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The morphology of nanomaterials has a great influence on the catalytic performance. One-
dimensional (1D) nanomaterials have been widely used in the field of catalysis due to their
unique linear morphology with large specific surface area, high electron-hole separation
efficiency, strong light absorption capacity, plentiful exposed active sites, and so on. In this
review, we summarized the recent progress of 1D nanomaterials by focusing on the
applications in photocatalysis and electrocatalysis. We highlighted the advanced
characterization techniques, such as scanning tunneling microscopy (STM), atomic
force microscopy (AFM), surface photovoltage microscopy (SPVM), single-molecule
fluorescence microscopy (SMFM), and a variety of combined characterization
methods, which have been used to identify the catalytic action of active sites and
reveal the mechanism of 1D nanomaterials. Finally, the challenges and future directions
of the research on the catalytic mechanism of single-particle 1D nanomaterials are
prospected. To our best knowledge, there is no review on the application of single-
molecule or single-particle characterization technology to 1D nanomaterial catalysis at
present. This review provides a systematic introduction to the frontier field and opens the
way for the 1D nanomaterial catalysis.
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INTRODUCTION

One-dimensional (1D) nanomaterial is a special structure of substance in nanometer scale and is
a key branch of nanomaterial systems. It has been widely developed and been used in many fields
due to its unique linear morphology with large specific surface area, high electron-hole
separation efficiency, strong light absorption capacity, plentiful exposed active sites, and
other characteristics (Linares et al., 2014). In general, 1D nanostructures have a high aspect
ratio, with the diameters ranging from 1 to 100 nm (Xia et al., 2003), and their morphologies can
be wired (Tian et al., 2007), tubular (Patil et al., 2017), rod-like (Liu et al., 2016a), fibrous (Hou
et al., 2016), or banded (Sun et al., 2016). The preparation of 1D nanostructures mainly includes
hydrothermal method (Byrappa and Adschiri, 2007), vapor deposition method (George, 2010),
sol–gel method (Sui and Charpentier, 2012), template method (Ghahremaninezhad and Dolati,
2009), and electrospinning method (Li and Xia, 2004). Therefore, based on the characteristics of
1D nanomaterials, it has significant advantages in light capture, electron and ion transmission,
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and mass loading and diffusion and has an important
application prospect in the field of mesoscopic, energy
storage and conversion (Mai et al., 2014; Cao et al., 2019),
nano-optoelectronic devices (Li et al., 2013), photocatalysis
(Liu et al., 2010), and electrocatalysis (Gao et al., 2018).

Among these applications, photocatalysis and electrocatalysis
are of great interest to us in this review. Heterogeneous surface
catalysis had been used in various catalytic reactions and had led
to extensive exploration of the catalytic activity of metallic and
nonmetallic surface sites (Wang et al., 2014; Low et al., 2017). The
principles of photocatalysis are shown in Figure 1A, and the
charge generated by light needed to be effectively separated from
the surface of the photocatalytic materials for the catalytic
reaction. The catalytic efficiency mainly depended on the
charge separation (Zhang et al., 2018), light absorption
capacity (Yuan et al., 2017; Yuán et al., 2018), and specific
surface area (Yuan et al., 2014; Yuan et al., 2018) of the
catalyst. Fast charge separation and slow recombination were
beneficial to the formation of more carriers on the catalyst surface
and excellent catalytic performance. At the same time, the
response to visible light could be enhanced by tailoring the
bandgap structure of the semiconductor, which generated
more photogenerated charge pairs and further improved the
rate of photocatalysts. For electrocatalysis, as shown in
Figure 1B, it was a catalysis that accelerates the charge
transfer at the interface between electrodes and electrolytes by
external applied voltage. The understanding of the reaction
mechanism of electrocatalysis is important for the design and
development of electrocatalytic materials. The electrocatalytic
performance was affected by the structure–activity
relationship, the distribution of active sites, and the surface
process of electrocatalytic reaction.

No matter in the field of photocatalysis or electrocatalysis,
because of the complexity of the catalytic system, it is necessary to
comprehensively characterize the catalytic process and deeply
reveal the mechanism of the catalytic process, which is crucial to

further develop the design of functional catalytic materials and
further improve the catalytic performance. As we know, the
catalytic reactions always take place on the surface of the
catalyst, and the finer we disperse the same mass of material,
the more atoms on the surface are exposed, resulting in the
catalyst with a larger specific surface (Liu et al., 2016b; Chao et al.,
2021). Reducing the size of the catalyst to a single particle can not
only increase the effective utilization rate of the catalyst but also
greatly improve its catalytic activity. In addition, compared with
bulk catalysts, single-molecule or single-particle catalysts have a
simple structure, have a clear definition of active sites, and avoid
multi-pathway reactions in the catalytic process, which has a
great advantage in the investigation of reaction mechanisms. Up
to now, many surface characterization techniques have been
used to investigate the catalytic process with good spatial,
chemical, and time resolution and have made great
contributions to the understanding of the catalytic process.
However, these traditional characterization techniques only
obtained the average information of many catalytic particles
and aggregates. The morphology, structure, crystal plane, and
composition of a single catalytic particle strongly affected the
overall performance of the catalyst (Tachikawa et al., 2011). It is
an ideal strategy to directly apply characterization techniques to
the real complex surface catalytic systems, especially to study
the surface structure of the catalyst and the surface process of
the catalytic reaction at the single-molecule scale. The
development of advanced techniques provides the
opportunities to study the catalytic mechanism at single-
molecule and single-particle scale. As shown in Figure 2,
scanning tunneling microscopy (STM), atomic force
microscopy (AFM), surface photovoltage microscopy
(SPVM), single-molecule fluorescence microscopy (SMFM),
and so on, were of benefit to identify the catalytic action of
active sites and reveal the mechanism of complex catalytic
systems and further promote the design and development of
novel catalysts (Novo et al., 2008; Tang et al., 2011).

FIGURE 1 | Schematic diagram of the principles of photocatalysis and electrocatalysis. (A) The typical photocatalytic process goes through three steps (Zhu et al.,
2021). (B) Schematic diagram of electrocatalytic measurement (He et al., 2019). Reproduced from Zhu et al. (2021) with the permission of the Elsevier. Reproduced from
He et al. (2019) with the permission of Springer Nature.

Frontiers in Chemistry | www.frontiersin.org December 2021 | Volume 9 | Article 8122872

Yuan and Zhang Single-Molecule and Single-Particle

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


In this review, we summarized the recent progress of 1D
nanomaterials by focusing on the applications in
photocatalysis and electrocatalysis. We highlighted the
advanced characterization techniques, including STM, AFM,
SPVM, SMFM, and a variety of combined characterization
methods, which have been used to study the catalytic
mechanism of 1D nanomaterials. The 1D-nanostructured
materials that can be applied to catalysis in the form of
single molecule and single particle were summarized as
three types: 1) monitoring of catalytic reactions on
individual particles using the SMFM technique; 2)
visualization of photogenerated charge distribution of a
single particle using the kelvin probe force microscopy
(KPFM)/SPVM technique; and 3) morphological analysis of
single particles and single atoms using STM and AFM
techniques. Finally, the challenges and future directions of
the research on the catalytic mechanism of single-particle 1D
nanomaterials have been prospected. To our best knowledge,

there is no review on the application of single-particle or
single-molecule characterization technology to 1D
nanomaterial catalysis at present. This review provides a
systematic introduction to this frontier field and opens the
way for 1D nanomaterial catalysis.

Photocatalysis
Among nanomaterials, 1D-nanostructured materials with
controllable morphology, large surface area, and more exposed
active sites have attracted wide attention in photocatalysis. As a
typical photocatalyst, the TiO2-nanostructured catalyst was a
wide-gap semiconductor with excellent physical and chemical
properties (Choi et al., 2010; Cao et al., 2018). The 1D TiO2

nanofiber structure photocatalyst prepared through the foam-
assisted electrospinning method by Wu had a complete
mesoporous channel and uniform pore structure (Hou et al.,
2014), which provided a large number of active sites for
adsorption reactants and an efficient route for gas transport.

FIGURE 2 | The techniques for the investigation of 1D-nanomaterial catalysis at single-molecule and single-particle scale. The SMFM (Andoy et al., 2013), KPFM/
SPVM (Chen et al., 2018), and STM (Wang et al., 2021) characterization tools were introduced in this review. Reproduced from Andoy et al. (2013) with the permission of
the American Chemical Society. Reproduced from Chen et al. (2018) with the permission of the Royal Society of Chemistry. Reproduced from Wang et al. (2021) with
permission of the Royal Society of Chemistry.
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Thus, it was favorable for the precipitation rate of photocatalytic
hydrogen production. In addition, the TiO2 catalyst with a 1D
nanofiber structure was more stable than commercial P25
products due to the nanofiber structure inhibiting the
aggregation of nanomaterials and stabilizing its morphology.
However, it was not well understood how to precisely locate
the catalytic active site in 1D-nanostructured catalysts and to
what extent to drive charge separation in the photocatalytic
reactions. The lack of understanding of these issues will
become the bottleneck for further improvement of the
photocatalytic efficiency. Therefore, the exploration of the 1D
photocatalyst at single-particle and single-molecule scale is
urgent for the investigation of microscopic mechanisms.

To solve these problems, it was important to directly image
individual photocatalytic particles or photocatalyst interfaces.
Super-resolution fluorescence microscopy techniques open up
new prospects for visualization of individual catalytic events and
localize the catalytic activity sites at the single nanocatalyst level
(Roeffaers et al., 2006; Xu et al., 2008). The Au@mSiO2 materials
formed by encapsulation of single gold nanorods in mesoporous
silica shells were catalyzed for quantitative imaging using super-
resolution fluorescence microscopy techniques (Zhou et al.,
2012). These nanorods scatter laser light and emit it, making
them easy to identify under an optical microscope. The
relationship between the fluorescence intensity of individual
nanorods and the time trajectory showed stochastic intensity
bursts over the constant nanorods. Each stochastic intensity burst
was marked by the catalytic production of fluorescent molecules.
Simultaneously, the fluorescent molecules can be located from the
fluorescence image by Gaussian fitting. This technique can image
a single molecule and locate the active site, allowing the
researcher to discover the complex patterns of catalytic activity
on individual nanorods. The nanorods with the same surface
composition on both sides and ends should have the same
catalytic activity in conventional view; however, the catalytic
reaction rate in the same surface was not constant as revealed
in this work and presented a gradient distribution along the
center to both ends of the nanorods. This could be reasonably
explained by the defect density distribution on the nanorod
surfaces in crystal growth.

With the development of probe microscope techniques, the
charge carriers can be visualized via the spatially resolved SPV
technique. For example, the function and properties of 1D TiO2

can be modified by gold nanoparticles (Au NPs) with SPR
(Wang et al., 2017). The plasma water oxidation could be
realized on the surface of Au/TiO2 under the central
wavelength of about 550-nm absorption light. In this process,
there was an obvious ring at the interface between Au NPs and
TiO2 in the SPVM technique, and the surface photovoltage
(SPV) was increased at the interface through the detailed
analysis. There were two possible reasons for this
phenomenon. One was that the holes generated by plasma
resonance tended to accumulate at the interface between Au
NPs and TiO2, and the other was that the Schottky barrier at the
interface promoted the transfer of hot electrons to TiO2 and
prevented its recombination. This discovery not only provided
clear evidence for the distribution of hot holes but also

confirmed that the Schottky barrier played an important role
in promoting charge separation and stabilizing hot holes.

The investigation of 1D photocatalysts on single-molecule and
single-particle scale will be helpful to understand the microscopic
reaction and the charge separation, which will provide inspiration
for us to design efficient photocatalysts.

Electrocatalysis
Noble metal catalysts have attracted wide attention for their
excellent catalytic performance, but the high price and limited
reserves prevent their large-scale use. In the present studies,
researchers reduced or avoided the use of noble metals
through loading and alloying strategies or development of
non-noble metal catalysts (Seh et al., 2017). Gao et al.
chemically synthesized Pd/CeO2/C 1D nanostructure hybrid
materials by the hydrothermal method (Gao et al., 2018).
Compared to pure Pd/C, CeO2/C, and a physical mixture of
Pd/C and CeO2/C, the chemically synthesized Pd/CeO2/C 1D
nanostructure showed excellent catalytic activity and stability in
the electrocatalytic hydrogen evolution reaction (HER). The main
reason was that the chemical synthesis method had stronger
interface coupling ability between Pd and CeO2 than the physical
mixture method. However, this work did not explore the
properties of the electrocatalyst interface at the single-particle
scale, and the catalytic reaction mechanism was a little vague.

To further distinguish the reactivity of different catalyst
surfaces and sites, the most direct method is to detect catalytic
reactions in situ with spatial resolution on a single catalyst
particle. The super-resolution imaging technique, such as
STM, AFM, and SMFM, has gained considerable recognition
at the level of a single molecule/particle, because of their ability to
reveal and detect the dynamic system, providing detailed
information about the individual molecule reaction,
adsorption, and desorption process, as well as the distribution
of active sites of single-particle catalysis (Carbonio et al., 2014).
Other atom-resolved microscopes with distinctive features were
also used in electrocatalytic reaction. AFM can provide
morphological information of conductive and non-conductive
samples. The degradation process of the Pt–Ni alloy catalyst was
studied by in situ electrochemical atomic force microscopy (EC-
AFM) during the accelerated durability test (ADT), and the
coarsening process of the catalyst surface was observed during
potential cycles (Khalakhan et al., 2017).

Among the non-noble metal electrocatalysts, carbon
nanotubes are the most famous type of 1D nanomaterials. The
SMFM imaging technique is also one of the advanced methods to
characterize single molecules (Platnich et al., 2019; Bacic et al.,
2020; Hao et al., 2020). Xu et al. studied the electrocatalytic
fluorescence reaction by purified single-walled carbon nanotubes
(SWNTs) using the SMFM imaging technique at the single-
molecule level (Xu et al., 2009). In the electrocatalytic
fluorescence reaction, the SMFM imaging technique had the
ability of super-resolution localization of single fluorescence
products and of determining the catalytic active sites on
SWNTs, indicating that the fluorescence bursts of individual
products were attributed to the electrocatalytic reduction of
the reactants on SWNTs.
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In short, the introduction of advanced characterization
techniques plays an important role in revealing the reaction
mechanism and determining the catalytic active sites. It also
provides a powerful path for the design of novel electrocatalytic
materials in the future.

CONCLUSION AND PERSPECTIVES

In this review, recent progress of 1D nanomaterials on the
applications in photocatalysis and electrocatalysis was
summarized. The single-molecule and single-particle
investigation of 1D nanomaterials was reviewed, which had
proved to be capable of improving the understanding of
complex processes in the field of catalysis and gave deep
insights into optimizing the performance of catalytic systems.
This review provides a systematic introduction to the frontier
field and opens the way for 1D nanomaterial catalysis.

To data, the properties of photocatalytic or electrocatalytic
process are obtained from one individual particle. However, the
preparation of single-particle nanomaterials still faces significant
challenges due to the subtle effects of size, shape, and structural
defects. At the same time, the present characterization technique
is also very dependent on the external environment, which often
causes randomness and volatility of data at the single-molecule

and single-particle scale. For future, the first step is to improve the
preparation methods of single-particle nanomaterials. Secondly,
it is necessary to optimize the stability of advanced
characterization techniques and unify standardized
measurement. The results obtained from different research
groups may be affected by the instrument settings and
measurement environments. Finally, to enhance the efficiency
of testing, high-speed acquisition and automated data analysis are
required, and mathematical tools such as big data processing and
machine learning will shine in these fields.
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