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Abstract

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease

causing indefinite fatigue. ME/CFS has long been hypothesised to have an infectious

cause; however, no specific infectious agent has been identified. We used metagenomics

to analyse the RNA from plasma samples from 25 individuals with ME/CFS and compare

their microbial content to technical controls as well as three control groups: individuals with

alternatively diagnosed chronic Lyme syndrome (N = 13), systemic lupus erythematosus

(N = 11), and healthy controls (N = 25). We found that the majority of sequencing reads

were removed during host subtraction, thus there was very low microbial RNA content in

the plasma. The effects of sample batching and contamination during sample processing

proved to outweigh the effects of study group on microbial RNA content, as the few differ-

ences in bacterial or viral RNA abundance we did observe between study groups were

most likely caused by contamination and batch effects. Our results highlight the importance

of including negative controls in all metagenomic analyses, since there was considerable

overlap between bacterial content identified in study samples and control samples. For

example, Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodes were found in both

study samples and plasma-free negative controls. Many of the taxonomic groups we saw in

our plasma-free negative control samples have previously been associated with diseases,

including ME/CFS, demonstrating how incorrect conclusions may arise if controls are not

used and batch effects not accounted for.
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Introduction

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disorder of
unknown aetiology estimated to cause severe, indefinite fatigue in over 350,000 Canadians [1].
It has long been hypothesised that ME/CFS may have an infectious cause; however, despite
multiple investigations, a consistent correlation between ME/CFS and an infectious agent has
not been found [2–5].

Metagenomics provides a new avenue to investigate microbial causes for diseases of
unknown aetiology. Combined with next-generation sequencing, a metagenomic approach
enables researchers to sequence all of the nucleic acid in a sample in order to examine its
microbial content. Compared to targeted discovery approaches looking for specific microbes,
metagenomics offers the distinct advantage of discovering unexpected microbial associations
[6].

Despite its value as a holistic approach for investigating disease causation, metagenomics is
not without its difficulties. Multiple studies have demonstrated contamination in metagenomic
experiments from both environmental and reagent sources [7–9], meaning that any metage-
nomics experiment will likely reveal the presence of certain contaminant microbes. It is there-
fore vital to include a positive and negative control in any metagenomics study, with the
positive control confirming that the method is able to detect microbes in the sample, and the
negative control revealing those microbial sequences introduced through contamination. It is
also vital to control for batch effects, which may occur when different samples are processed at
different times. These problems may be exacerbated if samples with low microbial concentra-
tion are used, since the contaminants will occupy a relatively larger proportion of the total
microbes present.

Despite these limitations, we chose to use a metagenomic approach to investigate potential
microbial associations with ME/CFS, as we believe this to be the most sensitive and unbiased
approach currently available. We also investigated a second disease of unknown aetiology,
namely alternatively diagnosed chronic Lyme syndrome (ADCLS). ADCLS has a similar phe-
notype to ME/CFS, but is diagnosed on clinical grounds using alternative tests, the validity of
which is questioned by major reference laboratories and the CDC [10, 11]. We performed a
metagenomics case-control study comparing individuals with these two syndromes to healthy
controls and a second set of controls with systemic lupus erythematosus (SLE), a chronic dis-
ease with accepted diagnostic criteria [12] whose sufferers also frequently experience fatigue.
We chose to investigate plasma as this sample type was readily obtainable from both control
and case patients and we hypothesized that there would be fewer confounding microbes in
plasma compared to more complex sample types such as faeces, making etiologic associations
easier to identify.

Materials and Methods

Recruitment

Recruitment was performed as detailed in Patrick et al. 2015 [11]. In short, participants were
recruited from the general population in response to advertising or word of mouth. Participants
with ME/CFS were required to meet the Canadian Case definition [13], as confirmed by their pri-
mary physician via a referral sheet (S1 Info) and reviewed by study coordinators. Patients were
excluded if they were<19 years, unable to understand English, on antibiotic therapy in the last
month, or diagnosed with another medical condition explaining their symptoms such as multiple
sclerosis, diabetes, arthritis, hepatitis, HIV, cancer or a previous history of cancer (S2 Info). A
complete list of all prescription and non-prescription medications taken by study participants is
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given in S1 Table. The protocol was approved by the University of British Columbia’s Clinical
Research Ethics Board (H11-01998) Participants provided written informed consent, in a form
that was approved by the UBC ethics board and adheres to the ethical conduct of human research
subjects. Controls were age- and sex-matched to cases and any medical condition that precluded
the diagnosis of ME/CFS also excluded eligibility as a control.

Nucleic acid extraction and sequencing

Whole blood was drawn from participants into EDTA Vacutainer tubes (BD Biosciences, Mis-
sissauga, Ontario) and the plasma isolated and stored at -80°C until all collections were com-
plete. Plasma specimen volumes ranging from 800 μL to 1 mL were then extracted using the
NucliSens easyMAG system (bioMérieux, Craponne, France). A positive control consisting of
a single patient respiratory specimen positive for human metapneumovirus (hMPV) by real
time (RT)-PCR spiked into a pool of patient respiratory specimens negative for common respi-
ratory viruses was extracted in parallel. Nuclease-free water (Promega Corporation, Fitchburg,
WI) was included as a plasma-free negative control. All samples were eluted in 35 μL of elution
buffer (bioMerieux). For each sample and control, 22.4 μl of the extracted nucleic acid was
treated with Turbo DNase (Ambion, Inc., Austin, TX) for 30 minutes at 37°C. Each reaction
was terminated using 0.1 X volume of inactivation reagent (Ambion, Inc., Austin, TX), fol-
lowed by 5 min incubation at room temperature, centrifugation at 10,000 g x 1.5 min, and
finally supernatant containing RNA was transferred to a new tube.

An 8.5 μl aliquot of RNA was reverse transcribed with tagged random nonamers (50-
GTTTCCCACTGGAGGATA-N9-30), and subsequently amplified as part of a modified two-
step procedure, as previously described [14, 15]. Amplified complementary DNA products
were purified with AMPure beads (Beckman Coulter, Inc.) and the 5’ primer sequence flanking
the random nonamers (Sol-B primer, 50-GTTTCCCACTGGAGGATA-3 0) was digested with 4
U BpmI (New England BioLabs Inc., Ipswich, MA), as previously described [16]. Purified
libraries were then end-repaired, followed by adapter ligation and multiplexing, using the NEB-
Next Ultra DNA Library Prep Kit (New England BioLabs, Ipswich, MA). Insert sizes of 300 to
400 bp were targeted in the size selection process incorporated in the NEBNext protocol, and
an additional AMPure bead treatment performed to minimize the presence of adapter dimers.
To further decrease the adapter dimer content in the final batch of 32 samples, a modified gel
size selection approach targeting fragments between 300 and 500 bp using Ranger Technology
(Coastal Genomics Inc., Burnaby, BC) was performed following library preparation [17].

Sequencing was performed on an Illumina HiSeq 2000 sequencing system at McGill Univer-
sity and Genome Quebec Innovation Centre with 100 bp paired-end output (Illumina, Inc.,
San Diego, CA, USA). Nucleic acid concentrations were evaluated throughout the process
using Qubit DNA and RNA High Sensitivity assay kits in a Qubit 2.0 fluorometer (Life Tech-
nologies, Carlsbad, CA).

To confirm the presence of bacteria identified by metagenomics, we performed conven-
tional PCR amplification of the V3-V4 regions from the 16S rRNA-genes on the nucleic acid
extracts prior to the DNase treatment and random amplification step. Each PCR reaction con-
sisted of 1.5-mM MgCl2, 0.2-mM nucleotides, 0.4 μM of primers, 1.25 U of Hot Start Polymer-
ase (Promega Corporation, Fitchburg, WI), 1 μl of template total nucleic acids, and water in a
25 μl volume. Thermocycler conditions were as follows: 94°C × 5 min, 35 cycles of 45 s at 94°C,
45 s at 50°C, and 60 s at 72°C, and a final cycle of 10 min at 72°C. Nuclease-free water (Pro-
mega Corporation, Fitchburg, WI) and E. coli genomic DNA were used as a negative and posi-
tive control, respectively. Aliquots of 5 μl for each PCR reaction were analyzed on a 1.5%
agarose gel.
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Bioinformatics methods

Sequence files were downloaded as de-multiplexed BAM files and converted to fastq format
using picard-tools-1.74 (http://picard.sourceforge.net). Illumina adapters and remaining Sol-B
primer sequences from library preparation were removed using cutadapt v1.3 in paired end
mode, with minimum length 70 bp [18]. Further filtering was then performed using prinseq-
lite v0.20.2 for low complexity and paired-end duplicate removal with parameters: -lc_method
dust -lc_threshold 7 -derep 14 [19], followed by a bespoke python script to further remove any
reads which failed the Ilumina Chastity filter, had more than 20 bases in a row of the same call,
contained at least one “N”, had less than 2/3 of the bases with a quality of > = 30 in the first
half, or still contained the Sol-B primer, whilst also removing the B-tail and any reads less than
70 bp long.

Host subtraction was performed using bowtie2 v2.1.0 –very-sensitive [20] against a modi-
fied human reference consisting of the hg19 human reference plus human mtRNA (ftp://ftp.
ncbi.nlm.nih.gov/refseq/H_sapiens/H_sapiens/CHR_MT/) and human rRNA (ftp://ftp.ncbi.
nlm.nih.gov/refseq/H_sapiens/H_sapiens/RNA/). After extracting the unmapped reads using
samtools v0.1.19 [21] and bamtools [22], further rRNA was removed using BMTagger [23] to
the LSU and SSU SILVA databases (http://www.arb-silva.de/). Finally, prinseq-lite was used in
single end mode to remove any duplicate single reads, not accounting for read pairs. Bacterial
taxonomies were identified from the filtered non-host reads using Kraken [24] v0.10.6 with
default parameters against the NCBI RefSeq database (downloaded 2015-07-21). We chose to
use Kraken for bacterial analysis because of its increased speed compared to BLASTn, as well
as its high specificity. For viral analysis, the more sensitive BLASTn was used, but against a
reduced size database, also to increase speed. Thus viral taxonomies were identified from the
same filtered non-host reads using BLASTn megablast with parameters -best_hit_overhang
0.25 -best_hit_score_edge 0.05, against the NCBI viral database (downloaded 2015-07-29).
The bacterial and viral results were both then entered into MEGAN5 [25] for taxonomic
assignment at the phylum and genus levels.

Statistical methods

Statistical analysis was performed using R version 3.2.4. Clustering and heat maps were drawn
using heatmap.3, multivariable regression performed using generalised linear models, and
plots drawn using ggplot2.

Results

Sequencing results

Twenty-five ME/CFS cases, 25 healthy controls, 13 ADCLS cases and 11 SLE controls were
included in the final study. Demographic details of the participants recruited are given in
Table 1. cDNA sequences were obtained from all 74 samples, as well seven plasma-free negative
controls and one positive respiratory control spiked with hMPV. Seven ME/CFS, two ADCLS,
nine healthy and two SLE samples were sequenced twice. All fastq files are available from the
ENA database (accession number PRJEB14374).

Sequencing was performed in three batches, with RNA extracted and libraries prepared on
three separate occasions. Across all batches of sequencing results, there was a mean of
16,855,866 paired end reads sequenced per sample, of which the majority were removed during
quality filtering and host subtraction, leaving a mean of 282,525 reads for analysis. We identi-
fied a significant difference in number of reads produced between sequencing batches
(P<0.0001, Kruskal-Wallis), therefore, read counts were normalised by the number of filtered
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reads prior to host subtraction. A summary of read statistics for each sample can be found in
S2 Table.

Bacterial taxonomic investigation

We initially tested our bacterial bioinformatics pipeline using a mock community consisting of
eight genera, generated by Peabody et al. [26]. Our pipeline successfully identified all eight gen-
era, in 7,274,457/7,416,836 (98%) of reads, thus indicating a sensitivity and specificity of 98%
for bacterial analysis. Results of the mock community analysis are given in S3 Table.

Kraken identified the presence of RNA from 28 bacterial phyla and 512 bacterial genera in
our samples, of which 20 (71.4%) phyla and 254 (49.6%) genera were present in one or more of
the plasma-free negative control samples. RNA from Proteobacteria, Firmicutes, Actinobac-
teria and Bacteriodes were all detected at high abundance in both study samples and plasma-
free negative controls (Fig 1).

In order to determine whether there were differences in RNA levels between samples, hier-
archical clustering was performed. Hierarchical clustering provided no evidence of samples
clustering according to study group, with the exception of the plasma-free negative control
samples, which clustered together. However, clustering by sequencing batch was observed,
with sequencing batch 3 largely separating out from the other two batches.

To further investigate the relationship between bacterial RNA content and study group or
sequencing batch, Principal Component Analysis (PCA) was performed at the phylum and
genus levels using the normalised read abundances. Neither analysis showed samples from the
same study group clustering together; however, samples did cluster according to the batch in
which nucleic acid extraction and sequencing were performed (Fig 2).

To compare the effects of study group and sequencing batch on RNA content, we performed
multivariable regression analysis on the raw reads, with duplicate samples randomly removed
and without the plasma-free negative controls. After Bonferroni correction, required to reduce
P values in order to correct for multiple comparisons [27], there were six genera whose level of

Table 1. Demographic and clinical characteristics of the study cohort.

Group Healthy (N = 25) (N

(%) or Median (IQR))

SLE N = 11) (N (%)

or Median (IQR))

CFS (N = 25) (N (%)

or Median (IQR))

ADCLS (N = 13) (N

(%) or Median (IQR))

P SLE vs.

Healthy

P CFS vs.

Healthy

P ADCLS vs.

Healthy

Male 4 (16%) 0 (0%) 4 (16%) 3 (23%) 0.3 1 0.7

Age (years) 53 (30;69) 51 (29;75) 54 (34;67) 45 (18;71) 0.5 0.9 0.02

Ethnicity 0.08 0.04 0.4

Aboriginal 0 (0%) 0 (0%) 2 (8%) 0 (0%)

White 20 (80%) 5 (45%) 23 (92%) 13 (100%)

Chinese 3 (12%) 3 (27%) 0 (0%) 0 (0%)

Other 2 (8%) 3 (27%) 0 (0%) 0 (0%)

Duration of

illness

Acute onset (vs.

gradual)

NA 4 (36%) 13 (52%) 3 (23%) NA NA NA

Karnofsky 100 (65–100) 90 (50–100) 60 (40–80) 65 (60–90) 0.002 <0.0005 <0.0005

SF36 physical 55.8 (41.8–63.5) 40.1 (30.5–56.5) 24.7 (15.8–41.7) 30.4 (10.3–53.2) 0.001 <0.0005 <0.0005

SF36 mental 55.4 (32.3–61.2) 50.8 (30.1–58.7) 47.8 (17.3–58.1) 46.7 (27.7–59.3) 0.1 0.003 0.02

P-values calculated with Fisher’s Exact Test for categorical variables or Wilcoxon rank sum test for continuous variables; SLE—Systemic lupus

erythematosus; CFS—Chronic Fatigue Syndrome; ADCLS—Alternatively Diagnosed Chronic Lyme Syndrome; N/A—Not Applicable. Values are N (%) for

categorical variables and median (range) for continuous variables.

doi:10.1371/journal.pone.0165691.t001
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RNA differed significantly between study groups: Propionibacterium, Pandoraea, Acidovorax,
Rubrivivax, Cupriavidus, and Alteromonas (P<0.005), however, RNA corresponding to these
six genera also differed significantly between sequencing batch. There were also 36 genera
whose RNA differed significantly between sequencing batch only (P<0.005), indicating that
sequencing batch had an effect on the RNA levels of more genera than study group (S4 Table).

Fig 1. Heatmap of bacterial RNA present in each sample at the phylum level. Sample and phyla are ordered using

hierarchical clustering. Samples, on the left of the plot, are coloured by study group and sequencing batch. Clustering

demonstrates no relationship between group and phylum distribution. CFS = Chronic Fatigue Syndrome; ADCLS = alternatively

diagnosed chronic Lyme syndrome; SLE = systemic lupus erythematosus.

doi:10.1371/journal.pone.0165691.g001
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Of the six genera whose RNA differed significantly between study group and sequencing
batch, four (Propionibacterium, Acidovorax, Cupriavidus and Alteromonas) also had high levels
of RNA in the plasma-free negative control samples and are known common contaminants [7,
28]. The remaining two (Pandoraea and Rubrivivax) did not differ significantly in RNA abun-
dance between any single study groups using a Wald test to determine the effects of the individ-
ual groups [29], rather only at the group level.

Of note, Kraken analysis identified RNA from Borrelia, the bacterial genus that causes Lyme
disease, in 16 samples, of which three were from participants with ADCLS. Further investiga-
tion of the reads matching Borrelia RNA revealed that only five mapped to Borrelia in both
reads from the pair, of which only one pair was from a participant with ADCLS. Furthermore,
using BLASTn, with the same parameters used for viral analysis against the NCBI nr database,
revealed only one single read out of all 47 identified by Kraken matched to Borrelia, and this
was from a healthy participant. Therefore, we were unable to find evidence for the presence of
Borrelia in plasma from participants with ADCLS.

Fig 2. Principal Component Analysis (PCA) of normalised bacterial genera. Points are coloured by sequencing batch and

shaped by study group. Dashed lines indicate the same sample sequenced twice. (a) complete PCA plot of all samples, (b) zoomed-in

plot to highlight differences between batches.

doi:10.1371/journal.pone.0165691.g002
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To validate the presence of bacteria identified through shotgun metagenomics, we employed
PCR using universal 16S primers, binding to the V3-V4 regions of the 16S rRNA-genes, to see
if we could amplify any bacterial 16S rRNA genes. We determined the limit of detection of this
assay to be 24.1 molecules per μl. Using this method we were unable to amplify any 16S rRNA
genes, even in the sample with the highest number of reads (0.5%) matching to RNA from bac-
terial phyla. This suggests that the level of bacteria is very low in our samples, and it is even
possible that the observed bacteria came from contamination during sample processing. As the
levels of bacteria were so low based on the PCR, results are highly subject to contamination
and minor variances from extraction and other laboratory processes, highlighting the need for
controls and tracking of reagents lots, as well as the batching of extraction, library preparation
and sequencing runs.

Viral taxonomic investigation

We also investigated the study samples for viral RNA content. Due to the comparatively small
genome size of viruses compared to bacteria, we expected viral RNA to be present at lower
abundance in our samples. Therefore, we used the more sensitive BLASTn megablast to map
all filtered reads to the NCBI RefSeq viral database. RNA from six and 47 viral phyla and gen-
era were identified respectively, of which RNA from three (50%) and 15 (31.9%) were in at
least one plasma-free negative control sample (Fig 3). In the hMPV positive control 72/30,295
reads entered into BLASTn analysis against the viral database mapped to hMPV.

We again used multivariable regression to investigate the effect of study group and sequenc-
ing batch on viral RNA content, revealing that RNA from only one virus, Betabaculovirus, sig-
nificantly differed between study groups after Bonferroni correction. However, despite
reaching significance at the group level, no single study group differed from any other in its
level of Betabaculovirus RNA using a Wald test. This virus also differed significantly between
sequencing batch, with sequencing batch 3 having significantly higher abundance of Betabacu-
lovirus RNA using a Wald test (P<0.0005). Such a significant difference between batches sug-
gests that the batch effect was far larger than the study group effect. Furthermore, RNA from
Betabaculovirus was present in the plasma-free negative control samples, particularly the one
from batch 3, and since it is a dsDNA virus, we are measuring transcription rather than DNA
copy number. Also, its natural hosts are arthropods, supporting our conclusion that it is a con-
taminant rather than a true component in human plasma. See S5 Table for complete results of
the regression analysis.

Discussion

Our metagenomic investigation of plasma RNA content revealed significant variation between
sequencing batches, and potential sample contamination, but did not reveal differences in the
plasma RNA content between individuals with ME/CFS or ACDLS and healthy controls or
controls with SLE. Our findings highlight the necessary care that must be taken when perform-
ing metagenomic experiments both to control for batch-to-batch effects and the need to
include negative and positive controls in the experimental design to identify contaminants.

We chose to analyse the RNA content of our samples, meaning that our results represent a
composite picture combining the actual cellular abundance with metabolic and replicative
activity of the microbes present. This therefore may not entirely reflect the bacterial abundance
of each sample. Despite this limitation, batch-to-batch effects and sample contamination were
both clearly identified, highlighting their strong impact. It should be noted that it is possible
that differences between study groups would have been identified if we had performed DNA
analysis, which is as a more precise measure of cellular abundance, however, the large batch
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and contamination effects, as well as the low levels of microbial RNA present, make this highly
unlikely.

There has been little research performed on metagenomics of plasma. One study investi-
gated the plasma microbiome in patients with HIV and found it was dominated by the orders
Pseudomonadales, Lactobacillus, Burkholderiales, Bacillales and Enterobacteriales [30]. How-
ever, they did not use a negative control, meaning their results could be contaminants and
indeed these orders were all found in the plasma-free negative controls used in our study.

In fact, it could be argued that a plasma microbiome does not exist at all in healthy subjects.
Such an assertion is supported by the fact that even in the sample with the highest number of
RNA reads mapping to bacteria in this study, we were unable to amplify any microbial ribo-
somal RNA from the plasma extracts. However, we believe it likely that the plasma has some
microbial content, even if it is a low concentration of exogenous elements circulating in the
blood that act as an indicator of microbial presence elsewhere in the body. As nucleic acid
extraction techniques, purity of molecular biology reagents, and availability of methods that
require less sample manipulation and amplification continue to improve, it will become

Fig 3. Heatmap of viral RNA present in each sample at the genus level. Samples and genera are

ordered using hierarchical clustering. Samples, on the left of the plot, are coloured by study group and

sequencing batch. Clustering demonstrates no relationship between group and phylum genus. CFS =

Chronic Fatigue Syndrome; ADCLS = alternatively diagnosed chronic Lyme syndrome; SLE = systemic

lupus erythematosus.

doi:10.1371/journal.pone.0165691.g003
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possible to study nucleic acids from increasingly small volumes [31, 32]. Thus, future work
may reveal a microbial component to human plasma that we are not yet able to identify.

Since all plasma-free negative controls used in this study were put through every step of our
protocol, we are unable to determine where contamination arose. To determine the source of
contamination, further experiments would be required, in which a new negative control was
introduced at each step. Since our initial aim was not to measure contamination, our study did
not use this approach. However, other studies have shown contamination arises from multiple
sources, including ultrapure water [9] and nucleic acid extraction kits [7, 8].

It is also possible that some taxonomies identified could be false positives occurring due to
incorrect alignments made by Kraken or BLASTn. Using a bacterial mock community, we cal-
culated that our bioinformatics pipeline has sensitivity and specificity of 98%, suggesting that
2% of reads may be false positive or false negative alignments. This is particularly likely for bac-
terial genera seen at low levels, for example Borrelia, which was proven to consist of largely
incorrect alignments when validated using BLASTn. Similarly, for viral alignments, Orthobu-
nyavirus RNA was found in 84/102 (82%) of samples (data not shown), however, Orthobunya-
virus is often identified due to non-specific alignments of bacterial sequences to viral databases,
thus may not truly be present in our samples. It is likely that aligning all reads to the complete
NCBI database using BLASTn would reduce false positive taxonomic assignments, however,
such an analysis would be highly time consuming, hence alternative faster alignment methods
were chosen.

The lack of a positive association between ME/CFS and ADCLS and plasma microbial content
in this study does not mean that these syndromes do not have an infectious cause, and future
experiments should examine the microbiome of other body tissues, including the cellular blood
microbiome, which may harbour higher concentrations of microbes. The gut microbiome is of
particular interest, as it has been associated with other chronic diseases, including for example,
inflammatory bowel disease [33, 34], asthma [35], and multiple sclerosis [36]. In the ME/CFS
field, 16S rRNA gene sequencing of stool samples from ME/CFS patients and healthy controls
demonstrated a significant increase in Lactonifactor and decrease in Holdemania in ME/CFS
patients compared to controls [37]. A second study also using 16S rRNA gene sequencing of
stool samples found a significant decrease in Actinobacteria and one other phylum in ME/CFS
patients compared to controls, but no significant differences in bacterial phyla from blood sam-
ples. However, both ME/CFS studies were small, with sample sizes of 43 and 10 ME/CFS patients
respectively. Furthermore, neither study used a negative control, so they were unable to rule out
contamination as a source of their differences. Thus, confirmation of these results requires repli-
cation in other populations and laboratories, with careful use of control samples.

Due to its exploratory nature, our study had a relatively small sample size (25 ME/CFS par-
ticipants), which reduced our power to detect differences in the metagenome between study
groups. A large sample size is particularly important for investigating ME/CFS, since it is a
complex disease defined by a group of symptoms, which are not all required to be present. To
reduce within-case heterogeneity, we chose to use the Canadian Case Definition for ME/CFS
[13] as it was the most specific definition available at the time of study design; however, other
definitions have since become available, such as the US Institute of Medicine case definition
[38]. To further reduce heterogeneity between patients, some researchers have suggested divid-
ing ME/CFS into subtypes, for example based on functional disability, speed of onset, or bio-
markers [39, 40], which again may increase a study’s power to detect associations between
groups. Subtyping would be highly useful in future studies, but was not practical with our sam-
ple size.

It is also important to perform case-control studies using carefully matched controls. In our
study we matched for sex and age within five years. However, it may also be beneficial to match
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on other characteristics, such as ethnic background or level of activity, as ME/CFS sufferers often
tend to be quite sedentary. Additionally, nested case-control studies may increase a study’s power
to find significant associations without requiring a large number of ME/CFS participants.

Another possible method of matching is to follow the same ME/CFS patient over time. One
of the hallmarks of ME/CFS is post-exertional malaise (PEM), which involves symptom flare-
up after exertion and which can be simulated using an exercise test. Shukla et al. 2015 measured
the blood and stool microbiome of the same patients before and after PEM and were able to
find differences in the abundance of seven of the nine bacterial phyla they investigated [41].

Conclusions

Our study was unable to find a positive association between the plasma RNA content of indi-
viduals with ME/CFS or ACDLS and healthy controls or controls with SLE. Plasma represents
a difficult medium for metagenomic analysis, since very low levels of microbes mean it is very
difficult to distinguish the microbiome from background contamination. This is not to say that
associations with ME/CFS or other syndromes might not be identified in the microbiome of
other body sites, or perhaps in the investigation of host factors such as host gene expression or
immunological profiles. However, future exploration must be performed rigorously with large
sample sizes, clear definitions and careful use of positive and negative controls.
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