracy of phased hap-

lotypes with respect to the block determination approach.
Therefore, we introduce a new accuracy metric termed
Incorrect Haplotype Block Percentage (IHBP) in order to
calculate the error rate within blocks determined either by
sliding window, LD between SNPs or any other approach.
The formula for IHBP is defined as:

IHBP = IB
B

(2)

where IB is the count of the incorrectly phased hap-
lotype blocks and B is the count of all haplotype
blocks. All unambiguous blocks, i.e. blocks that contain
only homozygous or one heterozygous SNPs, were also
excluded. A haplotype pair within a block is considered
correctly phased if all heterozygous and missing SNPs
are phased correctly with respect to each other. In other
words, one copy of the pair is identical to the paternal
haplotype, and the second copy is identical to the mater-
nal haplotype within the same block (though we do not
explicitly identify the origin of each phased sequence).
When calculating error metrics, all unresolved SNPs

(child’s heterozygous SNPs when both parents have het-
erozygous SNPs in the same loci) and Mendelian errors
were excluded from the evaluation. Missing SNPs that
were resolved using family information were included in

https://data.broadinstitute.org/alkesgroup/Eagle/downloads/
http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/
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the evaluation as all haplotype estimation tools used in
this study implicitly impute missing SNPs.
An alternative metric of phase accuracy is length of

correctly phased runs, defined as

LCPR =
∑n

i=1 LRi
n

(3)

where LRi is the length of the correctly phased run i, and
n is the number of the correctly phased runs within a
region. A correctly phased run refers to contiguous sets
of correctly phased heterozygous SNPs with respect to
each other. The length of the correctly phased runs within
each region was calculated as the mean of the number of
heterozygous SNPs within each run.

Haplotype blocks determination via sliding window
The sliding window scans the whole chromosome in this
work shifting one SNP step at a time, treating each win-
dow as a haplotype block. The possible haplotype blocks
within a sequence ofm SNPs arem−w+1 blocks, wherew
is the window size. Phasing accuracy of blocks determined
by a sliding windowwith five different random sizes (5, 10,
35, 60, and 100 SNPs) and one SNP step was investigated
in this study with respect to chromosomes 1, 6 and 17.

Linkage disequilibrium (LD) based haplotype blocks
determination
In this study, LD-based blocks were determined which
implements the confidence interval (CI) algorithm [35] as
implemented by PLINK (v1.90b4.4) [36]. The algorithm
requires a number of heuristic thresholds to be set and, in
line with previous haplotype studies [12], we have made
use of the following default parameters: SNP pairs are
considered if they are within 200 kilobases (kb) of each
other. SNPs with minor allele frequency (MAF) < 0.05
were excluded. SNP pairs are considered highly correlated
(belong to the same block) if the bottom of the 90% D′
confidence interval is>0.70, and the top of the confidence
interval is >0.98.
To examine the error rate of the resulting blocks, we

consider the IHBP from ∼4800 LD blocks derived from
chromosome 1, 6, and 17 for the 39 CEU children. This
analysis excludes haplotype blocks which contained fewer
than 2 heterozygous SNPs (i.e. which blocks which needed
no phasing). The average SNP count within these blocks is
4.3 SNPs (minimum 2 SNPs and maximum 34 SNPs). The
average length of these blocks is 17.5 Kb (ranging from
0.005–200kB).

Analysis of including surrounding regions on phasing
particular regions
Two scenarios were applied for this investigation:

1. Phasing then block determination: Phasing methods
were applied on the whole chromosome, then the
estimated haplotypes were extracted to obtain the
targeted region.

2. Block determination then phasing: Phasing methods
were applied on specific regions without including
any other neighbouring parts of the chromosome.

60 datasets were constructed by randomly selecting 150 or
250 contiguous SNPs from chromosome 1, 6, and 17 from
6000 individuals (including all 39 CEU children). Short
regions were chosen as excluding or including surround-
ing regions will affect phasing accuracy in the boundary
of the region of interest, and also for execution time issues
as this evaluation was applied to 60 different regions.
Only the fastest tools (SHAPEIT2, EAGLE2, and HAPI-
UR) were used for this test. We compared the error rate
within the results in both scenarios for all accuracy met-
rics. Both Switch Error and IHBP were calculated for each
scenario, with IHBP calculated for blocks determined by
5-SNP sliding windows and based on LD.

Stability testing
The tools were applied to a randomly selected region
of 2000 heterozygous SNPs (chr1:212540742-224862598)
for 4000 individuals. The size of the region was limited
to this size due to computational constraints, based on
the time needed to execute 5 tools 15 times. MaCH and
fastPHASEwere not used in this comparison due to exces-
sively slow performance. EAGLE2 was stable when using
its default parameters. Therefore, we created 15 different
datasets of the same region but with shuffling the individ-
uals randomly for each of them. Shuffling the individuals
made EAGLE2 unstable and allowed the assessment of
its behaviour. Three error metrics were calculated: switch
error and IHBP based on either LD-based or 10-SNP
sliding windows.
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